Scarring on invariant manifolds for quantum maps on the torus

DUBI KELMER

Banff workshop

Quantum chaos: Routes to RMT and beyond

February 2008

Overview

- Quantum ergodicity and scarring
- Quantum maps on the torus
- Scarring on periodic orbits
- Scarring on invariant manifolds

Quantization

- Classical flow: $\Phi^t : X \to X$
- Unitary flow U^t on a Hilbert space \mathcal{H}_h
- Quantum states $\psi \in \mathcal{H}_h$ interpreted as distribution \mathcal{W}_{ψ} on X.
- Semi-classical limit $h \to 0$ retrieve classical behavior $(\mathcal{W}_{U^t\psi} \sim \mathcal{W}_{\psi} \circ \phi^t)$
- If ψ is an eigenfunction then in semiclassical limit \mathcal{W}_{ψ} becomes Φ^t invariant.
- What are the possible limiting (invariant) measures?

Quantum Ergodicity

- Chaotic dynamics: Small changes in initial condition result in drastic changes in outcome
- Lose all information as $t \to \infty$
- Quantum interpretation: for "small" h, $U^t\psi$ become evenly distributed as $t \to \infty$
- Eigenfunctions become evenly distributed as $h \rightarrow 0$

Quantum Ergodicity Theorem: When the classical dynamics is ergodic, in the semiclassical limit $\mathcal{W}_{\psi} \rightarrow \text{vol for "almost all" eigenfunctions}$

QUE and scarring

• Scarring: There are eigenfunction localizing on an invariant set

$$\lim_{h\to 0} \mathcal{W}_{\psi}(P) \neq 0$$

- Quantum Unique Ergodicity (QUE): the volume measure is the only limiting measure
- QUE is conjectured to hold for negatively curved surfaces. (Proved for "arithmetic" surfaces [Lindenstrauss])

Theorem (Anantharaman, Koch, Nonnenmacher). For Anosov flows, any limiting measure has positive entropy.

Conjecture. Entropy bounded below by half of maximal entropy

Quantum mechanics on the torus

- Phase space $\mathbb{T}^{2d} = \mathbb{R}^{2d} / \mathbb{Z}^{2d}$ coordinates $x = \begin{pmatrix} p \\ q \end{pmatrix}$
- Hilbert space $\mathcal{H}_h = L^2[(h\mathbb{Z}/\mathbb{Z})^d]$ (where h = 1/N).
- Weyl quantization:

$$f \in C^{\infty}(\mathbb{T}^{2d}) \rightsquigarrow \operatorname{Op}_{h}(f)$$

• Wigner distribution

$$\psi \in \mathcal{H}_h \rightsquigarrow \mathcal{W}_{\psi}(f) = \langle \mathsf{Op}_h(f)\psi, \psi \rangle$$

• If f = f(q) (function of position) $\mathcal{W}_{\psi}(f) = h^d \sum f(\frac{Q}{N}) |\psi(\frac{Q}{N})|^2$

Quantization of Hamiltonian flows

- $H \in C^{\infty}(\mathbb{T}^{2d})$ real valued Hamiltonian
- Hamiltonian flow $\Phi_H^t : \mathbb{T}^{2d} \to \mathbb{T}^{2d}$ $\frac{d}{dt}(f \circ \Phi_H^t) = \{f, H\} \circ \Phi_H^t$
- Quantization: unitary flow $U(\phi_{H}^{t}) = \exp(\frac{it}{\hbar} \operatorname{Op}_{h}(H))$
- Egorov Theorem:

 $U^* \operatorname{Op}_h(f) U = \operatorname{Op}_h(f \circ \Phi_H) + O(h)$ implying:

$$\mathcal{W}_{U\psi}(f) = \mathcal{W}_{\psi}(f \circ \Phi_H) + O(h)$$

Quantization of linear maps

- $A \in \text{Sp}(2d, \mathbb{Z})$ acts on \mathbb{T}^{2d} $(x \mapsto Ax \pmod{1})$
- A hyperbolic implies map is Anosov
- Quantization [Hannay-Berry]: There is a unique unitary operator satisfying that

 $U_h(A)^* \operatorname{Op}_h(f) U_h(A) = \operatorname{Op}_h(f \circ A)$

[Remark: $A \mapsto U(A)$ is the Weil representation of Sp $(2d, \mathbb{Z}/N\mathbb{Z})$]

• For perturbation: $\Phi = \Phi_H \circ A$ quantization: $U(\Phi) = U(\Phi_h)U(A)$.

Scarring on periodic orbits

Theorem (Faure, Nonnenmacher, De-Bievre). For linear maps on \mathbb{T}^2 , there are e.f. satisfying

$$\mathcal{W}_{\psi}(f) \to \frac{1}{2}f(0) + \frac{1}{2}\int f dx$$

- These scars occur only when U(A) has large spectral degeneracies
- Arithmetic symmetries remove degeneracies

With arithmetic symmetries linear maps on \mathbb{T}^2 are QUE [Kurlberg, Rudnick]

• Perturbation remove degeneracies

Open question: Is a generic perturbation QUE?

Invariant manifolds for linear maps on \mathbb{T}^{2d}

• $A: \mathbb{T}^{2d} \to \mathbb{T}^{2d}$ by $x \mapsto Ax \pmod{1}$

Dual action: $A: \mathbb{Z}^{2d} \to \mathbb{Z}^{2d}$ by $n \mapsto nA$

• Correspondence: $\Lambda \subset \mathbb{Z}^{2d}$ invariant lattice of rank $d_0 \Rightarrow$

$$X_{\Lambda} = \left\{ x \in \mathbb{T}^{2d} | e_n(x) = 1, \ \forall n \in \Lambda \right\}$$

invariant manifold of co-dimension d_0 .

- Invariant manifolds only exist for d > 1
- We say Λ is isotropic (or X_{Λ} co-isotropic) if the symplectic form

$$\omega(n,m) = n_1 \cdot m_2 - n_2 \cdot m_1$$

vanishes on $\Lambda \times \Lambda$.

Scarring on Invariant manifolds

Theorem (K.). Let $A \in \text{Sp}(2d, \mathbb{Z})$. Assume that $\Lambda \subseteq \mathbb{Z}^{2d}$ is invariant and isotropic:

• There are eigenfunctions of U(A) localizing on X_{Λ}

$$\mathcal{W}_{\psi}(f) \to \int_{X_{\Lambda}} f dx$$

- This also holds after taking arithmetic symmetries into account
- This also holds for perturbation $\Phi_H \circ A$ by any Hamiltonian flow preserving X_{Λ}
- If A has a fixed point $\xi \in \mathbb{T}^{2d}$ there are also eigenfunctions localizing on $X_{\Lambda} + \xi$.

The simplest example

• Take
$$A = \begin{pmatrix} B^t & 0 \\ 0 & B^{-1} \end{pmatrix}$$
 for $B \in GL(d, \mathbb{Z})$

- Invariant manifold $X = \left\{ \begin{pmatrix} p \\ 0 \end{pmatrix} \in \mathbb{T}^{2d} \right\}$
- Perturbation: (by Hamiltonian H = H(q)) $\Phi(\binom{p}{q}) = \begin{pmatrix} B^t p + \nabla H(B^{-1}q) \\ B^{-1}q \end{pmatrix}$
- Quantization:

$$U(\Phi)\psi(\frac{Q}{N}) = \exp(\frac{i}{\hbar}H(\frac{BQ}{N}))\psi(\frac{BQ}{N})$$

• The state $\psi = \delta_0$ is an eigenfunction of U localized on X

Sketch of proof

• Consider the family of operators

$$\mathcal{A} = \{ \mathsf{Op}_h(e_n) | n \in \Lambda \}$$

- Λ isotropic $\Rightarrow \mathcal{A} \cong (\mathbb{Z}/N\mathbb{Z})^{d_0}$ is commutative.
- Decomposition into joint eigenspaces,

 $\mathcal{H}_h = \bigoplus \mathcal{H}_\lambda, \quad (\operatorname{Op}_h(e_n)\psi = \lambda(n)\psi).$ Each of dimension N^{d-d_0} .

- For any $\psi \in \mathcal{H}_1$ and $n \in \Lambda$, $\mathcal{W}_{\psi}(e_n) = \langle \mathsf{Op}_h(e_n)\psi, \psi \rangle = 1.$
- States from \mathcal{H}_1 are concentrated on X_{Λ} .

- Exact Egorov \Rightarrow U(A) permutes eigenspaces $U(A) : \mathcal{H}_{\lambda} \rightarrow \mathcal{H}_{\lambda \circ A}$
- Hamiltonian flow preserves $X_{\Lambda} \Rightarrow U(\Phi_H)$ preserves all eigenspaces
- The trivial eigenspace \mathcal{H}_1 , is preserved by purerbed map: $U(\Phi_H \circ A)\mathcal{H}_1 = \mathcal{H}_1$.
- There is a basis for \mathcal{H}_1 composed of eigenfunctions
- These are the localized eigenfunctions

Concluding remarks

- Quantum states localize on a co-isotropic manifold (uncertainty principle does not apply)
- The entropy of the scarred states is always bounded below by half the maximal entropy and it is equal if and only if dim $X_{\Lambda} = d$
- If A has an invariant lattice then U(A) has large spectral degeneracies.

However, perturbation (generically) removes all degeneracies

 Scarring on invariant manifolds does not imply spectral degeneracies

THE END ...