Constructing a sigma model from semiclassics

In collaboration with:

Alexander Altland, Petr Braun, Fritz Haake, Stefan Heusler

Sebastian Müller

Semiclassics

Semiclassics

Sigma model

Semiclassics

Sigma model

field-theoretical method for averaging over random matrices, disorder

Semiclassics

Sigma model

field-theoretical method for

averaging over random matrices, disorder

Semiclassics

Sigma model

field-theoretical method for averaging over random matrices, disorder doing combinatorics

Semiclassics

Sigma model

field-theoretical method for

averaging over random matrices, disorder

doing combinatorics

Universal results, in agreement with RMT

Generating function

Generating function

$$Z = \left\langle \frac{\Delta (E + \epsilon_{C}) \Delta (E - \epsilon_{D})}{\Delta (E + \epsilon_{A}) \Delta (E - \epsilon_{B})} \right\rangle$$
$$\Delta (E) = det(E - H)$$

Generating function

$$Z = \left\langle \frac{\Delta (E + \epsilon_{C}) \Delta (E - \epsilon_{D})}{\Delta (E + \epsilon_{A}) \Delta (E - \epsilon_{B})} \right\rangle$$
$$\Delta (E) = det(E - H)$$

write $\Delta(E)^{-1}$ as Gauss integral

Generating function

$$Z = \left\langle \frac{\Delta (E + \epsilon_{C}) \Delta (E - \epsilon_{D})}{\Delta (E + \epsilon_{A}) \Delta (E - \epsilon_{B})} \right\rangle$$
$$\Delta (E) = det(E - H)$$

write $\Delta(E)^{-1}$ as Gauss integral What about $\Delta(E)$?

Generating function

$$Z = \left\langle \frac{\Delta (E + \epsilon_{C}) \Delta (E - \epsilon_{D})}{\Delta (E + \epsilon_{A}) \Delta (E - \epsilon_{B})} \right\rangle$$
$$\Delta (E) = det(E - H)$$

write $\Delta(E)^{-1}$ as Gauss integral What about $\Delta(E)$?

• anticommuting (fermionic) variables

Generating function

$$Z = \left\langle \frac{\Delta (E + \epsilon_{C}) \Delta (E - \epsilon_{D})}{\Delta (E + \epsilon_{A}) \Delta (E - \epsilon_{B})} \right\rangle$$
$$\Delta (E) = det(E - H)$$

write $\Delta(E)^{-1}$ as **Gauss integral** What about $\Delta(E)$?

- anticommuting (fermionic) variables
- replica trick

Generating function

$$Z = \left\langle \frac{\Delta (E + \epsilon_{C}) \Delta (E - \epsilon_{D})}{\Delta (E + \epsilon_{A}) \Delta (E - \epsilon_{B})} \right\rangle$$
$$\Delta (E) = det(E - H)$$

write $\Delta(E)^{-1}$ as **Gauss integral** What about $\Delta(E)$?

- anticommuting (fermionic) variables
- replica trick

$$\Delta(E) = \lim_{r \to 0} \Delta(E)^{-(r-1)}$$

random matrix average

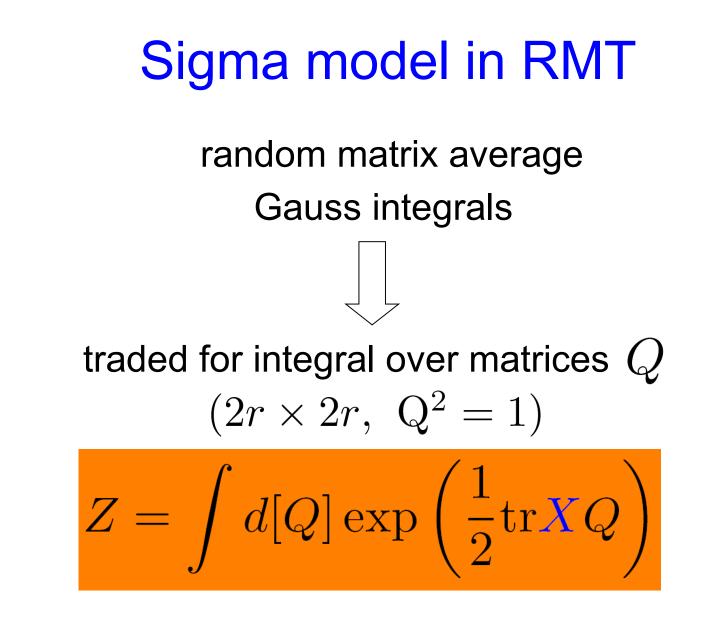
random matrix average Gauss integrals

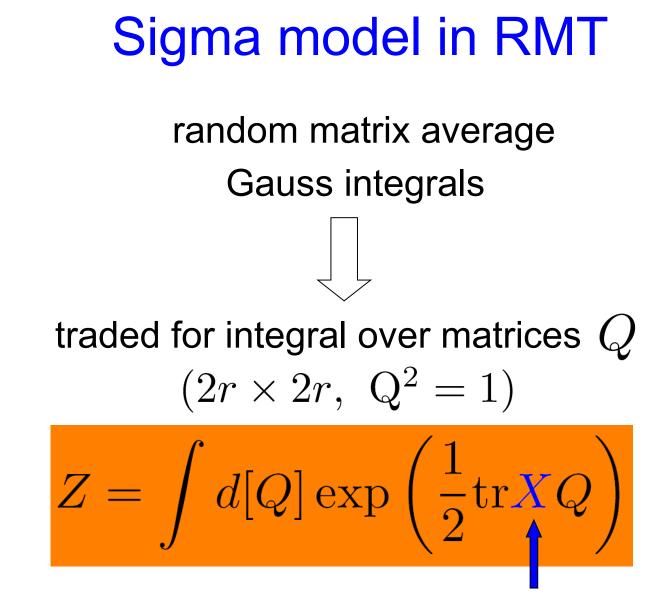
random matrix average Gauss integrals

traded for integral over matrices ${\it Q}$

random matrix average Gauss integrals

traded for integral over matrices Q $(2r \times 2r, \ Q^2 = 1)$





energy differences

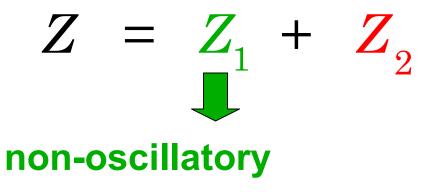
non-oscillatory / oscillatory terms:

non-oscillatory / oscillatory terms:

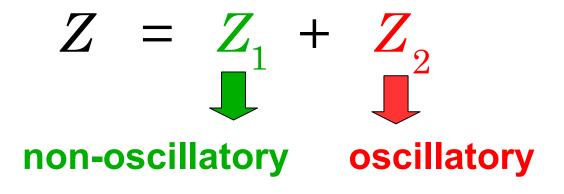
non-oscillatory / oscillatory terms:

$$Z = Z_1 + Z_2$$

non-oscillatory / oscillatory terms:

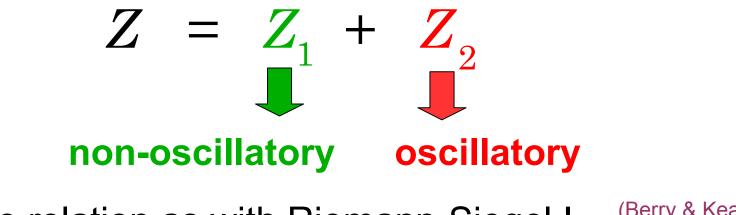


non-oscillatory / oscillatory terms:



non-oscillatory / oscillatory terms:

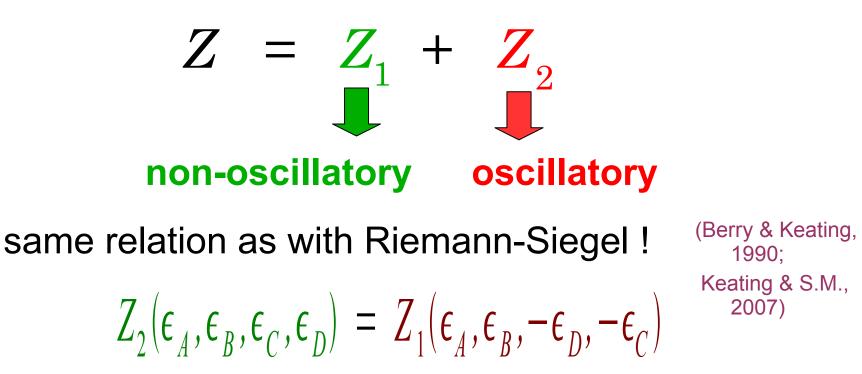
Z falls into integrals over two submanifolds



same relation as with Riemann-Siegel !

(Berry & Keating, 1990; Keating & S.M., 2007)

non-oscillatory / oscillatory terms:



Analog of diagonal approximation:

Analog of diagonal approximation:

rational parametrization

Analog of diagonal approximation:

rational parametrization

$$Z_1 = \int d[B] \exp\left[\operatorname{tr} \mathbf{X'}\left(\frac{1}{2} + \sum_{l=1}^{\infty} (BB^{\dagger})^l\right) + \operatorname{tr} \mathbf{X''}\left(\frac{1}{2} + \sum_{l=1}^{\infty} (B^{\dagger}B)^l\right)\right]$$

Analog of diagonal approximation:

rational parametrization

$$Z_1 = \int d[B] \exp\left[\operatorname{tr} \mathbf{X'}\left(\frac{1}{2} + \sum_{l=1}^{\infty} (BB^{\dagger})^l\right) + \operatorname{tr} \mathbf{X''}\left(\frac{1}{2} + \sum_{l=1}^{\infty} (B^{\dagger}B)^l\right)\right]$$

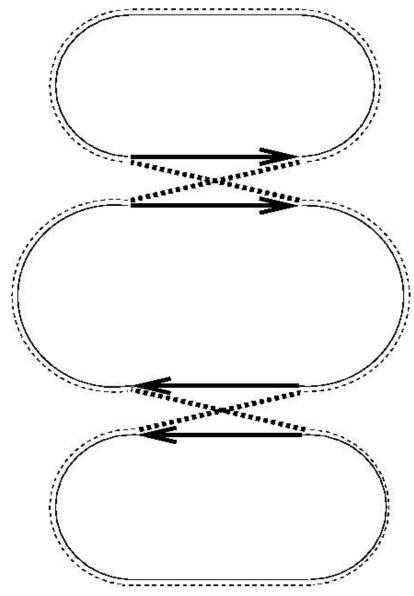
Keep only Gaussian terms!

Keep all terms

➡ perturbation theory

Keep all terms

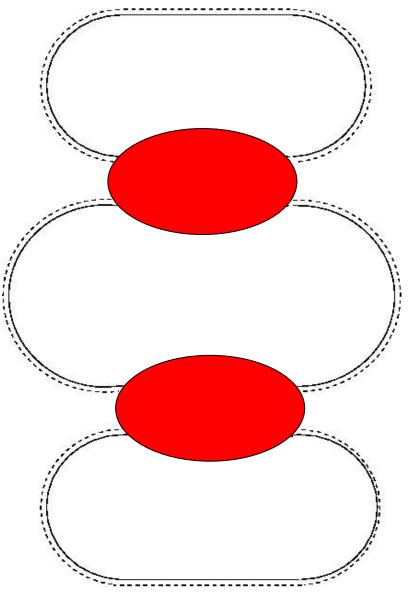
➡ perturbation theory



Relevance for semiclassics

Keep all terms

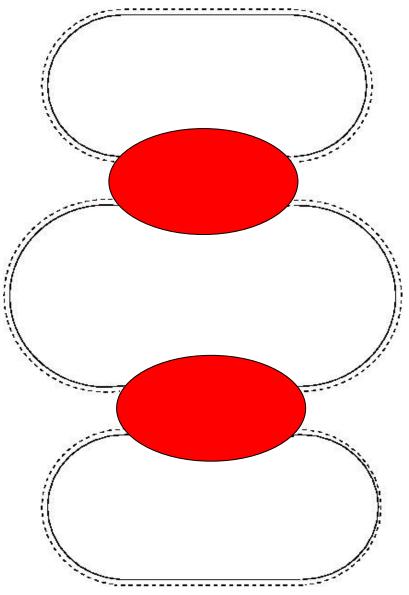
➡ perturbation theory



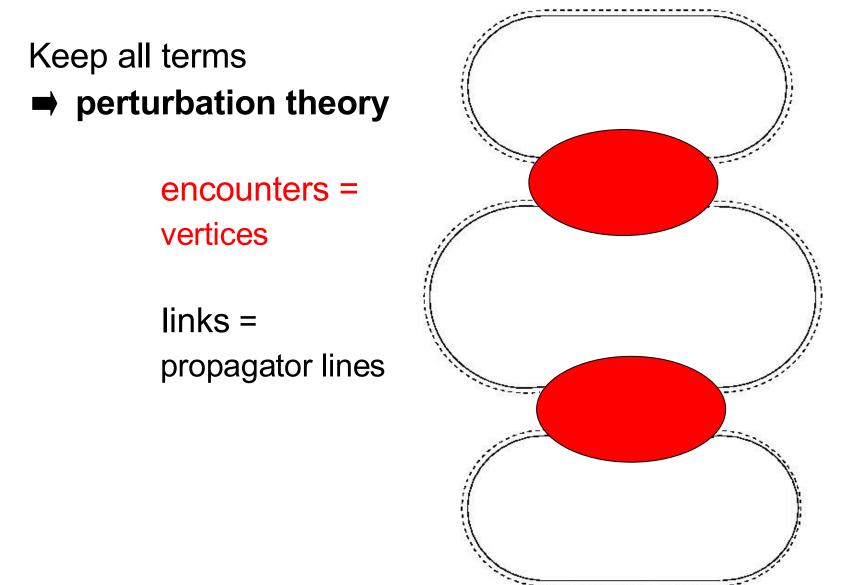
Relevance for semiclassics

Keep all terms ➡ perturbation theory

encounters = vertices

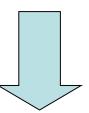


Relevance for semiclassics



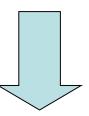
Replica trick also works in semiclassics!

Replica trick also works in semiclassics!



r `original` pseudo-orbits

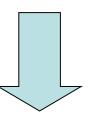
Replica trick also works in semiclassics!



r `original` pseudo-orbits

r `partner` pseudo-orbits

Replica trick also works in semiclassics!



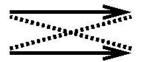
r `original` pseudo-orbits

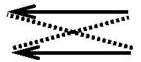
r `partner` pseudo-orbits

differing in encounters

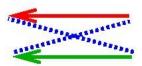
Draw encounters

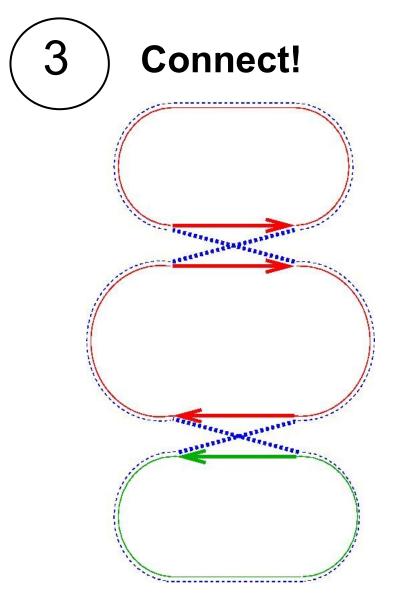
Draw encounters



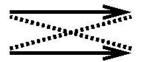


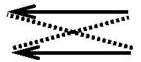
Choose pseudo-orbits (colors)





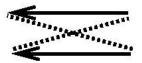
Draw encounters





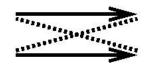
Draw encounters

write B for each entrance port, B^{\dagger} for each exit port



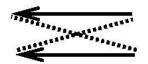
Draw encounters

write B for each entrance port, B^{\dagger} for each exit port

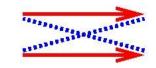


$B \quad B^{\dagger} \quad B \quad B^{\dagger}$

$B \quad B^{\dagger} \quad B \quad B^{\dagger}$

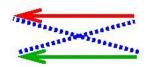


Choose pseudo-orbit (colors)



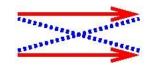
$B \quad B^{\dagger} \quad B \quad B^{\dagger}$

$B \quad B^{\dagger} \quad B \quad B^{\dagger}$



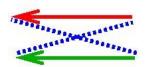
Choose pseudo-orbit (colors)

choose indices according to pseudo-orbits



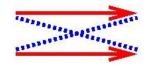
$B \quad B^{\dagger} \quad B \quad B^{\dagger}$

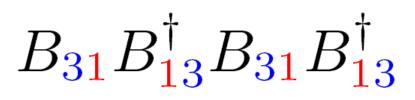
$B \quad B^{\dagger} \quad B \quad B^{\dagger}$

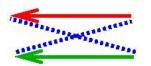


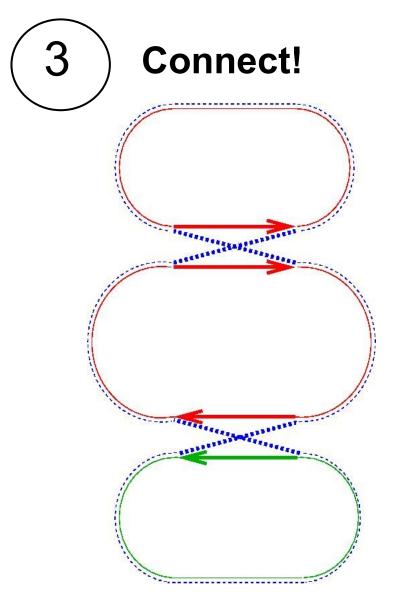
Choose pseudo-orbit (colors)

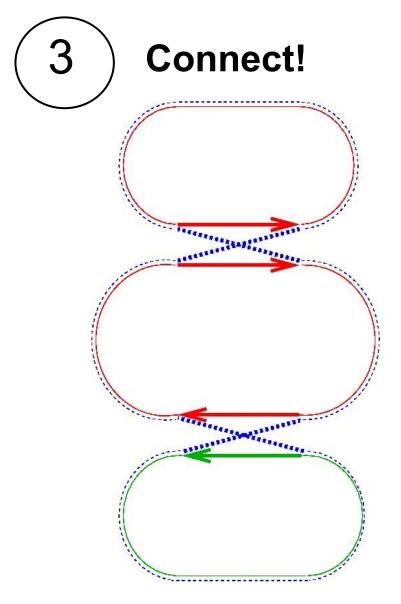
choose indices according to pseudo-orbits



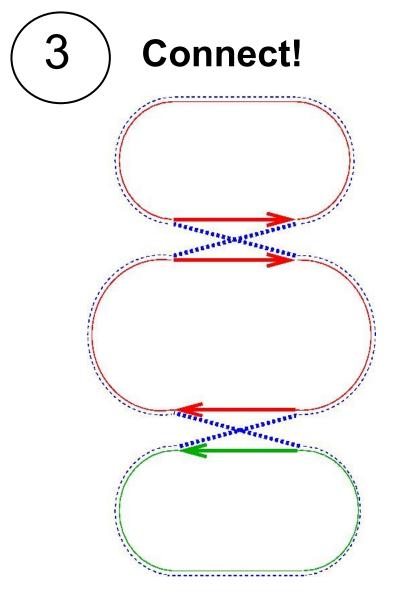




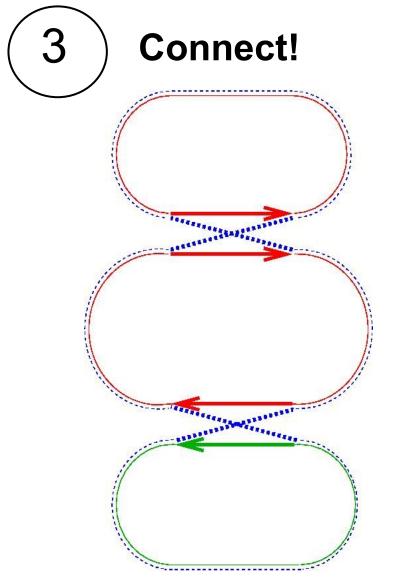




• numbers of entrances & corresp. exits must coincide



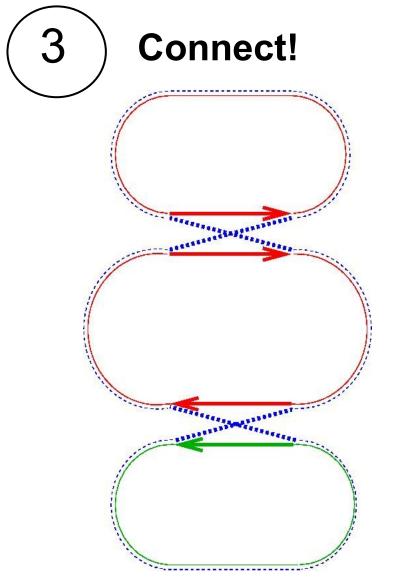
- numbers of entrances & corresp.
 exits must coincide
- possible connections = factorial



- numbers of entrances & corresp.
 exits must coincide
- possible connections = factorial

Gaussian integral with powers

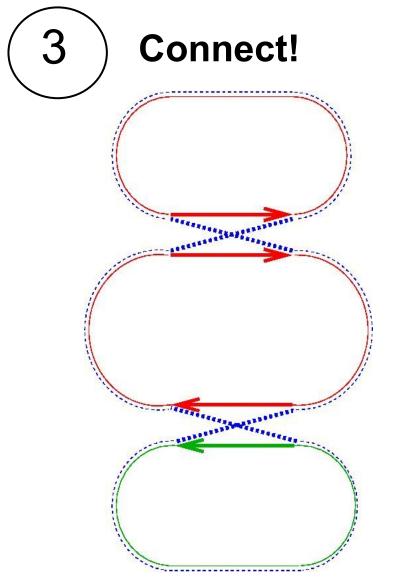
$$\int d^2 B_{jk} e^{-|B_{jk}|^2} (B_{jk})^m (B_{jk}^*)^n = \delta_{m,n} m!$$



- numbers of entrances & corresp.
 exits must coincide
- possible connections = factorial

Gaussian integral with powers

$$\int d^2 B_{jk} e^{-|B_{jk}|^2} (B_{jk})^m (B_{jk}^*)^n = \delta_{m,n} m!$$



- numbers of entrances & corresp.
 exits must coincide
- possible connections = factorial

Gaussian integral with powers

$$\int d^2 B_{jk} e^{-|B_{jk}|^2} (B_{jk})^m (B_{jk}^*)^n = \delta_{m,n} m!$$

also put in energy differences

Summation gives

Summation gives

$$Z_1 = \int d[B] \exp\left[\operatorname{tr} \boldsymbol{X'}\left(\frac{1}{2} + \sum_{l=1}^{\infty} (BB^{\dagger})^l\right) + \operatorname{tr} \boldsymbol{X''}\left(\frac{1}{2} + \sum_{l=1}^{\infty} (B^{\dagger}B)^l\right)\right]$$

Summation gives

$$Z_1 = \int d[B] \exp\left[\operatorname{tr} \mathbf{X}' \left(\frac{1}{2} + \sum_{l=1}^{\infty} (BB^{\dagger})^l\right) + \operatorname{tr} \mathbf{X}'' \left(\frac{1}{2} + \sum_{l=1}^{\infty} (B^{\dagger}B)^l\right)\right]$$

Agreement with sigma model, RMT

Summation gives

$$Z_1 = \int d[B] \exp\left[\operatorname{tr} \mathbf{X}'\left(\frac{1}{2} + \sum_{l=1}^{\infty} (BB^{\dagger})^l\right) + \operatorname{tr} \mathbf{X}''\left(\frac{1}{2} + \sum_{l=1}^{\infty} (B^{\dagger}B)^l\right)\right]$$

Agreement with sigma model, RMT

Difference to **ballistic sigma model**:

Summation gives

$$Z_1 = \int d[B] \exp\left[\operatorname{tr} \mathbf{X'}\left(\frac{1}{2} + \sum_{l=1}^{\infty} (BB^{\dagger})^l\right) + \operatorname{tr} \mathbf{X''}\left(\frac{1}{2} + \sum_{l=1}^{\infty} (B^{\dagger}B)^l\right)\right]$$

Agreement with sigma model, RMT

Difference to **ballistic sigma model**:

Muzykantskii & Khmel'nitskii, JETP Lett. (1995) Andreev, Agam, Simons & Altshuler, PRL (1996) Jan Müller, Micklitz, Altland (2007)

Summation gives

$$Z_1 = \int d[B] \exp\left[\operatorname{tr} \mathbf{X'}\left(\frac{1}{2} + \sum_{l=1}^{\infty} (BB^{\dagger})^l\right) + \operatorname{tr} \mathbf{X''}\left(\frac{1}{2} + \sum_{l=1}^{\infty} (B^{\dagger}B)^l\right)\right]$$

Agreement with sigma model, RMT

Difference to **ballistic sigma model**:

• perturbative

Muzykantskii & Khmel'nitskii, JETP Lett. (1995) Andreev, Agam, Simons & Altshuler, PRL (1996) Jan Müller, Micklitz, Altland (2007)

Summation gives

$$Z_1 = \int d[B] \exp\left[\operatorname{tr} \mathbf{X'}\left(\frac{1}{2} + \sum_{l=1}^{\infty} (BB^{\dagger})^l\right) + \operatorname{tr} \mathbf{X''}\left(\frac{1}{2} + \sum_{l=1}^{\infty} (B^{\dagger}B)^l\right)\right]$$

Agreement with sigma model, RMT

Difference to **ballistic sigma model**:

Muzykantskii & Khmel'nitskii, JETP Lett. (1995) Andreev, Agam, Simons & Altshuler, PRL (1996) Jan Müller, Micklitz, Altland (2007)

- perturbative
- no problems due to regularisation

Outlook

Outlook

possible extension: localization e.g. in long wires

Outlook

possible extension: localization e.g. in long wires

• semiclassical contributions changed (diffusion)

Outlook

possible extension: localization e.g. in long wires

• semiclassical contributions changed (diffusion)

• expect one-dimension sigma model

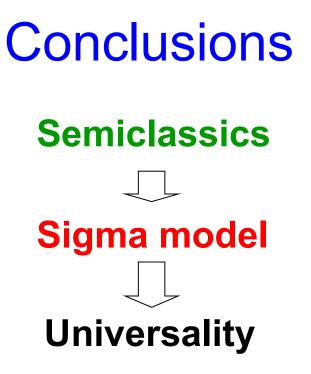
Conclusions

Conclusions

Semiclassics

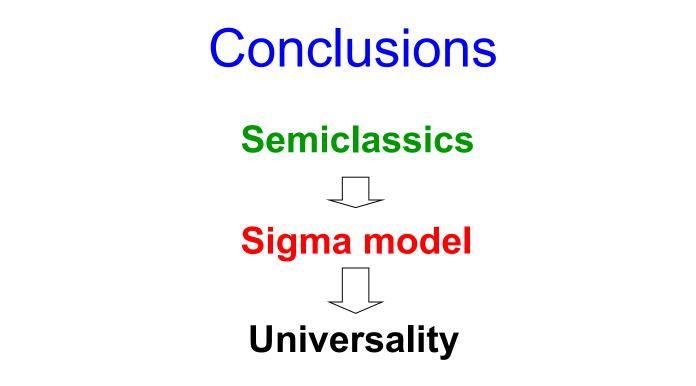
Semiclassics

Sigma model

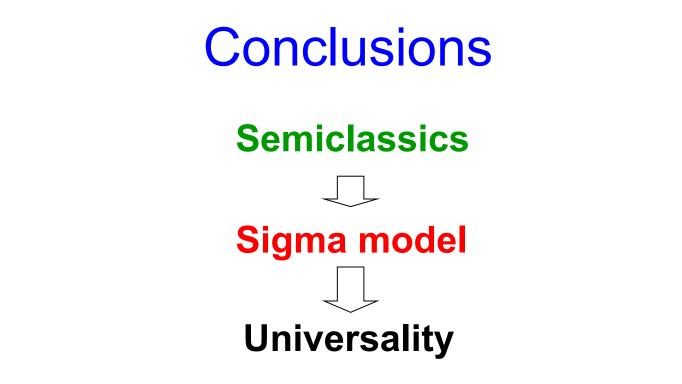




• Same relation between non-osc. & osc. contributions



- Same relation between non-osc. & osc. contributions
- encounters = perturbation series



- Same relation between non-osc. & osc. contributions
- encounters = perturbation series
- count link connections using matrix integral