Section 6.4: The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus Part I: If f is continuous on $[a, b]$, then the function g defined by $g(x)=\int_{a}^{x} f(t) d t$ is continuous on $[a, b]$ and differentiable on (a, b) and $g^{\prime}(x)=f(x)$.
EXAMPLE 1: If $g(x)=\int_{0}^{x} f(t) d t$, where the graph of $f(t)$ is given below, evaluate $g(3), g(6)$ and $g(10)$.

EXAMPLE 2: Find $g^{\prime}(x)$ for
(a) $g(x)=\int_{-1}^{x} \sqrt{t^{3}+1} d t$
(b) $g(x)=\int_{1}^{\sqrt{x}} \frac{t^{2}}{t^{2}+1} d t$
(c) $g(x)=\int_{x^{2}}^{3} e^{t^{3}} d t$
(d) $g(x)=\int_{x^{2}}^{\sin x} \frac{\cos t}{t} d t$

The Fundamental Theorem of Calculus Part II: If f is continuous on $[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where F is an antiderivative of f.

EXAMPLE 3:
(a) Evaluate $\int_{1}^{2} \frac{1}{x^{2}} d x$
(b) Evaluate $\int_{-1}^{0}\left(5 x^{2}-4 x+3\right) d x$
(c) Evaluate $\int_{\ln 3}^{\ln 6} 8 e^{t} d t$
(d) Evaluate $\int_{0}^{1} \frac{1}{x^{2}+1} d x$
(e) Evaluate $\int_{1}^{2} \frac{x^{6}-x^{2}}{x^{7}} d x$
(f) Evaluate $\int_{0}^{2}\left(w^{3}-1\right)^{2} d w$
(g) Evaluate $\int_{-2}^{0}\left|x^{2}-1\right| d x$
(h) Find $\int_{0}^{\pi / 2} f(x) d x$ where $f(x)= \begin{cases}\cos x & \text { if } 0 \leq x<\frac{\pi}{4} \\ \sin x & \text { if } \frac{\pi}{4} \leq x \leq \frac{\pi}{2}\end{cases}$

EXAMPLE 4: Suppose an object is moving according to velocity $v(t)=3 t-5$, $0 \leq t \leq 3$. Find the displacement and distance traveled during the first 3 seconds.

