Section 10.5

1. For the following power series, find the radius and interval of convergence.
a.) $\sum_{n=0}^{\infty} \frac{n^{2} x^{n}}{3^{n}}$

For the power series $\sum_{n=1}^{\infty} C_{n}(x-a)^{n}$ the center of the series is $a$. we want to find the interval of convergence $=$ the interval that contains all values of $x$ for which the series converges, denoted by $I$.
case 1: $I=\{a\} \quad R=0$
case 2: $I=(-\infty, \infty) \quad R=\infty$
case 3: $I=(a-R, a+R)$
$R=$ radius of convergence.
must also test endpoints for convergence.


Section 10.5

1. For the following power series, find the radius and interval of convergence.
centered at 0 .
a.) $\sum_{n=0}^{\infty} \frac{n^{2} x^{n}}{3^{n}}$

Step: Apply Ratio Test: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2} x^{n+1}}{3^{n+1}} \cdot \frac{3^{n}}{n^{2} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2} x \cdot x^{x}}{3 \cdot x^{1}} \frac{3^{x}}{n^{2} x^{x}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{x}{3} \frac{(n+y)^{2}}{\rho^{2}}\right|^{\prime \prime}=\left|\frac{x}{3}\right|<1 \rightarrow \frac{1}{3}|x|<1 \\
& \xrightarrow[-3]{\text { dis }}(\operatorname{con} V) \sim_{0}^{d i v}|x|<\frac{3}{R}
\end{aligned}
$$

Test endpoints for convergence: plug into $\sum_{n=0}^{\infty} \frac{n^{2}}{3}$

$$
\begin{aligned}
& x=3: \sum_{n=0}^{\infty} \frac{n^{2} 3^{n}}{3^{n}}=\sum_{n=0}^{\infty} n^{2} \\
& \text { T. O. } \lim _{n \rightarrow \infty} n^{2} \neq 0 \\
& \sum_{n=0}^{\infty} n^{2} \text { diverges by } \\
& x=-3: \sum^{\infty} \frac{n^{2}(-3)^{n}}{}=\sum^{\infty}(-1)^{n} n^{2} \quad n^{2}, n
\end{aligned}
$$

b.) $\sum_{n=1}^{\infty} \frac{2^{n}(x-1)^{n}}{n^{2}+2}$ centered at 1 .

RT: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}(x-1)^{n+1}}{(n+1)^{2}+2} \cdot \frac{n^{2}+2}{2^{n}(x-1)^{n}}\right| \rightarrow 1$

$$
\begin{aligned}
& \left.=\lim _{n \rightarrow \infty}\left|\frac{2 \cdot 2^{x}(x-1)(x-1)^{x}}{(n+1)^{2}+2} \cdot \frac{n^{2}+2}{2^{2}(x-1)^{x}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2(x-1)\left(n^{2}+2\right)}{(n+1)^{2}+2}\right| \right\rvert\, \\
& =|2(x-1)|<1 \rightarrow 2|x-1|<1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Test endpoints for }
\end{aligned}
$$

convergence by plugging $x=\frac{1}{2}+\frac{3}{2}$ into

$$
\begin{aligned}
& x=\frac{3}{2} \sum_{n=1}^{\infty} \frac{2^{n}\left(\frac{1}{2}\right)^{n}}{n^{2}+2} \\
&=\sum_{n=1}^{\infty} \frac{1}{n^{2}+2} \leqslant \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
&\text { Larger })
\end{aligned}
$$

include
$x=\frac{3}{2}$ on
interval
of conv. smaller converges converges by $p$-series $p=2$.
$=\sum^{\infty} \frac{(-1)^{n}}{2}$ by comparison

$$
x=\frac{1}{2}: \quad \sum_{n=1}^{\infty} \frac{2^{n}\left(-\frac{1}{2}\right)^{n}}{n^{2}+2}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+2}
$$ Test

AST show: $\left\{\frac{1}{n^{2}+2}\right\} \begin{aligned} & \text { decreases } \\ & \text { to zero. }\end{aligned}$
decreases: $\frac{1}{(n+1)^{2}+2} \leq \frac{1}{n^{2}+2}$

$$
a_{n+1} \leq a_{n}
$$

to zero: $\lim _{n \rightarrow \infty} \frac{1}{n^{2}+2}=0$
$\therefore \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+2}$ converges by $A S T$.

$$
I=\left[\frac{1}{2}, \frac{3}{2}\right] \quad R=\frac{1}{2} \quad \text { include } x=\frac{1}{2}
$$

$$
\begin{aligned}
& \text { c.) } \sum_{n=1}^{\infty} \frac{(-1)^{n}(2 x+1)^{n}}{\sqrt{n}} \text { center: } x=-\frac{1}{2} \\
& \text { RT: } \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(2 x+1)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{(-1)^{n}(2 x+1)^{n}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{(-1)(-1)^{n}(2 x+1)(2 x+1)^{n}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{(-1)^{n}(2 x+1)^{n}}\right| \\
& \left.\lim _{n \rightarrow \infty}\left|\frac{-1(2 x+1) \sqrt{n}}{\sqrt{n+1}}\right|^{\prime}|=|-1(2 x+1)| \quad| a b|=|a|| b \right\rvert\, \\
& =|2 x+1|<1 \\
& \underbrace{\substack{\text { iv }}}_{-1} \underset{\substack{-\frac{1}{2} \\
L_{\text {center }}}}{\text { con }}) \overbrace{0}^{\text {dis }} \\
& =\left|2\left(x+\frac{1}{2}\right)\right|<1 \\
& \left|x+\frac{1}{2}\right|<\frac{1}{2} \\
& \left|x-\left(-\frac{1}{2}\right)\right|<\frac{1}{2}
\end{aligned}
$$

Test endpoints by
plugging $x=-1+x=0$ into
c.) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 x+1)^{n}}{\sqrt{n}}$
$x=0 ; \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} \quad$ converges by AST
include since $\left\{\frac{1}{\sqrt{n}}\right\} \begin{aligned} & \text { decreases } \\ & \text { to zero }\end{aligned}$ (show it!)

$$
\begin{array}{r}
x=-1: \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}(-1)^{n}=}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \\
\quad p \text { - series } p=\frac{1}{2}<1 \\
\text { diverges } \\
\text { do not } \\
\text { include } x=-1 \\
\text { interval. } \\
\quad I=(-1,0] \quad R=\frac{1}{2}
\end{array}
$$

d.) $\sum_{n=0}^{\infty} \frac{n!(x+2)^{n-1}}{5^{n-1}}$ center: -2.

RT: $\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{\prime}!(x+2)^{n}}{5^{n}} \cdot \frac{5^{n-1}}{n!(x+2)^{n-1}}\right|$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{(n+1) \not x!(x+2)(x+2)^{n-1}}{5 \cdot 5^{n-1}} \cdot \frac{5^{n-1}}{N!(x+2)^{n-1}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{x+2}{5}(n+1)\right|=\infty \quad \frac{\text { unless } s}{} \quad x=-2 . \\
& I=\{-2\} \quad R=0
\end{aligned}
$$

e.) $\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{n}}{(2 n+1)!}$ center is 0.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{(-3)^{n+1} x^{n+1}}{(2 n+3)!} \frac{(2 n+1)!}{(-3)^{n} x^{n}}\right| \\
& \left.\lim _{n \rightarrow \infty}\left|\frac{-3(-3) x \cdot 2 x}{(2 n+3)(2 n+2)(2 n+1)!}\right| \frac{(2 n+1)!}{(-3)^{x} x^{n}} \right\rvert\, \\
& \lim _{n \rightarrow \infty}\left|\frac{-3 x}{(2 n+3)(2 n+2)}\right|=0 \quad \text { for all } x \\
& I=(-\infty, \infty) \\
& R=\infty
\end{aligned}
$$

2. Suppose it is known that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=-4$ and diverges when $x=6$. On what interval(s) are we guaranteed convergence? On what interval (s) are we guaranteed divergence?

guaranteed convergence on $[-4,4)$
guaranteed divergence on

$$
(-\infty,-6) \cup[6, \infty)
$$


does $\sum_{n=0}^{\infty} c_{n}(5)^{n}$ converge? Not enough

3. Suppose it is known that $\sum_{n=0}^{\infty} c_{n}(x-2)^{n}$ converges when $x=5$ and diverges when $x=12$. On what interval(s) are we guaranteed convergence? On what intervals) are we guaranteed divergence?

$$
\text { convergence: }(-1,5]
$$



Section 10.6
4. Express the following functions as a power series. Identify the radius and interval of convergence.
a.) $f(x)=\frac{1}{1-x}$

$$
\begin{array}{r}
\text { b.) } f(x)=\frac{1}{1-5 x}=\sum_{n=0}^{\infty}(5 x)^{n}, \\
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \\
\text { where }|5 x|<1 \rightarrow|x|<\frac{1}{5} \quad R=\frac{1}{5} \\
\quad I=\left(-\frac{1}{5},\right.
\end{array}
$$

$$
\text { c.) } f(x)=\frac{-3}{1+4 x^{2}} \quad I=\left(-\frac{1}{5}, \frac{1}{5}\right)
$$

$$
\text { F Form " } \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n n}
$$

$$
=-3\left(\frac{1}{1-\left(-4 x^{2}\right)}\right)
$$

$$
=-3 \sum_{n=0}^{\infty}\left(-4 x^{2}\right)^{n} \quad\left|-4 x^{2}\right|<1
$$

$$
\begin{aligned}
& =-3 \sum_{n=0}^{\infty}(-1)^{n} 4^{n} x^{2 n} \\
& =3 \sum_{n=0}^{\infty}(-1) 4 x^{n+1} n
\end{aligned}
$$

$$
4\left|x^{2}\right|<1
$$

$$
\left|x^{2}\right|<\frac{1}{4}
$$

$$
|x|<\frac{1}{2}
$$



$$
\begin{array}{rlr} 
& =\frac{x^{2}}{3} \frac{1}{1-\frac{x}{9}} \\
& =\frac{x^{2}}{3} \sum_{n=0}^{\infty}\left(\frac{x}{9}\right)^{n}, & \text { where }\left|\frac{x}{9}\right|<1 \\
& =\frac{x^{2}}{3} \sum_{n=0}^{\infty} \frac{x^{n}}{9^{n}} & (x \mid<9 \\
& =\frac{R}{3} \sum_{n=0}^{\infty} \frac{x^{2}}{3^{2 n}} & I=(-9,9) \\
-2 & -1 f & -9<x<9
\end{array}
$$

$$
\begin{aligned}
& \int_{x=1}^{\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \stackrel{\text { if }}{=}(x \mid<1} \begin{array}{r}
n=1 \\
\sum_{n=0}^{n}(1)^{n} \\
R=1
\end{array} \\
& x=-1 \sum_{n=0}^{\infty}(-1)^{n} d w
\end{aligned}
$$

e.) $f(x)=\ln (x+4)$

$$
\begin{aligned}
& \frac{d}{d x} \ln (x+4)=\frac{1}{x+4} \\
&=\frac{1}{4\left(1+\frac{x}{4}\right)}=\frac{1}{4} \frac{1}{1-\frac{\left(-\frac{x}{4}\right)}{r}} \\
&=\frac{1}{4} \sum_{n=0}^{\infty}\left(-\frac{x}{4}\right)^{n},\left|\frac{-x}{4}\right|<1 \\
&=\frac{1}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{4^{n}} \\
& \int \begin{array}{ll}
\frac{d}{d x} \ln (x+4) & =\int \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{4^{n+1}} d x \\
\ln (x+4) & =C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}} \frac{x}{n+1},|x|<4
\end{array}
\end{aligned}
$$

let $x=0$ to solve for $c$ :

$$
\begin{aligned}
& 0 \text { to solve for } c: \\
& \ln 4=c+\sum_{\infty=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}} \frac{0}{n+1} \\
& =\ln 4+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}} \frac{x^{n+1}}{n+1}, \quad|x|<4
\end{aligned}
$$

$$
\text { LET } x+-\quad-\quad-\quad
$$

$\ln (x+4)=\ln 4+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}} \frac{x^{n+1}}{n+1},|x|<4$
f.) $f(x)=x \ln (x+4) \quad$ multiply $\&$ by " $x$ "

$$
\begin{aligned}
x \ln (x+4) & =x\left(\ln 4+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}} \frac{x^{n+1}}{n+1}\right) \\
& =x \ln 4+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+2}}{4^{n+1}(n+1)}
\end{aligned}
$$

$$
\text { g.) } \begin{aligned}
&\left.\frac{d}{d x}\right)=\arctan \left(2 x^{3}\right) \\
& \arctan \left(2 x^{3}\right)=\frac{6 x^{2}}{1+4 x^{6}} \\
&=6 x^{2}\left(\frac{1}{1-\left(-4 x^{6}\right)}\right) \\
&=6 x^{2} \sum_{n=0}^{\infty}\left(-4 x^{6}\right)^{n}\left|-4 x^{6}\right|<1 \\
&=6 x^{2} \sum_{n=0}^{\infty}(-1)^{n} 4^{n} x^{6 n}|x|<\sqrt[6]{\frac{1}{4}} \\
&=3 \cdot 2 \underbrace{2} \sum_{n=0}^{\infty}(-1)^{n} 2^{2 n} x^{6 n} \\
& \int \frac{d}{d x} \arctan \left(2 x^{3}\right) d x=3 \sum_{n=0}^{\infty}(-1)^{n} 2^{2 n+1} x^{6 n+2} d x \\
& \arctan \left(2 x^{3}\right)=\ell^{0}+3 \sum_{n=0}^{\infty} \frac{(-1) 2^{2 n+1} x}{6 n+3}
\end{aligned}
$$

let $x=0 \quad \arctan 0=C+\sum 0$

$$
\begin{aligned}
& \text { to find } C \\
& C=0 \\
& \text { side } \\
& \text { Fact } \rightarrow \\
& \frac{d}{d x} \sum_{n=0}^{\infty} c_{n} x^{n}=\frac{d}{d x}\left[c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots\right] \\
& \text { note! }=c_{1}+2 c_{2} x+3 c_{3} x^{2}+\cdots \\
& =\sum_{n=1}^{\infty} C_{n} n x^{n-1} \\
& \text { h.) } f(x)=\frac{1}{(1-2 x)^{2}} \quad \int \frac{d x}{(1-2 x)^{2}} \\
& \begin{array}{c}
u=1-2 x \\
d u=-2 d x
\end{array} \\
& -\frac{1}{2} \int \frac{d u}{u^{2}}=-\frac{1}{2} \cdot \frac{-1}{u} \\
& \int \frac{d x}{(1-2 x)^{2}}=\frac{1}{2} \cdot \frac{1}{1-2 x} \\
& =\frac{1}{2} \cdot \frac{1}{1-2 x} \\
& \begin{array}{ll}
=\frac{1}{2} \sum_{n=0}^{\infty}(2 x)^{n} & |2 x|<1 \\
=\frac{1}{2} \sum_{2}^{\infty} 2^{n} x^{n} & |x|<\frac{1}{2}
\end{array} \\
& =\frac{1}{2} \sum_{n=0}^{\infty} 2^{n} x \\
& \frac{d}{d x} \int \frac{d x}{(1-2 x)^{2}}=\frac{d}{d x} \sum_{n=0}^{\infty} 2^{n-1} x^{n} \\
& \frac{1}{(1-2 x)^{2}}=\sum_{n=1}^{\infty} 2^{n-1} n x^{n-1} \\
& =\sum_{n=0}^{\infty} 2^{n}(n+1) x^{n}
\end{aligned}
$$

5. Express $\int_{0}^{0.1} \frac{1}{1+x^{5}} d x$ as an infinite series. Use the sum of the first 3 terms of this series to approximate $\int_{0}^{0.1} \frac{1}{1+x^{5}} d x$. Estimate the error.

$$
\begin{aligned}
& \int_{0}^{\frac{1}{10}} \frac{d x}{1+x^{5}}=\int_{0}^{\frac{1}{10}} \frac{d x}{1-\left(-x^{5}\right)} \\
& =\int_{0}^{\frac{1}{10}} \sum_{n=0}^{\infty}\left(-x^{5}\right)^{n} d x \\
& =\int_{0}^{\frac{1}{10}} \sum_{n=0}^{\infty}(-1)^{n} x^{5 n} d x \\
& =\left.\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{5 n+1}}{5 n+1}\right|_{0} ^{\frac{1}{10}} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{1}{10}\right)^{5 n+1}}{5 n+1}-\sum(0) \\
& \int_{0}^{\frac{1}{10}} \frac{d x}{1+x^{5}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(5 n+1) 10^{5 n+1}} \\
& \int_{0}^{\frac{1}{10}} \frac{d x}{1+x^{5}} \approx \sum_{n=0}^{2} \frac{(-1)^{n}}{(5 n+1)^{5 n+1}} \\
& S_{2}=\frac{1}{10}-\frac{1}{6\left(10^{6}\right)}+\frac{1}{(11) 10^{11}} \\
& \left|R_{2}\right| \leq\left|a_{3}\right|=\frac{1}{(16) 10^{16}}
\end{aligned}
$$

