SERIES

courtesy of Amy Austin

Def: Let \(\{a_n\} = \{a_1, a_2, a_3, \ldots, \ldots\} \) be a sequence. We define the infinite series to be \(\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \ldots + a_n + \ldots + \ldots \). In other words, a series is the sum of a sequence. The main focus of chapter 10 is to determine when the sum is finite.

Def: Let \(\sum a_n \) be a series. We will construct the sequence of partial sums \(\{s_n\} = \{s_1, s_2, s_3, \ldots, \ldots\} \) as follows:

\[
\begin{align*}
 s_1 &= a_1 \\
 s_2 &= a_1 + a_2 \\
 s_3 &= a_1 + a_2 + a_3
\end{align*}
\]

Therefore a general formula for \(s_n \) is

\[
s_n = \sum_{i=1}^{n} a_i = a_1 + a_2 + \ldots + a_n.
\]

If \(\lim_{n \to \infty} s_n = s \), where \(s \) is finite, then we say the series \(\sum a_n \) converges and it’s sum is \(s \). If \(\lim_{n \to \infty} s_n \) is infinite or does not exist, then we say the series \(\sum a_n \) diverges.

Test for Convergence

Below are the various tests to determine whether a particular series converges or diverges.

1. The Test for Divergence: If \(\lim_{n \to \infty} a_n \neq 0 \), then \(\sum a_n \) diverges. NOTE: The converse is not necessarily true: If \(\lim_{n \to \infty} a_n = 0 \), then the series \(\sum a_n \) does not necessarily converge. Therefore if you find that \(\lim_{n \to \infty} a_n = 0 \), then the divergence test fails. For example the series \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges, however the TERMS \(\{\frac{1}{n}\} \) do go to zero-just not fast enough to get a finite SUM.

2. Geometric series: The geometric series \(\sum_{n=1}^{\infty} ar^{n-1} \) converges if \(|r| < 1 \) and diverges if \(|r| \geq 1 \). If \(|r| < 1 \), then the sum is \(\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1 - r} \).
3. **The Integral Test:** If \(f(x) \) is a positive, continuous, decreasing function on \([1, \infty]\), and \(a_n = f(n) \). Then:

a.) If \(\int_1^\infty f(x) \, dx \) is convergent, then \(\sum_{n=1}^{\infty} a_n \) converges.

b.) If \(\int_1^\infty f(x) \, dx \) diverges, then \(\sum_{n=1}^{\infty} a_n \) diverges.

4. The **p-series** \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) is convergent if \(p > 1 \) and divergent if \(p \leq 1 \).

5. **The Comparison Test:** (Use this test if the series is a series of positive terms, and the series is comparable to a p-series or a geometric series.)

Suppose \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{i=1}^{\infty} b_n \) are series of positive terms.

a.) If \(\sum_{n=1}^{\infty} b_n \) is convergent and \(a_n \leq b_n \) for all \(n \), then \(\sum_{n=1}^{\infty} a_n \) is also convergent.

b.) If \(\sum_{n=1}^{\infty} b_n \) is divergent and \(a_n \geq b_n \) for all \(n \), then \(\sum_{n=1}^{\infty} a_n \) is also divergent.

6. **The Limit Comparison Test:** Conditions for using this test are the same conditions as the comparison test.

Suppose \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) are series of positive terms.

a.) If \(\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0 \), then either both series converge or both diverge.

7. **The Alternating Series Test:** If the alternating series \(\sum_{n=1}^{\infty} (-1)^n a_n \) satisfies

a.) \(a_{n+1} \leq a_n \) for all \(n \) (ie the sequence \(\{a_n\} \) is decreasing).

b.) \(\lim_{n \to \infty} a_n = 0 \)

then the series converges.
8. **The Ratio Test**: (Use this test if the series contains \(n! \) or numbers raised to the \(n \)th power, such as \(2^n \). If the ONLY number raised to the \(n \)th power is \((-1)^n\), then use the alternating series test).

 a.) If \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1 \), then the series \(\sum_{n=1}^{\infty} a_n \) is absolutely convergent (and therefore convergent).

 b.) If \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1 \) or \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty \), then the series \(\sum_{n=1}^{\infty} a_n \) is divergent.

 c.) If \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1 \), then the test fails.

9. **Remainder formulas:**

 - **The Remainder Estimate for the Integral test**: Suppose \(\sum_{n=1}^{\infty} a_n \) is a series which was shown to be convergent as a result of the integral test or a comparison test. This means that the sum of the series is finite. Let’s say \(\sum_{n=1}^{\infty} a_n = s \). Suppose further that I used a partial sum \(s_n = \sum_{i=1}^{n} a_i = a_1 + a_2 + \ldots + a_n \) to approximate \(s \). Then the remainder is defined to be \(R_n = \sum_{i=n+1}^{\infty} a_i = a_{n+1} + a_{n+2} + \ldots \).

 a.) If we want to get an upper bound for the error in using \(s_n \) to approximate \(s \), then

 \[
 R_n \leq \int_n^{\infty} f(x) \, dx.
 \]

 b.) If we want to get an interval on which the remainder lies, then

 \[
 \int_{n+1}^{\infty} f(x) \, dx \leq R_n \leq \int_n^{\infty} f(x) \, dx.
 \]

 - **The Alternating Series Theorem**: If \(\sum_{n=1}^{\infty} (-1)^n a_n \) is a convergent alternating series, and I used a partial sum \(s_n = \sum_{i=1}^{n} (-1)^i a_i \) to approximate the sum, then an upper bound on the absolute value of the remainder is \(|R_n| \leq a_{n+1} \).