10.1 Sequences

A sequence is an ordered list of numbers: \(a_1, a_2, a_3, \ldots, a_n, a_{n+1}, \ldots \)

Each of the numbers is called a term of the sequence.

Notation: A sequence \(\{a_1, a_2, a_3, \ldots\} \) can be denoted by \(\{a_n\} \) or \(\{a_n\}_{n=1}^{\infty} \). Unless otherwise stated, we assume \(n \) starts at 1, but this does not always have to be the case.

Examples: Find the first 4 terms of the following sequences.

\[\left\{ \frac{n^2}{n+4} \right\}_{n=1}^{\infty} \]

- \(a_1 = \frac{1}{5} \)
- \(a_2 = \frac{4}{6} \)
- \(a_3 = \frac{9}{7} \)
- \(a_4 = \frac{16}{8} \)

\[a_n = \left(\frac{1}{2}\right)^n \cdot n^3 \]

- \(a_1 = \left(-\frac{1}{2}\right)^1 \cdot 1^3 = -1 \)
- \(a_2 = \left(-\frac{1}{2}\right)^2 \cdot 2^3 = 8 \)
- \(a_3 = \left(-\frac{1}{2}\right)^3 \cdot 3^3 = -27 \)
- \(a_4 = \left(-\frac{1}{2}\right)^4 \cdot 4^3 = 64 \)
The above sequence is called an **alternating sequence** since the terms alternate signs.

Find a general formula \(a_n \) for the sequences below.

- \[
\begin{aligned}
&\{3, 4, 5, 6, \ldots \} \\
&\{4, 9, 16, 25, \ldots \}
\end{aligned}
\]

\[
\begin{align*}
\frac{3}{2} & \quad \frac{4}{3} & \quad \frac{5}{4} & \quad \frac{6}{5} \\
\frac{9}{4} & \quad \frac{16}{9} & \quad \frac{25}{16}
\end{align*}
\]

\[
\begin{aligned}
a_n &= \frac{n+2}{(n+1)^2} \\
\end{aligned}
\]

- \[
\begin{aligned}
&\{\frac{2}{3}, \frac{3}{5}, \frac{4}{7}, \frac{5}{9}, \ldots \} \\
&\{\frac{4}{8}, \frac{8}{16}, \frac{16}{32}, \ldots \}
\end{aligned}
\]

\[
\begin{align*}
\frac{2}{3} & \quad \frac{3}{5} & \quad \frac{4}{7} & \quad \frac{5}{9} \\
\frac{4}{8} & \quad \frac{8}{16} & \quad \frac{16}{32}
\end{align*}
\]

\[
\begin{aligned}
a_n &= (-1)^n \cdot 2^n \\
\frac{2n+1}{2n+1} &= (-2)^n \\
\end{aligned}
\]

- \[
\begin{aligned}
&\{1, -2, 6, -24, 120, \ldots \} \\
&\{1!, -2!, 6!, -24!, 120!, \ldots \}
\end{aligned}
\]

\[
\begin{aligned}
a_n &= (-1)^{n+1} \cdot n! \\
\end{aligned}
\]
The limit of a sequence is defined to be \(\lim_{n \to \infty} a_n \).

If the limit exists to a finite number \(L \), i.e., \(\lim_{n \to \infty} a_n = L \), we say the sequence converges to \(L \). If the limit does not exist or is infinite, we say the sequence diverges.

Determine whether the following sequences converge or diverge. If the sequence converges, state the limit.

- \(a_n = 2 + \left(\frac{1}{3} \right)^n \)
 \[
 \lim_{n \to \infty} \left[2 + \left(\frac{1}{3} \right)^n \right] = 2 + 0 = \boxed{2 \to \text{Converges}}
 \]

- \(a_n = e^{\frac{n^2+1}{n+3}} \)
 \[
 \lim_{n \to \infty} e^{\frac{n^2+1}{n+3}} = \text{"} e^{\infty} \text{"} = \boxed{\infty \to \text{Diverges}}
 \]

- \(a_n = \arctan \left(\frac{-n^3 + 3}{\sqrt{2n + 1}} \right) \)
 \[
 \lim_{n \to \infty} \arctan \left(\frac{-n^3 + 3}{\sqrt{2n + 1}} \right) = \text{"} \arctan(-\infty) \text{"} = \boxed{-\frac{\pi}{2} \to \text{Converges}}
 \]
• $a_n = \frac{n}{\ln n}, \quad n \geq 2$

\[
\lim_{n \to \infty} \frac{n}{\ln n} = \lim_{n \to \infty} \frac{1}{1/n} = \lim_{n \to \infty} n = \infty \rightarrow \text{Diverges}
\]

• $a_n = \cos\left(\frac{3n + 7}{n^2 + n}\right)$

\[
\lim_{n \to \infty} \cos\left(\frac{3n + 7}{n^2 + n}\right) = \cos 0 = 1 \rightarrow \text{converges}
\]
\[a_n = \frac{1}{2} \ln(3 + 7n^3) - \frac{1}{2} \ln(n^3 + 2n) = \frac{1}{2} \left[\ln(3 + 7n^3) - \ln(n^3 + 2n) \right] \]

\[\lim_{n \to \infty} \frac{1}{2} \ln \left(\frac{3 + 7n^3}{n^3 + 2n} \right)^{1/2} = \frac{1}{2} \ln 7 \quad \text{converges} \]

\[a_n = (n - \sqrt{n^2 + 1}) \cdot \frac{n + \sqrt{n^2 + 1}}{n + \sqrt{n^2 + 1}} = \frac{n^2 - (n^2 + 1)}{n + \sqrt{n^2 + 1}} = -1 \]

\[\lim_{n \to \infty} \frac{-1}{n + \sqrt{n^2 + 1}} = 0 \quad \text{converges} \]

\[a_n = (-1)^n + 3 \]

\[\begin{array}{c}
a_1 = -1 + 3 = 2 \\
a_2 = 4 \\
a_3 = 2 \\
a_4 = 4 \\
\vdots
\end{array} \]

\[a_n = \sin(n\pi) \]

\[\begin{array}{c}
a_1 = \sin(\pi) = 0 \\
a_2 = \sin(2\pi) = 0 \\
a_3 = \sin(3\pi) = 0
\end{array} \]

\[a_n = \cos(n\pi) \]

\[\begin{array}{c}
a_1 = \cos(\pi) = -1 \\
a_2 = \cos(2\pi) = 1 \\
a_3 = \cos(3\pi) = -1
\end{array} \]
For alternating sequences, use the following important fact: If \(\lim_{n \to \infty} |a_n| = 0 \), then \(\lim_{n \to \infty} a_n = 0 \).

In other words, an alternating sequence converges if and only if the absolute value of the terms goes to 0 as \(n \) goes to \(\infty \).

- \(a_n = \frac{\cos(n\pi)}{n} \)
 - \(a_1 = \frac{\cos(1\pi)}{1} = -1 \)
 - \(a_2 = \frac{\cos(2\pi)}{2} = \frac{1}{2} \)
 - \(a_3 = \frac{\cos(3\pi)}{3} = -\frac{1}{3} \)
 - \(a_4 = \frac{1}{4} \)
 - \(a_5 = -\frac{1}{5} \)
 - \(a_n = (-3)^n = (-1)^n3^n \)
 - \(a_1 = -3 \)
 - \(a_2 = 9 \)
 - \(a_3 = -27 \)
 - \(a_5 = 81 \)

\[\lim_{n \to \infty} |a_n| = 0 \]

So, \(\lim_{n \to \infty} a_n = 0 \) converges.

- \(a_n = (-1)^n \left(\frac{n^3 + 1}{n^4 + 3} \right) \)

\[\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \frac{\frac{1}{4^n}}{\frac{3n^3}{n^4 + 3}} = 0 \]

So, \(\lim_{n \to \infty} a_n = 0 \) converges.

- \(a_n = (-1)^n \frac{n+1}{5n+2} \)

\[\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \frac{n+1}{5n+2} = \frac{1}{5} \]

So, \(\lim_{n \to \infty} a_n \) DNE diverges.
A sequence \(\{a_n\} \) is said to be **increasing** if \(a_n < a_{n+1} \) for all \(n \geq 1 \).
A sequence \(\{a_n\} \) is said to be **decreasing** if \(a_n > a_{n+1} \) for all \(n \geq 1 \).

If a sequence is either an increasing or a decreasing sequence, we say it is **monotonic**.

A sequence \(\{a_n\} \) is **bounded** if there are numbers \(m \) and \(M \) such that \(m \leq a_n \leq M \) for all \(n \geq 1 \). We say that \(\{a_n\} \) is bounded above by \(M \) and bounded below by \(m \).

Theorem: Every bounded, monotonic sequence converges.

Determine whether the following sequences are increasing, decreasing, or not monotonic. Also state if the sequence is bounded or not.

\[a_n = \frac{1}{2 + 5n} \]

\[\lim_{n \to \infty} a_n = 0 \rightarrow \text{converges decreasing} \]

\[Bounded: \quad 0 \leq a_n \leq \frac{1}{7} \]

\[a_n = \frac{(-1)^n}{2 + 5n} \]

Since \(\lim_{n \to \infty} |a_n| = 0 \), then \(\lim_{n \to \infty} a_n = 0 \rightarrow \text{converges} \]

\[\text{Not monotonic} \]

\[\text{Is bounded:} \quad -\frac{1}{12} \leq a_n \leq \frac{1}{12} \]
\[a_n = n - \frac{1}{n} \]
\[\lim_{n \to \infty} a_n = \infty \rightarrow \text{Diverges} \rightarrow \text{Not bounded} \]
\[f(n) = n - \frac{1}{n} \quad f'(n) = 1 + \frac{1}{n^2} > 0 \rightarrow \text{increasing} \]

\[a_n = e^{1/n} \]
\[\lim_{n \to \infty} e^{\frac{1}{n}} = e^0 = 1 \rightarrow \text{converges} \]
\[f(n) = e^{\frac{1}{n}} \rightarrow f'(n) = -\frac{1}{n^2}e^{\frac{1}{n}} < 0 \rightarrow \text{decreasing} \]
\[\text{Bounded: } \quad 1 < a_n < e \]

\[a_n = \sin\left(\frac{n\pi}{2}\right) \]
\[\lim_{n \to \infty} a_n \quad \text{DNE} \rightarrow \text{oscillates} \rightarrow \text{diverges} \]
\[a_1 = \sin\left(\frac{\pi}{2}\right) = 1 \quad \text{Not Monotonic} \]
\[a_2 = \sin\left(\pi\right) = 0 \]
\[a_3 = \sin\left(\frac{3\pi}{2}\right) = -1 \]
\[a_4 = \sin\left(2\pi\right) = 0 \]

\[a_n = \frac{2n}{n+1} \]
\[\lim_{n \to \infty} \frac{2n}{n+1} = 2 \rightarrow \text{converges} \]
\[f(n) = \frac{2n}{n+1} \rightarrow f'(n) = \frac{(n+1)2 - 2n(1)}{(n+1)^2} = \frac{2}{(n+1)^2} > 0 \rightarrow \text{increasing} \]
\[\text{Bounded: } \quad 1 \leq a_n < 2 \]
A **recursive sequence** is one in which terms are defined by using previous terms in the sequence. In a recursive sequence, you have to be given at least the first term.

Find the next 4 terms of the recursively defined sequences. Do these sequences converge?

\[a_1 = 1, \quad a_{n+1} = 4 - a_n \]

\[a_1 = 1 \]
\[a_2 = 4 - a_1 = 4 - 1 = 3 \]
\[a_3 = 4 - a_2 = 4 - 3 = 1 \]
\[a_4 = 4 - a_3 = 4 - 1 = 3 \]

Diverges by oscillation.

\[a_1 = 3, \quad a_{n+1} = 2 + \frac{a_n}{3} \]

\[a_2 = 2 + \frac{a_1}{3} = 2 + \frac{3}{3} = 3 \]
\[a_3 = 2 + \frac{a_2}{3} = 2 + \frac{3}{3} = 3 \]
\[a_4 = 3 \]

\[a_n \text{ converges to } 3. \]

The sequence below is bounded and decreasing. Find the next two terms of the sequence and find the limit.

\[a_1 = 4, \quad a_{n+1} = \frac{12}{8 - a_n} \]

\[a_2 = \frac{12}{8 - a_1} = \frac{12}{8 - 4} = 3 \]
\[a_3 = \frac{12}{8 - a_2} = \frac{12}{8 - 3} = \frac{12}{5} \]

\[a_n \text{ must converge to some limit } L. \]

\[a_{n+1} = \frac{12}{8 - a_n} \]
\[L = \frac{12}{8 - L} \]
\[L(8 - L) = 12 \]
\[8L - L^2 = 12 \]
\[0 = L^2 - 8L + 12 \]
\[0 = (L - 6)(L - 2) \]
\[L = 6, 2 \]

Since \(a_n \) is decreasing and \(a_1 = 4 \), then \(L = 2 \).
10.2 Series

A series is the sum of an infinite sequence of numbers. So, given a sequence \(\{a_n\} \), the series \(\sum_{n=1}^{\infty} a_n \) is defined to be

\[
\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \ldots
\]

Can an infinite sequence of numbers have a finite sum? Sometimes yes and sometimes no! (This is similar to improper integrals where an infinite interval may or may not have a finite area.)

If \(\sum_{n=1}^{\infty} a_n = s \) where \(s \) is a finite number, then the series converges to \(s \) and we say \(s \) is the sum of the series. If the sum does not exist (or is infinite), the series diverges.

Given a series \(\sum_{n=1}^{\infty} a_n \), the \(n \)th partial sum, denoted \(s_n \), is defined to be the sum of the first \(n \) terms.

\[
s_1 = a_1
\]
\[
s_2 = a_1 + a_2
\]
\[
s_3 = a_1 + a_2 + a_3
\]

In general, \(s_n = a_1 + a_2 + a_3 + \ldots + a_n \)

For the following series, find the first 4 partial sums.

- \(\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots \)
 \[
 s_1 = 1 \quad s_2 = 2 \quad s_3 = 3 \quad s_4 = 4
 \]

- \(\sum_{n=1}^{\infty} (-1)^n = -1 + 1 - 1 + 1 - 1 + \ldots \)
 \[
 s_1 = -1 \quad s_2 = 0 \quad s_3 = 1 \quad s_4 = 0
 \]

- \(\sum_{n=1}^{\infty} 3^n = 3 + 9 + 27 + 81 + 243 + \ldots \)
 \[
 s_1 = 3 \quad s_2 = 12 \quad s_3 = 39 \quad s_4 = 120
 \]

- \(\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots \)
 \[
 s_1 = 1 \quad s_2 = \frac{3}{2} \quad s_3 = \frac{11}{6} \quad s_4 = \frac{15}{12}
 \]
Consider the sequence of partial sums, \(\{s_n\} = \{s_1, s_2, s_3, \ldots \} \). If this infinite sequence of partial sums converges to a number, that number is the sum of the series. In other words, a series converges if its sequence of partial sums converges, and

\[
\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n
\]

Example: Suppose for the series \(\sum_{n=1}^{\infty} a_n \), it is known that \(s_n = \frac{3n - 1}{2n + 6} \).

What is the sum of the first 5 terms?

\[
S_5 = \frac{14}{16} = \frac{7}{8}
\]

What is the sum of the first 10 terms?

\[
S_{10} = \frac{29}{26}
\]

Does the series converge or diverge? If it converges, what is the sum?

\[
\sum a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{3n-1}{2n+6} = \frac{3}{2} \quad \text{series converges to a sum of } \frac{3}{2}.
\]

What is \(a_1 \)?

\[
S_1 = a_1
\]

\[
a_1 = \frac{2}{8} = \frac{1}{4}
\]

What is \(a_8 \)?

\[
a_8 = S_8 - S_7 = \frac{23}{22} - \frac{20}{20} = \frac{1}{22}
\]

Find a formula for \(a_n \) for \(n > 1 \).

\[
a_n = S_n - S_{n-1} = \frac{3n-1}{2n+6} - \frac{3(n-1)-1}{2(n-1)+6} = \frac{3n-1}{2n+6} - \frac{3n-4}{2n+4}
\]

Example: Suppose for the series \(\sum_{n=1}^{\infty} a_n \), it is known that \(s_n = 2 + \left(\frac{3}{2}\right)^n \). Does the series converge or diverge? If it converges, what is the sum?

\[
\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left[2 + \left(\frac{3}{2}\right)^n\right] = \infty \quad \text{Series Diverges!}
\]
In general, finding a formula for s_n is not easy. However, a type of series for which a formula for s_n can often be determined are **telescoping series**. Telescoping series are series in which all but a finite number of terms of the series cancel out with other terms.

Examples: Find a formula for the nth partial sum for the following series. Does the series converge? If so, what is its sum?

$$\sum_{n=1}^{\infty} \left(\frac{2}{n+2} - \frac{2}{n+3} \right)$$

$$S_n = \left(\frac{2}{3} - \frac{2}{4} \right) + \left(\frac{2}{5} - \frac{2}{6} \right) + \ldots + \left(\frac{2}{n+1} - \frac{2}{n+2} \right) + \frac{2}{n+3}$$

$$S = \lim_{n \to \infty} \left(\frac{2}{3} - \frac{2}{n+3} \right) = \left[\frac{2}{3} \right] \rightarrow \text{converges}$$
\[
\sum_{n=2}^{\infty} \ln \left(\frac{n+2}{n+1} \right) = \sum_{n=2}^{\infty} \left[\ln(n+2) - \ln(n+1) \right]
\]

\[
S_n = \left(\ln 4 - \ln 3 \right) + \left(\ln 5 - \ln 4 \right) + \left(\ln 6 - \ln 5 \right) + \cdots + \left(\ln(n+1) - \ln n \right) + \left[\ln(n+2) - \ln(n+1) \right]
\]

\[
S_n = -\ln 3 + \ln(n+2)
\]

\[
s = \lim_{n \to \infty} \left[-\ln 3 + \ln(n+2) \right] \to \infty \quad \text{Series Diverges}
\]
\[
\sum_{n=3}^{\infty} \left(\cos \frac{1}{n-1} - \cos \frac{1}{n+1} \right)
\]

\[
S_n = \cos \frac{1}{2} - \cos \frac{1}{3} + \cos \frac{1}{3} - \cos \frac{1}{4} + \cos \frac{1}{4} - \cos \frac{1}{5} + \cos \frac{1}{5} - \cos \frac{1}{6} + \ldots
\]

\[
S_n = \cos \frac{1}{2} + \cos \frac{1}{3} - \cos \frac{1}{n} - \cos \frac{1}{n+1}
\]

\[
\lim_{n \to \infty} \left[\cos \frac{1}{2} + \cos \frac{1}{3} - \cos \frac{1}{n} - \cos \frac{1}{n+1} \right] = \cos \frac{1}{2} + \cos \frac{1}{3} - \cos 0 - \cos 0 = \cos \frac{1}{2} + \cos \frac{1}{3} - 2
\]
If a series is not always written in a telescoping form, partial fractions may sometimes be used to write it in telescoping form.

\[
\sum_{n=4}^{\infty} \frac{-2}{n^2 - 2n} = \sum_{n=4}^{\infty} \frac{-2}{n(n-2)} \cdot \frac{n(n-2)}{(n-1)} = \left[\sum_{n=4}^{\infty} \frac{-2}{n(n-2)} \right] \cdot \frac{A}{n} + \frac{B}{n-2}
\]

\[-2 = A(n-2) + Bn\]

\[n=2: \quad -2 = 2B \Rightarrow B = -1\]

\[n=0: \quad -2 = -2A \Rightarrow A = 1\]

\[
S_n = \left(\frac{1}{4} - \frac{1}{2} \right) + \left(\frac{1}{6} - \frac{1}{3} \right) + \left(\frac{1}{10} - \frac{1}{5} \right) + \ldots + \left(\frac{1}{n-1} - \frac{1}{n} \right)
\]

\[S = \lim_{n \to \infty} \left[\frac{1}{2} - \frac{1}{3} + \frac{1}{x-1} + \frac{1}{n} \right] = -\frac{1}{2} - \frac{1}{3} = \left[\frac{-5}{6} \right]
\]
If we can find a formula for s_n for a series, we can determine if the series converges or diverges, but this is usually not easy. If you are not given a formula for s_n or cannot determine one, how can you determine if a series converges or diverges? There are many tests we will learn. The first is the Test for Divergence.

Test for Divergence: If $\lim_{n \to \infty} a_n \neq 0$ or does not exist, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

If a series $\sum_{n=1}^{\infty} a_n$ converges, then it first must be true that $\lim_{n \to \infty} a_n = 0$.

However, if $\lim_{n \to \infty} a_n = 0$, **this DOES NOT NECESSARILY MEAN THE SERIES CONVERGES!!!**

The classic example of a series that does NOT converge even though its terms go to 0 is the harmonic series: $\sum_{n=1}^{\infty} \frac{1}{n}$. However, the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ DOES converge!

What can you conclude about the following series with regards to convergence/divergence using the Test for Divergence?

$$\sum_{n=1}^{\infty} \frac{n^2}{n + 7} \quad \lim_{n \to \infty} \frac{n^2}{n + 7} = \infty \rightarrow \text{Series Diverges by T.D.}$$

$$\sum_{n=1}^{\infty} \cos(n \pi) \quad \lim_{n \to \infty} \cos(n \pi) = \text{DNE} \rightarrow \text{Series Diverges by T.D.}$$

$$\sum_{n=1}^{\infty} \frac{n + 3}{n^2 + 5} \quad \lim_{n \to \infty} \frac{n + 3}{n^2 + 5} = 0 \rightarrow \text{T.D. is inconclusive.}$$

$$\sum_{n=1}^{\infty} \frac{n + 9}{3n - 7} \quad \lim_{n \to \infty} \frac{n + 9}{3n - 7} = \frac{1}{3} \neq 0 \rightarrow \text{Series Diverges by T.D.}$$

$$\sum_{n=1}^{\infty} \arctan(e^{-n}) \quad \lim_{n \to \infty} \arctan(e^{-n}) = 0 \rightarrow \text{T.D. is inconclusive}.$$
A geometric series is a series in which each term of the series is some ratio \(r \) times the previous term, where \(r \) is some real number. These types of series can be represented as \(\sum_{n=0}^{\infty} ar^n \).

It can be shown that for a geometric series of this form, \(s_n = \frac{a - r^n}{1 - r} \).

\[
\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{a - r^n}{1 - r} \text{ converges to a finite number when } |r| < 1, \text{ or equivalently, when } |r| < 1.
\]

In this case, the sum of the geometric series is \(\frac{a}{1 - r} \), where \(a \) is the first term of the series.

Note that not all series start at \(n = 0 \). No matter what number the index starts with, \(a \) is still the first term of the series.

Examples: For each of the following series, determine if the series converges or diverges. If it converges, find the sum.

\[
5 - \frac{25}{6} + \frac{125}{36} - \frac{625}{216} + \cdots + \quad r = -\frac{5}{6} \quad [\text{Every term is } -\frac{5}{6} \text{ times previous term.}]
\]

Since \(|r| < 1 \), series converges.

\[
\text{Sum} = \frac{a}{1 - r} = \frac{5}{1 - (-\frac{5}{6})} = \frac{5}{\frac{11}{6}} = \frac{30}{11}
\]

\[
\sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n = 5 + 5\left(\frac{3}{4}\right) + 5\left(\frac{3}{4}\right)^2 + 5\left(\frac{3}{4}\right)^3 + \cdots
\]

\(r = \frac{3}{4} \rightarrow \) Since \(|r| < 1 \), series converges.

\[
a = 5
\]

\[
\text{Sum} = \frac{5}{1 - \frac{3}{4}} = \frac{5}{\frac{1}{4}} = 20
\]

\[
\sum_{n=1}^{\infty} \frac{4(-1)^n}{3^{2n}} = \sum_{n=1}^{\infty} \frac{4(-1)^n}{9^n} = \sum_{n=1}^{\infty} \left(\frac{-1}{9}\right)^n
\]

\(r = -\frac{1}{9} \rightarrow |r| < 1 \quad \checkmark \text{ Series converges.} \)

\[
a = 4(-\frac{1}{9}) = -\frac{4}{9}
\]

\[
\text{Sum} = \frac{-\frac{4}{9}}{1 - (-\frac{1}{9})} = \frac{-\frac{4}{9}}{\frac{10}{9}} = \frac{-\frac{4}{9}}{\frac{10}{9}} = \frac{-4}{10} = \frac{-2}{5}
\]

\[
3^{2n} = (3^2)^n = 9^n
\]
\[\sum_{n=2}^{\infty} (-2)^{n+1} \frac{1-n}{5^n} = \sum_{n=2}^{\infty} (-2) \left(\frac{2}{5} \right)^n \]
\[r = -\frac{2}{5} \]
\[|r| < 1 \checkmark \]

Series converges.

\[a = -2 \left(\frac{2}{5} \right)^2 = -2 \left(\frac{4}{25} \right) = -\frac{8}{25} \]

\[\text{Sum} = \frac{-\frac{8}{25}}{1 - \left(-\frac{2}{5} \right)} = \frac{-\frac{8}{25}}{\frac{3}{5}} = -\frac{8}{15} \]

\[\sum_{n=1}^{\infty} -\frac{5^{2n+1}}{6^n - 1} = \sum_{n=1}^{\infty} -\frac{5^{2n}}{6^n} \cdot \frac{5}{6} = \sum_{n=1}^{\infty} -\frac{25^n \cdot 5 \cdot 5}{6^n} = \sum_{n=1}^{\infty} -30 \left(\frac{5}{6} \right)^n \]
\[r = \frac{25}{6} > 1 \rightarrow \text{Series Diverges} \]

\[\sum_{n=0}^{\infty} \frac{-3 + e^n}{2(7^n+1)} = \sum_{n=0}^{\infty} \frac{-3}{2(7^n+1)} + \sum_{n=0}^{\infty} \frac{e^n}{2(7^n+1)} \]
\[= \sum_{n=0}^{\infty} \frac{-3}{2 \cdot 7^n} + \sum_{n=0}^{\infty} \frac{e^n}{2 \cdot 7^n} \]
\[= \sum_{n=0}^{\infty} \frac{-3}{14} \left(\frac{1}{7} \right)^n + \sum_{n=0}^{\infty} \frac{1}{14} \left(\frac{e}{7} \right)^n \]
\[r = \frac{1}{7} \checkmark \quad |r| < 1 \]
\[r = \frac{e}{7} \quad |r| < 1 \checkmark \]

\[= \frac{-3/4}{1 - 1/7} + \frac{1/4}{1 - e/7} \]
For what values of \(x \) do the following series converge? For these values of \(x \), find the sum of the series.

\[
\sum_{n=1}^{\infty} \frac{x^n}{(-8)^{n+1}} = \sum_{n=1}^{\infty} \frac{x^n}{(-8)(-8)^n} = \sum_{n=1}^{\infty} -\frac{1}{8} \left(\frac{\alpha}{8} \right)^n
\]

\[
r = -\frac{\alpha}{8} \quad \rightarrow \text{For convergence, need} \quad \left| r \right| < 1
\]

\[
|\frac{-\alpha}{8}| < 1
\]

\[
\left| \frac{\alpha}{8} \right| < 1
\]

\[
|\alpha| < 8
\]

\[
-8 < \alpha < 8
\]

\text{Interval: } (-8, 8)

For these values, the sum is

\[
\sum_{n=0}^{\infty} \frac{2^{n+1}(x+3)^n}{3(4^n)} = \sum_{n=0}^{\infty} \frac{2 \cdot 2^n (x+3)^n}{3 \cdot 4^n} = \sum_{n=0}^{\infty} \frac{2}{3} \left(\frac{2(x+3)}{4} \right)^n
\]

\[
r = \frac{2(x+3)}{4} \quad \rightarrow \text{Need} \quad \left| r \right| < 1
\]

\[
\left| \frac{2(x+3)}{4} \right| < 1
\]

\[
\left| 2(x+3) \right| < 4
\]

\[
\left| x+3 \right| < 2
\]

\[
-2 < x + 3 < 2
\]

\[-5 < x < -1
\]

\text{Interval: } (-5, -1)
So far, the only series we can actually find a sum for are:

- Series for which we are given s_n or can easily find it.
- Convergent telescoping series.
- Convergent geometric series.