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       Universal results, in agreement with RMT
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Sigma model in RMT
Generating function

1
2exp(sin ®)

write                   as  Gauss integral

What about             ?

• replica trick

• anticommuting (fermionic) variables

Z=〈EC E−D 

 EAE−B 〉
E = det  E−H 

E = limr0E−r−1
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1

non-oscillatory / oscillatory terms:

Z   =   Z   +   Z 
2

         non-oscillatory
(Berry & Keating, 

1990; 
 Keating & S.M., 

2007)Z2 A ,B ,C ,D = Z 1A ,B ,−D ,−C 

• same relation as with Riemann-Siegel !

• non-oscillatory 
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Relevance for semiclassics

    Keep all terms
         perturbation theory

 links = 
  propagator lines

encounters = 
vertices
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Replica trick also works in semiclassics!

r `original` pseudo-orbits

r `partner` pseudo-orbits

differing in encounters
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Drawing orbits

Connect!3 • numbers of entrances & corresp. 
exits must coincide

• possible connections = factorial

also put in energy differences

Gaussian integral with powers
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Difference to 
ballistic sigma model:

Muzykantskii & Khmel'nitskii, JETP Lett. (1995)
Andreev, Agam, Simons & Altshuler, PRL (1996)
Jan Müller, Micklitz, Altland  (2007)

• perturbative

• no problems due to regularisation
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Outlook

possible extension: localization e.g. in long wires

• semiclassical contributions changed (diffusion)

• expect one-dimension sigma model
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Conclusions

Semiclassics

Sigma model

Universality

• Same relation between non-osc. & osc. contributions

• encounters = perturbation series

• count link connections using matrix integral


