MATH 152
SPRING 2018

Sample Exam (covering sections 5.5-7.2)

1. Find the area of the region bounded by \(y = x^3, \ y = x \) from \(x = 0 \) to \(x = 2 \).
 a) \(\frac{3}{2} \)
 b) 2
 c) \(\frac{1}{2} \)
 d) \(\frac{5}{2} \)
 e) 3

2. If we revolve the region bounded by \(x = 2y^2 \) and \(x = 2 \) about the line \(x = 2 \), which of the following integrals gives the resulting volume?
 a) \(\int_{-1}^{1} \pi (4 - 4y^4) \, dy \)
 b) \(\int_{-1}^{1} \pi (4 - (2 - 2y^2)^2) \, dy \)
 c) \(\int_{-1}^{1} 4\pi y^4 \, dy \)
 d) \(\int_{-1}^{1} \pi (2 - 2y^2)^2 \, dy \)
 e) \(\int_{-1}^{1} \pi (4y^4 - 4) \, dy \)

3. A spring has a natural length of 1 m. The force required to keep it stretched to a length of 2 m is 10 N. Find the work required to stretch the spring from a length of 2 m to a length of 4 m.
 a) \(\frac{75}{4} \) J
 b) 45 J
 c) \(\frac{75}{2} \) J
 d) 30 J
 e) 40 J
4. Evaluate \(\int_0^{\sqrt{\pi/2}} x^5 \cos(x^3) \, dx \)
 a) \(\frac{\pi}{6} - \frac{1}{3} \)
 b) \(\frac{\pi}{3} - \frac{1}{6} \)
 c) \(\frac{\pi}{2} - \frac{1}{3} \)
 d) \(\frac{\pi}{3} - \frac{1}{2} \)
 e) \(\frac{\pi}{6} - \frac{1}{2} \)

5. \(\int_1^e x \ln x \, dx = \)
 a) \(\frac{7e^8 + 1}{4} \)
 b) \(\frac{9e^8 + 1}{4} \)
 c) \(\frac{8e^8 + 1}{4} \)
 d) \(\frac{7e^8 - 1}{4} \)
 e) \(\frac{8e^8 - 1}{4} \)

6. \(\int \sin^2(x) \, dx = \)
 a) \(\frac{x}{2} + \frac{1}{4} \sin(2x) + C \)
 b) \(\frac{x}{2} - \frac{1}{4} \sin(2x) + C \)
 c) \(\frac{4}{3} \sin^3(x) + C \)
 d) \(\frac{x}{2} + 2 \sin(2x) + C \)
 e) \(\frac{1}{3} \sin^3(x) + C \)
7. A 15 pound rope, 30 feet long, hangs from the top of a cliff. How much work is done in pulling \(\frac{1}{3} \) of this rope to the top of the cliff?

 a) 125 foot-pounds
 b) 25 foot-pounds
 c) 35 foot-pounds
 d) 2255 foot-pounds
 e) 75 foot-pounds

8. \(\int_{0}^{\pi/4} \sec^4 x \, dx \)

 a) \(\frac{16}{3} \)
 b) \(\frac{4}{3} \)
 c) \(\frac{8}{3} \)
 d) \(\frac{1}{6} \)
 e) None of these

9. \(\int \frac{x}{(x - 1)^2} \, dx \)

 a) \(\ln |x - 1| + \frac{1}{x - 1} + C \)
 b) \(\ln |x - 1| - \frac{1}{x - 1} + C \)
 c) \(\ln |x - 1| + \frac{1}{3(x - 1)^2} + C \)
 d) \(\ln |x - 1| - \frac{1}{3(x - 1)^2} + C \)
 e) \(\ln |x - 1| + \frac{3}{(x - 1)^2} + C \)
Part II - Work Out Problems
10. Find the volume of the solid obtained by revolving the region bounded by $y = 4 - x^2$ and $y = 3$ about the x-axis.

11. The base of a solid is the region bounded by $y = x^2$ and $y = 1$. Cross-sections perpendicular to the y-axis are equilateral triangles. Set up but do not evaluate an integral that gives the volume of the solid.
12. A 15 m long trough with semicircular ends of radius 2 m is full of water. Set up but do not evaluate an integral that will compute the work required to pump all of the water out of a 1 m high spout. Indicate on the picture where you are placing the axis and which direction is positive. Note: The density of water is $\rho = 1000 \text{ kg/m}^3$ and the acceleration due to gravity is 9.8 m/s^2.

13. Using cylindrical shells, set up but do not evaluate an integral that gives the volume of the solid formed by rotating the region bounded by $y = \sqrt{x}$ and $y = x^2$ about the line $y = -1$.
14. Consider the region R bounded by $y = \sqrt{x} + 3$, $y = 3$, $x = 16$

a.) Set up but do not evaluate an integral that gives the volume of the solid obtained by rotating the region R about the x-axis

b.) Set up but do not evaluate an integral that gives the volume of the solid obtained by rotating the region R about the y-axis

c.) Set up but do not evaluate an integral that gives the volume of the solid obtained by rotating the region R about the line $x = -1$

d.) Set up but do not evaluate an integral that gives the volume of the solid obtained by rotating the region R about the line $y = 10$.
15. Find $\int \sec^5 x \tan^3 x \, dx$.

16. Find $\int \sin^5(3x) \cos^2(3x) \, dx$.

17. Evaluate $\int \arccos x \, dx$.