NETWORK MODELS

FOR THE QUANTUM HALL EFFECT

AND ITS GENERALISATIONS

John Chalker Physics Department, Oxford University

Outline

Network models

Quantum lattice models for single-particle systems with disorder

Symmetry classes

Discrete symmetries and additions to Wigner-Dyson classification

• Random-bond Ising model and network model

Classical spin order and quantum delocalisation

• Classical percolation and network model

Classical and quantum delocalistion

Network Models

Ingredients

2D lattice

Evolution operator $W = W_1 W_2$ W_1 : links W_2 : nodes

Two-dimensional U(1) model

Random link phases + uniform scattering angle α at nodes

Delocalisation transition as α varied

U(1) model in other geometries

One dimension

Cayley tree

Symmetry Classes

Dyson random matrix ensembles

Additional symmetry classes Altland and Zirnbauer 1997

Orthogonal with time-reversal symmetry

Symplectic

with time-reversal symmetry

and Kramers degeneracy

Unitary

without time-reversal symmetry

Hamiltonian H with discrete symmetry Energy levels in pairs $\pm E$

 $X^{-1}H^*X = -H$

Given $H\psi=E\psi$, define $\tilde\psi=X\psi^*$.

Then $H\tilde{\psi}=-E\tilde{\psi}.$

'Class D' X = 1'Class C' $X = i\sigma_y$

Generalisations of network models

Amplitudes $z_i \rightarrow$ n-component vectorLink phases $e^{i\phi} \rightarrow n \times n$ unitary matrices

Without further restrictions: U(n) model

not time-reversal invariant, so member of unitary symmetry class

With discrete symmetries:

Class D: $H^* = -H$ so link phases $U \sim e^{iH}$ are real

O(n) model related to random bond Ising model

Class C: $\sigma_y H^* \sigma_y = -H$ so link phases \in Sp(n), with Sp(2) \sim SU(2) SU(2) model related to classical percolation

Ising model and network model

Cho and Fisher, 1998; Gruzberg, Read and Ludwig, 2001; Merz and Chalker 2002.

SU(2) network model and classical random walks

Feynman path expansion for Green function $G(\zeta) = (1 - \zeta W)^{-1}$

$$[G(\zeta)]_{r_1,r_2} = \sum_{n-\text{step paths}} \zeta^n A_{\text{path}}$$

with weight $A_{\text{path}} \sim \prod_{\text{links}} U_{\text{link}} \begin{cases} \cos(\alpha) \\ \pm \sin(\alpha) \end{cases}^n$

SU(2) Averages

$$\langle U^n \rangle = \begin{cases} 1 & n = 0\\ -1/2 & n = \pm 2\\ 0 & \text{otherwise} \end{cases}$$

- keep only paths that cross each link 0 or 2 times.

Gruzberg, Ludwig and Read, 1999; Beamond, Cardy and Chalker, 2002

Quantum to classical mapping

Disorder-average for quantum system \rightarrow average over classical paths

Application

Eigenphase density of evolution operator, W: $\rho(\theta) = \frac{1}{2\pi} \left[1 - \sum_{n} p_n \cos(2n\theta)\right]$ where W has eigenvalues $e^{i\theta}$ and p_n is classical return probability after n steps

SU(2) network model and percolation

Classical

Classical probabilities $p = \sin^2(\alpha)$, $1 - p = \cos^2(\alpha)$

Consequences:
$$\xi_{Quantum} \sim |\alpha - \pi/4|^{-4/3}$$

and $\rho(\theta) \sim |\theta|^{1/7}$ at $\alpha = \pi/4$

Summary

Network models

Single quantum particle moving on lattice with randomness Distinct phases for $\alpha \to 0$ and $\alpha \to \pi/2$

- distinguished by nature of edge states, separated by critical point

Symmetry classes via link phases: U(n), O(n) and Sp(n)

Discrete symmetries define classes additional to Wigner-Dyson ones

Mappings to problems from classical statistical physics

Random bond Ising model and O(1) model Classical percolation and SU(2) model

Selected references

U(1) model

J. T. Chalker and P. D. Coddington, J. Phys C 21, 2665 (1988)

Review

B. Kramer, T. Ohtsuki and S. Kettemann, Phys. Rep. 417, 211 (2005)

O(1) model and Ising model

- I. A. Gruzberg, N. Read, and A. W. W. Ludwig, Phys. Rev. 63, 104422 (2001)
- F. Merz and J. T. Chalker, Phys. Rev. B65, 54424 (2002)

Classical percolation and SU(2) model

- I. A. Gruzberg, A. W. W. Ludwig, and N. Read, Phys. Rev. Lett. 82, 4254 (1999)
- E. Beamond, J. L. Cardy, and J. T. Chalker, Phys. Rev. B65, 214301 (2002)