Section 6.2: Area

Using rectangles to approximate the area under a curve Let $f(x)$ be a function defined on the interval $[a, b]$. We wish to approximate the area bounded by the curve $f(x)$, the x-axis, $x=a$ and $x=b$. We begin by partitioning the interval $[a, b]$ into n smaller subintervals. We call $P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}=b\right\}$, where $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b$, the partition points. For each subinterval $\left[x_{i-1}, x_{i}\right]$, choose a representative point x_{i}^{*}, that is x_{i}^{*} is any point on the interval $\left[x_{i-1}, x_{i}\right]$. For each subinterval $\left[x_{i-1}, x_{i}\right]$, we will construct a rectangle under the curve and above the x-axis, where the height of this rectangle is $f\left(x_{i}^{*}\right)$ and the width is $\Delta x_{i}=x_{i}-x_{i-1}$. Refer to the figure below.

As seen from the above figure, the sum of the approximating rectangles gives an approximation under the graph of $f(x)$ from $x=a$ to $x=b$. Moreover, the area under the curve $\approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$, where n is the number of rectangles constructed.

EXAMPLE 1: You are given a function f, an interval, partition points, and a description of the point x_{i}^{*} within the i th subinterval.
(a) Find $\|P\|$.
(b) Sketch the graph of f and the approximating rectangles.
(c) Find the sum of the approximating rectangles.
(i) $f(x)=16-x^{2},[0,4], P=\{0,1,2,3,4\}, x_{i}^{*}=$ left endpoint.
(ii) $f(x)=4 \cos x,\left[0, \frac{\pi}{2}\right], P=\left\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}, x_{i}^{*}=$ Right endpoint.
(iii) $f(x)=\ln x,[1,3]$. Create the partition by using 3 subintervals of equal length, $x_{i}^{*}=$ midpoint.

Theorem If $f(x) \geq 0$ on the interval $[a, b]$, then the true area under the graph of $f(x)$ from $x=a$ to $x=b$ is $A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$, where $\Delta x_{i}=\frac{b-a}{n}$ and x_{i}^{*} is any point on the i th subinterval.

EXAMPLE 2: For the following functions, set up the limit of the Reimann Sum that represents the area under the graph of $f(x)$ on the given interval. Do not evaluate the limit.
(i) $f(x)=x^{2}+3 x-2$ on the interval $[1,4]$.
(ii) $f(x)=\sqrt{x^{2}+1}$ on the interval $[0,5]$.

EXAMPLE 3: The following limits represent the area under the graph of $f(x)$ from $x=a$ to $x=b$. Identify $f(x), a$ and b.
(i) $\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n} \sqrt{1+\frac{3 i}{n}}$
(ii) $\lim _{n \rightarrow \infty} \frac{10}{n} \sum_{i=1}^{n} \frac{1}{1+\left(7+\frac{10}{n} i\right)^{3}}$

