Section 10.5

1. For the following power series, find the radius and interval of convergence.
a.) $\sum_{n=0}^{\infty} n^{2}(x+5)^{n}$

$$
\begin{aligned}
& \text { series, find the radius and } \left.\left|\lim _{n \rightarrow \infty}\right| \frac{(n+1)^{2}(x+5)^{n+1}}{n^{2}(x+5)^{n}} \right\rvert\, \\
& =\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}(x+5)(x+5)^{n}}{n^{2}(x+5)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|(x+5) \frac{(n+1)^{2}}{n^{2}}\right|
\end{aligned}
$$

$$
=|x+5|<1
$$

test endpoints:

$$
\sum_{n=0}^{\infty} n^{2}(x+5)^{n} \quad x=-4: \quad \sum_{n=0}^{\infty} n^{2}(1)^{n}
$$

diurraps by TD

$$
I=(-6,-4)
$$

$$
\lim _{n \rightarrow \infty} n^{2} \neq 0
$$

$$
\text { of }-6<x<-4
$$

$$
x=-6: \quad \sum_{n=0}^{\infty} n^{2}(-1)^{n}
$$

diverges by T_{2}

$$
\text { es by } \lim _{n \rightarrow \infty} n^{2}(-1)^{n} \neq 0
$$

$$
\begin{aligned}
& \text { b.) } \sum_{n=0}^{\infty} \frac{2^{n}(x+1)^{n}}{n^{2}+2} \\
& \lim _{n \rightarrow \infty}\left|\frac{2^{n+1}(x+1)^{n+1}}{(n+1)^{2}+2} \cdot \frac{n^{2}+2}{2^{n}(x+1)^{n}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{2 \cdot 2^{\infty}(x+1)(x+1)^{n}}{(n+1)^{2}+2} \frac{n^{2}+2}{2^{n}(x+1)^{x}}\right| \\
& \left.\lim _{n \rightarrow \infty}\left|2(x+1)\left(\frac{\left(n^{2}+2\right)}{(n+1)^{2}+2}\right)\right| 2(x+1) \right\rvert\,<1 \\
& |x+1|<\frac{1}{2} \quad R=\frac{1}{2}
\end{aligned}
$$

b.) $\sum_{n=0}^{\infty} \frac{2^{n}(x+1)^{n}}{n^{2}+2}$

Test endpoints

$$
\begin{aligned}
& x=-\frac{1}{2}: \sum_{n=0}^{\infty} \frac{2^{n}\left(\frac{1}{2}\right)^{n}}{n^{2}+2}=\sum_{n=0}^{\infty} \frac{1}{n^{2}+2} \leqslant \underbrace{\sum \frac{1}{n^{2}}}_{\text {sonveraes }} \\
& \infty^{\infty} n^{n} \quad n^{n} \text { by p-series } \rho=2 \\
& x=-\frac{3}{2}: \sum_{n=0}^{\infty} \frac{2^{n}\left(-\frac{1}{2}\right)}{n^{2}+2}=\sum_{n=0}^{\infty} \frac{(-1)}{n^{2}+2} \\
& \text { AST } \frac{1}{(n+1)^{2}+2}<\frac{1}{n^{2}+2} \text { smaller. } \\
& I=\left[-\frac{3}{2},-\frac{1}{2}\right] \\
& \text { by peseries } \\
& \text { conv, so does } \\
& \text { smaller. } \\
& \lim _{n \rightarrow \infty} \frac{1}{n^{2}+2}=0 \\
& \text { converaes by AST }
\end{aligned}
$$

$$
\begin{aligned}
& \text { c.) } \sum_{n=2}^{\infty} \frac{(2 x-1)^{n}}{4^{n} \ln n} \\
& \lim _{n \rightarrow \infty}\left|\frac{(2 x-1)^{n+1}}{4^{n+1} \ln (n+1)} \cdot \frac{4^{n} \ln n}{(2 x-1)^{n}}\right| \\
& \left.\lim _{n \rightarrow \infty}\left|\frac{2 x-1}{4 \ln (n+1)} \cdot \ln n\right|=\lim _{n \rightarrow \infty} \right\rvert\, \frac{2 x-1}{4}\left(\left.\frac{\ln n}{\ln (n+1)} \right\rvert\,\right. \\
& \left\lvert\, \begin{array}{ll}
\left.\frac{2 x-1}{4} \right\rvert\,<1 & \\
\left\lvert\, \begin{array}{ll}
\lim _{n \rightarrow \infty} \frac{\ln n}{\ln (n+1)} \frac{\frac{1}{n}}{\frac{1}{n}}
\end{array}\right. \\
|2 x-1|<4 & =\lim _{n \rightarrow \infty} \frac{n+1}{n}=1
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{lll}
& 1 & 1 \\
\hline-\frac{3}{2} & \frac{1}{2} & \frac{5}{2}
\end{array}
$$

c.) $\sum_{n=2}^{\infty} \frac{(2 x-1)^{n}}{4^{n} \ln n}$ test endpoints:

$$
\begin{aligned}
& x=-\frac{3}{2}: \sum_{n=2}^{\infty} \frac{(-4)^{n}}{4^{n} \ln n} \\
& \begin{array}{rl}
n=24 \ln n & A S T \\
= & \sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n} \frac{1}{\ln (n+1)}<\frac{1}{\ln n} \\
\quad \lim \quad 1 & =0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { div. so } \\
& I=\left[-\frac{3}{2}, \frac{5}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { d.) } & \sum_{n=0}^{\infty} \frac{n!(x+2)^{n-1}}{5^{n-1}} \\
\text { RT } & \lim _{n \rightarrow \infty} \frac{(n+1) x \cdot(x+2)(x+2)^{n-1}}{5^{n}} 5 \cdot 8^{n} \\
& \lim _{n \rightarrow \infty} \left\lvert\, \frac{(n+2)^{n}}{5!(x+2)^{n-1}}\right. \\
5 & =\infty \text { unless } n=-2 \\
& I=\{-2\}, R=0
\end{aligned}
$$

e.) $\sum_{n=0}^{\infty} \frac{(-3)^{n}(x+3)^{n}}{n!}$

RT $\lim _{n \rightarrow \infty}|\frac{(-3)^{n+1}(x+3)^{n+1}}{\underbrace{(n+1)!}_{(n+1) \times!}} \frac{n!}{(-3)^{n}(x+3)^{n}}|$

$$
\lim _{n \rightarrow \infty}\left|\frac{(-3)(x+3)}{n+1}\right|=0 \quad \begin{array}{ll}
\text { for all } x \\
I=(-\infty, \infty) \quad R=\infty
\end{array}
$$

2. Suppose it is known that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=-4$ and diverges when $x_{2}=6$ What ran he said
 series:
a.) $\sum_{n=0}^{\infty} c_{n}(2)^{n} \operatorname{con} V$
$\sum_{n=0}^{\infty} \operatorname{cn}_{n}^{n}$ converges
$n=0$ when $x=-4$
diverges when $x=6$.
b.) $\sum_{n=0}^{\infty} c_{n}(8)^{n} d \mathbf{V}$
c.) $\sum_{n=0}^{\infty} c_{n}(4)^{n}$ not enough info
d.) $\sum_{n=0}^{\infty} c_{n}(-5)^{n}$ not enough info

3. Suppose it is known that $\sum_{n=0}^{\infty} c_{n}(x-5)^{n}$ converges when $x=6$. On what interval are we guaranteed convergence?

$$
(4,6]
$$

$\begin{aligned} & \text { 4. Express the following functions as a power series. } \\ & \text { Identify the radius and interval of convergence. }\end{aligned} \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n},|x|<1$
a.) $f(x)=\frac{1}{2+5 x^{2}}$

$$
=\frac{1}{2\left(1+\frac{5 x^{2}}{2}\right)}=\frac{1}{2\left(1-\left(-\frac{5 x^{2}}{2}\right)\right.}=\sum_{n=0}^{\infty} \frac{1}{2}\left(-\frac{5 x^{2}}{2}\right)^{n}
$$

where $\left|-\frac{5 x^{2}}{2}\right|<1$

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n} x^{2 n}}{2^{n+1}}
$$

$$
\left|x^{2}\right|<\frac{2}{5}
$$

$$
|x|<\sqrt{\frac{2}{5}}
$$

c.) $f(x)=x \ln (x+4) \quad$ et $x=0$ to find $C: \ln 4=C$

$$
x \ln (x+4)=x\left(\ln 4+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{4^{n+1}}(n+1)\right.
$$

$$
\begin{aligned}
& \text { b.) } f(x)=\ln (x+4) \\
& \frac{d}{d x} \ln (x+4)=\frac{1}{x+4}=\frac{1}{4\left(1+\frac{x}{4}\right)} \\
& =\sum_{n=0}^{\infty} \frac{1}{4}\left(-\frac{x}{4}\right)^{n}, \quad 1-\frac{x}{4} \quad<1 \quad R=4 \\
& \int \frac{1}{x+4}=\int \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{4^{n+1}} \\
& \ln (x+4)=7^{2 n^{4}}+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{4^{n+1}(n+1)}
\end{aligned}
$$

d.) $f(x)=\arctan \left(2 x^{3}\right)$

$$
\frac{d}{d x} \arctan \left(2 x^{3}\right)=\frac{6 x^{2}}{1+4 x^{6}}
$$

$$
=6 x^{2} \sum_{n=0}^{\infty}\left(-4 x^{6}\right)^{n}, \quad\left|-4 x^{6}\right|<1
$$

$$
\begin{aligned}
& =6 x \\
& =6 x^{2} \sum_{n=0}^{\infty}(-4)^{n} x^{6 n} \quad|x|<\sqrt[6]{\frac{1}{4}}
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{d}{d x} \operatorname{arctar}\left(2 x^{3}\right) & =6 \sum_{n=0}^{\infty}(-4)^{n} x^{6 n+2} \\
\arctan \left(2 x^{3}\right) & =\ell^{0}+6 \sum_{n=0}^{\infty} \frac{(-4) x^{n}}{6 n+3}
\end{aligned}
$$

$$
x=0: \quad \arctan (0)=c \rightarrow c=0
$$

e.) $f(x)=\frac{x}{\left(1-x^{2}\right)^{2}} \quad f(x)=\frac{x}{(1-2 x)^{2}}=x\left(\frac{1}{(1-2 x)^{2}}\right)$

$$
\begin{aligned}
\int \frac{1}{(1-2 x)^{2}} d x=\frac{1}{2} \cdot \frac{1}{1-2 x} & =\frac{1}{2} \sum_{n=0}^{\infty}(2 x)^{n} \quad R=\frac{1}{2} \\
\frac{d}{d x} \int \frac{d x}{(1-2 x)^{2}} & =\frac{d}{d x} \sum_{n=0}^{\infty} 2^{n-1} x^{n} \\
\frac{1}{(1-2 x)^{2}} & =\sum_{n=1}^{\infty} 2^{n-1} n x^{n-1} \\
\frac{x}{(1-2 x)^{2}} & =x \sum_{n=1}^{\infty} 2^{n-1} n x^{n-1} \\
& =\sum_{n=1}^{\infty} 2^{n-1} n x^{n}
\end{aligned}
$$

5. Express $\int_{0}^{0.1} \frac{1}{1+x^{5}} d x$ as an infinite series. Use the sum of the first 3 terms of this series to approximate $\int_{0}^{0.1} \frac{1}{1+x^{5}} d x$.

$$
\begin{aligned}
\int_{0}^{0.1} \frac{1}{1+x^{5}} d x & =\int_{0}^{0.1} \sum_{n=0}^{\infty}\left(-x^{5}\right)^{n} d x \\
& =\int_{0}^{0.1} \sum_{n=0}^{\infty}(-1)^{5 n} x^{5 n} d x \\
& =\left.\sum_{n=0}^{\infty} \frac{(-1)^{5 n+1}}{5 n}\right|_{0} ^{0.1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{5 n+1}(0.1)^{5 n+1}}{5 n+1}-0
\end{aligned}
$$

sum of first three terms is $a_{0}+a_{1}+a_{2}$

$$
\begin{array}{ll}
& \frac{(-1)^{0}(0.1)^{1}}{1}+\frac{-1(0.1)^{6^{3}}}{6}+\frac{(0.1)^{11}}{11} \\
\text { Bound on remainder } & \left|R_{n}\right| \leq\left|a_{n+1}\right| \quad\left|R_{2}\right| \leq\left|a_{3}\right|=\frac{(.1)^{16}}{16} \\
& \mid \quad
\end{array}
$$

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{(n+1)!} & =\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{(n+1)^{n} n!} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+1} \quad \begin{array}{l}
\text { converaes } \\
\text { by AST }
\end{array}
\end{aligned}
$$

$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{7 n^{4}}$
use $\quad\left|R_{n}\right|<\left|Q_{n+1}\right|<0.00005$

$$
\frac{1}{7(n+1)^{4}}<0.00005
$$

$$
\begin{aligned}
& \frac{d}{d x} \ln \left(x^{2}+2\right)=\frac{2 x}{x^{2}+2}=\frac{2 x}{2\left(1+\frac{x^{2}}{2}\right)} \\
&=x \sum_{n=0}^{\infty}\left(-\frac{x^{2}}{2}\right)^{n} \\
&=x \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{n}} \\
& \frac{d}{d x} \ln \left(x^{2}+2\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2^{n}} \\
& \ln \left(x^{2}+2\right)=c+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+3}}{2^{n}(2 n+3)} \\
& x=0: \ln 2=c
\end{aligned}
$$

