Section 5.7: Antiderivatives

Definition We call $F(x)$ an antiderivative of $f(x)$ if $F^{\prime}(x)=f(x)$.
For example, x^{2} is an antiderivative of $2 x$ because $\frac{d}{d x}\left(x^{2}\right)=2 x$.
Definition If F is an antiderivative of f, then the most general antiderivative of f is $F(x)+C$, where C is any arbitrary constant.

Table of Antiderivatives:

Function	Antiderivative
k	$k x+c$
x^{n}, if $n \neq-1$	$\frac{x^{n+1}}{n+1}+c$
x^{-1}	$\ln \|x\|+c$
e^{x}	$e^{x}+c$
a^{x}	$\frac{a^{x}}{\ln a}+c$
$\cos x$	$\sin x+c$
$\sin x$	$-\cos x+c$
$\sec x \tan x$	$\sec x+c$
$\sec { }^{2} x$	$\tan x+c$
$\csc ^{2} x$	$-\cot x+c$
$\csc x \cot x$	$-\csc x+c$
$\frac{1}{x^{2}+1}$	$\arctan x+c$
$\frac{1}{\sqrt{1-x^{2}}}$	$\arcsin x+c$

EXAMPLE 1: Find the most general antiderivative.
(i) $f(x)=x^{3}-4 x^{2}+e$
(ii) $f(x)=\sqrt[3]{x^{2}}-\sqrt{x^{3}}$
(iii) $f(x)=\frac{x+5 x^{2}-1}{2 x^{3}}$
(iv) $f(x)=e^{x}+\frac{4}{\sqrt{1-x^{2}}}+5\left(1-x^{2}\right)^{-1 / 2}$

EXAMPLE 2: Given the graph of f passes through the point $(1,6)$ and the slope of its tangent line at $(x, f(x))$ is $2 x+1$, find $f(2)$.

EXAMPLE 3: A particle is moving according to acceleration $a(t)=3 t+8$. Find the position, $s(t)$, of the object at time t if we know $s(0)=1$ and $v(0)=-2$.

EXAMPLE 4: Suppose the acceleration of an object at time t is given by $\mathbf{a}(t)=(\cos t \mathbf{i})-3 \mathbf{j}$. Find the position vector function, $\mathbf{r}(t)$, if it is known that $\mathbf{v}(2)=\mathbf{i}-\mathbf{j}$ and $\mathbf{r}(0)=\mathbf{0}$.

EXAMPLE 5: If $f^{\prime \prime}(x)=x^{2}, f(1)=2$ and $f(2)=3$, find $f(x)$.

EXAMPLE 6: A car braked with a constant deceleration of 40 feet per second squared, producing skid marks measuring 160 feet before coming to a stop. How fast was the car traveling when the brakes were first applied?

