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Transport problem

chaotic cavity
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S, t, and r-matrices

In- and out- states in the transport problem:
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In-(1) and out- (2) channels   (w = width):
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Transport properties

• Conductance
• Conductance variance
• Shot noise
• …

~ 〈Tr tt 
~ Tr tt 2 − 〈Tr tt 2

~〈Tr tt − Tr tt tt  

(Averaging done over energy interval)



Conductance, random-matrix 
prediction
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Semiclassical approach



Van Vleck:

In- channel Out- channel

tm 1m 2 ∑ AeiS/

Entrance and exit angles fixed by channel numbers



Semiclassical approach

Conductance

Need pairs of trajectories with small action difference
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Diagonal approximation
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Higher orders

• Created by pairs of trajectories-partners composed 
of same pieces traversed in different order / with 
different sense

• Switches of motion: encounters
• l-encounter: avoided crossing in phase space of l

stretches of same trajectory, or trajectory and its 
time reversed, or of different trajectories

• 2-encounter, viewed in configuration space: small-
angle crossing / narrow avoided crossing



Richter / Sieber pairs

• if no escape on first stretch,

• dwell time T  t1  t2  t3  2tenc

no escape on second stretch either

Encounters hinder escape into leads.
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Richter / Sieber pairs
Pairs characterized by

• phase-space separations inside encounter s,u

e
H

du T
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• link durations  0  t1, t2, t3  
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Higher orders in 1/N

Survival probability
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Reconnections may
not lead to periodic
orbits splitting off



Diagrammatic rules for trajectory 
pairs

• 1/N for every link
• (-N) for every encounter
• Multiply by the number of in- and out-

channels (N1N2)
• Sum over all families (topological versions) 

of trajectory pairs. 



Higher orders in 1/N

Each family of trajectory pairs contributes

−1#encountersN1N2

N#loops−#encounters

Summation gives
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Shot noise
Fluctuations of current through a cavity:

−P ~ Tr  t† t t† t t † t

Sp  Sr ≈ S q  St

Contributing quadruplets must have        

i.e.  the pairs (q, t) and (p, r) must be partners

Sum  over quadruplets of classical trajectories p, q, r, t ,
connecting channels  m1m2 , n1m2 , n1n2 , m1n2

Semiclassically

Tr tt tt  ∑m 1,n1

N 1 ∑m 2,n2

N 2 ∑ pqrt ApAq
∗ArAt

∗ exp i SpSr−Sq−St





Leading term

1
N 4 −NP  − N1

2 N2
2

Using diagrammatic rules (1/N per link, –N per encounter),
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Shot noise
Example for higher orders:



Shot noise
semiclassical prediction

O(N) and O(1) agree with RMT

higher orders first obtained semiclassically
(later confirmed in RMT)

N1N11N2N21
NN1N3

orthogonal case

N1
2N2

2

NN2−1
unitary case

P 



GOE/GUE crossover

eiS−S ′ / → eiS−S ′ Θ −Θ ′ /

Magnetic phase on elements of γ and γ’ traversed in 
same direction cancels, in opposite  directions is 
doubled. 

Angular momentum

Θ  eB
2mc Lztdt

Weak magnetic field B: trajectories unchanged. 
Additional action:

;



Diagrammatic rules under crossover

• For a loop changing direction :        N-1(1+ξ) -1

• preserving direction :        N-1

• For an encounter with μ stretches  changing 
direction :                                        -N (1+μ2ξ )

is the crossover parameter.

(Per one in- and one out-channel; for each topologic family)

  B/2



GOE/GUE crossover

Coincides with RMT (Weidenmüller e.a., 1995)
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 unitary case



Wigner delay time (Cuipers, Sieber
2007)

• Approach: similar, leads to RMT results. 
• Equivalence proven of delay time 

representation as sums over trajectory pairs 
and periodic orbits of open resonator



Conclusions

• Diagrammatic rules found leading to RMT 
results for all examined transport properties. 
Based on: a) partnership of trajectories 
differing in encounters; b) increase of dwell 
time in orbits with encounters

• Applicability limited by Ehrenfest-time 
corrections (case N>>1) and diffraction 
effects (N~1)
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