9.3 Arc Length

Any of these formulas can be used to find arc length, depending on how the curve is defined. Notice each has a different variable of integration.

If \(y = f(x) \), then the length of the curve from \(x = a \) to \(x = b \) is:

\[
L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx
\]

If \(x = g(y) \), then the length of the curve from \(y = c \) to \(y = d \) is:

\[
L = \int_c^d \sqrt{1 + [g'(y)]^2} \, dy = \int_c^d \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy
\]

If the curve is defined parametrically \(x = f(t) \), \(y = g(t) \) then the length of the curve from \(t = a \) to \(t = b \) is:

\[
L = \int_a^b \sqrt{\left[f'(t)\right]^2 + \left[g'(t)\right]^2} \, dt = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt
\]

Make sure your limits of integration match the variable of integration!!

Examples:

- Find the length of the curve \(y = 1 + 6x^{3/2} \) from the point \((0, 1)\) to the point \((1, 7)\).
• Find the length of the curve $y = \ln(\cos x)$, $0 \leq x \leq \frac{\pi}{4}$.

• Find the length of the curve $x = \frac{y^3}{3} + \frac{1}{4y}$, $1 \leq y \leq 2$.
• Find the length of the curve $x = e^{3t} + e^{-3t}, y = 10 - 6t, 0 \leq t \leq 1$.

• Find the length of the curve $x = t^2 + 4, y = t^3 + 1$, from the point $(4, 1)$ to the point $(8, 9)$.

• Set up both a dx and a dy integral to find the length of the curve $y = \arctan x, 0 \leq x \leq 1$.
9.4 Surface Area of Revolution

In general, the surface area of a solid of revolution is

\[S = \int 2\pi r \, ds \]

where \(ds \) is arc length.

If revolving about the \(x \)-axis, the radius is \(y \), so:

\[S = \int 2\pi y \, ds \]

If revolving about the \(y \)-axis, the radius is \(x \), so:

\[S = \int 2\pi x \, ds \]

These integrals can be done with respect to \(x \), \(y \), or \(t \) depending on how the function is defined by using the appropriate arc length expression from the previous section.

Be sure the WHOLE integral is written in terms of ONE variable and that your limits of integration match this variable before integrating!!

- Find the surface area of the solid obtained by rotating the curve \(y = x^3 \), \(0 \leq y \leq 8 \) about the \(x \)-axis.
Examples:

• Find the surface area of the solid obtained by rotating the curve \(x = \frac{1}{2}(y^2 + 2)^{3/2}, \ 0 \leq y \leq 1 \) about the \(x \)-axis.

• Find the surface area of the solid obtained by rotating the curve \(y = x^2 - \frac{1}{8}\ln x, \ 1 \leq x \leq 2 \) about the \(y \)-axis.
• Find the surface area of the solid obtained by rotating the curve \(x = 2t^2, \ y = \frac{2}{3}t^3 - 2t, \ 0 \leq t \leq 1 \) about the \(y \)-axis.

• Find the surface area of the solid obtained by rotating the curve \(x = \sqrt{1 + 6y}, \ 1 \leq y \leq 5 \) about the \(y \)-axis.