8.1 Integration by Parts

Recall the Product Rule. If \(u \) and \(v \) are functions of \(x \), using differential notation, we have:

\[
(uv)' = u'v + uv' \\
(uv)' = udv + v du
\]

Integrating both sides with respect to \(x \), we would get:

\[
uv = \int [udv + v du] = \int udv + \int v du
\]

Rearranging this, gives us the following:

\[
\int udv = uv - \int v du
\]

Integration by parts is most often used when the integrand is a product of two different types of functions, like polynomial and exponential, or polynomial and trig, etc.

Integrals Involving Polynomials and Exponential Functions:

- \(\int_0^1 xe^{3x} \, dx \)
- \(\int (x^2 + 5)e^{-2x} \, dx \)
In general, before integrating by parts, the argument or “inside” of the exponential function must be linear, otherwise you won’t be able to integrate it to find v.

- $\int x^7 e^{-x^4} \, dx$

Integrals Involving Polynomials and Trigonometric Functions:

- $\int 3x \sin 2x \, dx$

- $\int x^5 \cos(x^2) \, dx$
Integrals Involving Polynomials and Logarithmic Functions:

- \(\int \ln x \, dx \)
- \(\int x^7 \ln x \, dx \)
- \(\int \frac{\ln x}{x^2} \, dx \)

A useful acronym to help remember what to let \(u \) be is **L I P E T**.
Integrals Involving Inverse Trig Functions:

- $\int \arcsin(x) \, dx$

Loops:

- $\int e^x \cos 2x \, dx$

Another type of integral that would require a loop would be $\int \cos(3x) \sin(2x) \, dx$
8.2 Trig Integrals

VERY IMPORTANT identities for this section:

\[\sin^2 x + \cos^2 x = 1 \] which means that \[\sin^2 x = 1 - \cos^2 x \] and \[\cos^2 x = 1 - \sin^2 x \]

\[\tan^2 x + 1 = \sec^2 x \] which means that \[\tan^2 x = \sec^2 x - 1 \]

\[\cot^2 x + 1 = \csc^2 x \] which means that \[\cot^2 x = \csc^2 x - 1 \]

Goal of Trig Integrals: Choose \(u \) so that when you factor out its derivative for \(du \), whatever is left can be rewritten in terms of \(u \) using trig identities. This is achieved by making sure that whatever “non-\(u \)” stuff is left involves even powers.

Integrals Involving Powers of Sines and Cosines: If there is an odd power of sine or cosine in the original integral, let \(u \) be the other trig function. (Note: If both powers are odd, \(u \) can be either trig function.)

- \[\int \sin^3 x \cos^6 x \, dx \]

- \[\int \sin^6 x \cos^5 x \, dx \]

- \[\int \cos^3 x \, dx \]
• \(\int \sin(5x) \tan^2(5x) \, dx \)

WHEN ALL THE POWERS OF SINE AND COSINE IN THE ORIGINAL INTEGRAL ARE EVEN, YOU MUST USE THE FOLLOWING IDENTITIES!

\[
\cos^2 x = \frac{1}{2} (1 + \cos 2x) \\
\sin^2 x = \frac{1}{2} (1 - \cos 2x)
\]

• \(\int \sin^2 x \, dx \)

• \(\int \sin^2 x \cos^2 x \, dx \)

To integrate \(\int \cos^4 x \, dx \) or \(\int \sin^4 x \, dx \), treat it like above as \(\int \cos^2 x \cos^2 x \, dx \) or \(\int \sin^2 x \sin^2 x \, dx \) respectively. Same idea with even higher powers.
Integrals Involving Powers of Secant and Tangent: If the power of secant is even, let u be tangent. If the power of tangent is odd, let u be secant. If both are true, either will work. If neither is true, it’s more difficult.

- $\int \tan^8 x \sec^4 x \, dx$

- $\int x \tan^5(x^2) \sec^3(x^2) \, dx$

- $\int \frac{\sec^4(\ln x)}{x} \, dx$
\[\int \tan^2 x \, dx \]

\[\int \cot^3 x \csc^3 x \, dx \]

\[\int \sec x \, dx \]