Math 141 Key Topics: 1.5, 2.1-2.3

Section 1.5

- Finding the least-squares or regression line using the LinReg command on your calculator.
- Correlation coefficient, r – measures how well the least-squares line models the data. The closer $|r|$ is to 1, the better the model.

Section 2.1

- When solving a system of linear equations, there are 3 (and ONLY 3) possibilities:
 - Exactly One (Unique) Solution
 - Infinitely Many Solutions
 - No Solution

- When looking at a system of 2 equations with 2 variables (each equation is a line), the above 3 possibilities mean:
 - The lines intersect at exactly one point.
 - The lines are the same line. (Same slope AND y-intercept.)
 - The lines do not intersect...they are parallel. (Same slope, different y-intercepts.)

- If a system has infinitely many solutions, the solution must be parameterized.
- Know how to set up a system of equations. ALWAYS DEFINE YOUR VARIABLES.

Sections 2.2-2.3

- Writing augmented matrices from a system of equations.
- If a matrix has m rows and n columns, then the size of the matrix is $m \times n$.
- Know when a matrix is in Row-Reduced Form. There are 4 criteria: (Note: Only consider the coefficient (left) side of the matrix when determining if a matrix is in row-reduced form.)
 - Each row that has all zeros lies below any other row with nonzero entries.
 - The first nonzero entry in each row is 1 (called a leading 1).
 - In any two successive nonzero rows, the leading 1 in the lower row lies further to the right than the leading 1 in the upper row.
 - If a column contains a leading 1, ALL other entries in that column are 0.
- The Gauss-Jordan Elimination Method is used to get a matrix in row-reduced form. There are 3 allowable row operations:
- Interchange any two rows.
 Notation: $R_i \leftrightarrow R_j$

- Replace any row by a nonzero constant multiple of itself.
 Notation: cR_i

- Replace any row by the sum of that row and a constant multiple of another row.
 Notation: $R_i + aR_j$ means to replace row i with the sum of row i and a times row j.

Note: Your instructor may use the GJ program in which case the above row operations can be done on the calculator.

- To **pivot** a matrix about an entry means to make that entry 1 and make all the other entries of that column 0.
- Using **rref** on the calculator to get a matrix in row-reduced form.
- Finding solutions from a row-reduced matrix.
 - If there is a row containing all zeros to the left of the vertical line and a nonzero entry to the right of the line, then the system has no solution.
 - If the above is not true and if every column to the left of the vertical line does not contain a leading one, then there are infinitely many solutions. Make the columns without leading 1’s your parameters in order to parameterize the solution.