Math 141 Exam 1 Review Answer Key

1. \(y = \frac{2}{3}x - \frac{4}{7} \)

2. \(n = \frac{8}{3} \)

3. (a) \(s = 6 \)
 (b) \(P(x) = 4x - 1500 \)
 (c) \((375, 2250) \)
 Break-even quantity: 375 keychains
 Break-even revenue: $2250

4. (a) Demand: \(p = -\frac{1}{8}x + 75 \)
 Supply: \(p = \frac{1}{3}x + 15 \)
 (b) \((160, 55) \)
 Equilibrium quantity: 160 tents
 Equilibrium price: $55

5. (a) \(y = 0.3x + 10.2 \)
 (b) 12, 300
 (c) 2018
 (d) \(r = 0.3198; |r| \) is not very close to 1, so the line does not model the data very well.

6. (a) Row-reduced; No solution.
 (b) Not row-reduced; \(R_1 - 9R_2 \)
 (c) Row-reduced; Exactly one (unique) solution.
 (d) Not row-reduced; \(R_3 - R_2 \)
 (e) Not row-reduced; \(\frac{1}{3}R_2 \)
 (f) Row-reduced; Infinitely many solutions.

7. Step 1: \(\frac{1}{4}R_1; \) Resulting matrix:
 \[
 \begin{bmatrix}
 1 & 2 & 8 \\
 -3 & -5 & -18
 \end{bmatrix}
 \]
 Step 2: \(R_2 + 3R_1; \) Resulting matrix:
 \[
 \begin{bmatrix}
 1 & 2 & 8 \\
 0 & 1 & 6
 \end{bmatrix}
 \]
 Step 3: \(R_1 - 2R_2; \) Resulting matrix:
 \[
 \begin{bmatrix}
 1 & 0 & -4 \\
 0 & 1 & 6
 \end{bmatrix}
 \]

8. Let \(x = \) number of Cokes, \(y = \) number of Pepsis
 \[
 58x + 63y = 1326 \\
 243x + 250y = 5416
 \]
 Solution: \((12, 10): 12 \) Cokes, 10 Pepsis

9. (a) No solution
 (b) Infinitely many solutions: \((3 - t, -1 + t, t) \) where \(t \) is any number
10. \(a = 8, b = -4, c = 21, d = \frac{1}{2} \)

11. \(B = \begin{bmatrix} 5 & 3 & 6 \end{bmatrix}; BA = \begin{bmatrix} 129 & 133 \end{bmatrix} \)

It would cost John $129 if he orders from Papa John’s and $133 if he orders from Pizza Hut.

12. (a) Possible
(b) Not possible
(c) Possible
(d) Possible
(e) Not possible

13. (a) Let \(x = \) number of Southwest flights, \(y = \) number of Delta flights, \(z = \) number of American flights
\[135x + 160y + 148z = 88683 \]
\(x = 3y \)
\(z = \frac{1}{2}(x + y) \)

(b) \[\begin{bmatrix} 135 & 160 & 148 \\ 1 & -3 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 88683 \\ 0 \\ 0 \end{bmatrix} \]

(c) \(X = A^{-1}B = \begin{bmatrix} 309 \\ 103 \\ 206 \end{bmatrix} \)

There were 309 Southwest flights, 103 Delta flights, and 206 American flights.

14. (a) \(A = \begin{bmatrix} .2 & .3 & .2 \\ .1 & .4 & .1 \\ .1 & .3 & .3 \end{bmatrix} \)

(b) \(X = \begin{bmatrix} 1700 \\ 1200 \\ 1050 \end{bmatrix} \)

(c) \(AX = X - D = \begin{bmatrix} 910 \\ 755 \\ 845 \end{bmatrix} \)