Constructing a sigma model from semiclassics

In collaboration with:
Alexander Altland, Petr Braun, Fritz Haake, Stefan Heusler

Sebastian Müller

Approaches to spectral statistics

Semiclassics

Approaches to spectral statistics

Semiclassics

Sigma model

Approaches to spectral statistics

Semiclassics

Sigma model

field-theoretical method for averaging over random matrices, disorder

Approaches to spectral statistics

Semiclassics

Sigma model

field-theoretical method for averaging over random matrices, disorder

Approaches to spectral statistics

Semiclassics

Sigma model

field-theoretical method for
averaging over random matrices, disorder doing combinatorics

Approaches to spectral statistics

Semiclassics

Sigma model

field-theoretical method for
averaging over random matrices, disorder doing combinatorics

Universal results, in agreement with RMT

Sigma model in RMT

Sigma model in RMT

Generating function

Sigma model in RMT

Generating function

$$
\begin{aligned}
& Z=\left|\frac{\Delta\left(E+\epsilon_{C}\right) \Delta\left(E-\epsilon_{D}\right)}{\Delta\left(E+\epsilon_{A}\right) \Delta\left(E-\epsilon_{B}\right)}\right\rangle \\
& \Delta(E)=\operatorname{det}(E-H)
\end{aligned}
$$

Sigma model in RMT

Generating function

$$
\begin{aligned}
& Z=\left|\frac{\Delta\left(E+\epsilon_{C}\right) \Delta\left(E-\epsilon_{D}\right)}{\Delta\left(E+\epsilon_{A}\right) \Delta\left(E-\epsilon_{B}\right)}\right\rangle \\
& \Delta(E)=\operatorname{det}(E-H)
\end{aligned}
$$

write $\Delta(E)^{-1}$ as Gauss integral

Sigma model in RMT

Generating function

$$
\begin{aligned}
& Z=\left|\frac{\Delta\left(E+\epsilon_{C}\right) \Delta\left(E-\epsilon_{D}\right)}{\Delta\left(E+\epsilon_{A}\right) \Delta\left(E-\epsilon_{B}\right)}\right\rangle \\
& \Delta(E)=\operatorname{det}(E-H)
\end{aligned}
$$

write $\Delta(E)^{-1}$ as Gauss integral
What about $\Delta(E)$?

Sigma model in RMT

Generating function

$$
\begin{aligned}
& Z=\left|\frac{\Delta\left(E+\epsilon_{C}\right) \Delta\left(E-\epsilon_{D}\right)}{\Delta\left(E+\epsilon_{A}\right) \Delta\left(E-\epsilon_{B}\right)}\right\rangle \\
& \Delta(E)=\operatorname{det}(E-H)
\end{aligned}
$$

write $\Delta(E)^{-1}$ as Gauss integral
What about $\Delta(E)$?

- anticommuting (fermionic) variables

Sigma model in RMT

Generating function

$$
\begin{aligned}
& Z=\left|\frac{\Delta\left(E+\epsilon_{C}\right) \Delta\left(E-\epsilon_{D}\right)}{\Delta\left(E+\epsilon_{A}\right) \Delta\left(E-\epsilon_{B}\right)}\right\rangle \\
& \Delta(E)=\operatorname{det}(E-H)
\end{aligned}
$$

write $\Delta(E)^{-1}$ as Gauss integral
What about $\Delta(E)$?

- anticommuting (fermionic) variables
- replica trick

Sigma model in RMT

Generating function

$$
\begin{aligned}
& Z=\left|\frac{\Delta\left(E+\epsilon_{C}\right) \Delta\left(E-\epsilon_{D}\right)}{\Delta\left(E+\epsilon_{A}\right) \Delta\left(E-\epsilon_{B}\right)}\right\rangle \\
& \Delta(E)=\operatorname{det}(E-H)
\end{aligned}
$$

write $\Delta(E)^{-1}$ as Gauss integral
What about $\Delta(E)$?

- anticommuting (fermionic) variables
- replica trick

$$
\Delta(E)=\lim _{r \rightarrow 0} \Delta(E)^{-(r-1)}
$$

Sigma model in RMT

random matrix average

Sigma model in RMT

random matrix average
Gauss integrals

Sigma model in RMT

random matrix average
Gauss integrals

traded for integral over matrices Q

Sigma model in RMT

random matrix average
Gauss integrals

traded for integral over matrices Q
$\left(2 r \times 2 r, \mathrm{Q}^{2}=1\right)$

Sigma model in RMT

random matrix average
Gauss integrals

traded for integral over matrices Q
$\left(2 r \times 2 r, \mathrm{Q}^{2}=1\right)$
$Z=\int d[Q] \exp \left(\frac{1}{2} \operatorname{tr} X Q\right)$

Sigma model in RMT

random matrix average
Gauss integrals

traded for integral over matrices Q

$$
\left(2 r \times 2 r, \quad \mathrm{Q}^{2}=1\right)
$$

energy differences

Relevance for semiclassics

Relevance for semiclassics

non-oscillatory / oscillatory terms:

Relevance for semiclassics

non-oscillatory / oscillatory terms:

Z falls into integrals over two submanifolds

Relevance for semiclassics

non-oscillatory / oscillatory terms:

Z falls into integrals over two submanifolds

$$
Z=Z_{1}+Z_{2}
$$

Relevance for semiclassics

non-oscillatory / oscillatory terms:

Z falls into integrals over two submanifolds

$$
Z=Z_{1}+Z_{2}
$$

non-oscillatory

Relevance for semiclassics

non-oscillatory / oscillatory terms:

Z falls into integrals over two submanifolds

$$
\begin{gathered}
Z=Z_{1}+Z_{2} \\
\text { non-oscillatory oscillatory }
\end{gathered}
$$

Relevance for semiclassics

non-oscillatory / oscillatory terms:

Z falls into integrals over two submanifolds

$$
\begin{gathered}
Z=Z_{1}+Z_{2} \\
Z_{\text {non-oscillatory oscillatory }}
\end{gathered}
$$

same relation as with Riemann-Siegel!
(Berry \& Keating, 1990;
Keating \& S.M., 2007)

Relevance for semiclassics

non-oscillatory / oscillatory terms:

Z falls into integrals over two submanifolds

$$
Z=Z_{1}+Z_{2}^{2}
$$

non-oscillatory oscillatory
same relation as with Riemann-Siegel!

$$
Z_{2}\left(\epsilon_{A}, \epsilon_{B}, \epsilon_{C}, \epsilon_{D}\right)=Z_{1}\left(\epsilon_{A}, \epsilon_{B},-\epsilon_{D},-\epsilon_{C}\right)
$$

(Berry \& Keating, 1990;
Keating \& S.M., 2007)

Relevance for semiclassics

Relevance for semiclassics

Analog of diagonal approximation:

Relevance for semiclassics

Analog of diagonal approximation:
rational parametrization

Relevance for semiclassics

Analog of diagonal approximation:

rational parametrization

$$
Z_{1}=\int d[B] \exp \left[\operatorname{tr} X^{\prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B B^{\dagger}\right)^{l}\right)+\operatorname{tr} X^{\prime \prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B^{\dagger} B\right)^{l}\right)\right]
$$

Relevance for semiclassics

Analog of diagonal approximation:
rational parametrization

$$
Z_{1}=\int d[B] \exp \left[\operatorname{tr} X^{\prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B B^{\dagger}\right)^{l}\right)+\operatorname{tr} X^{\prime \prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B^{\dagger} B\right)^{l}\right)\right]
$$

Keep only Gaussian terms!

Relevance for semiclassics

Keep all terms
\Rightarrow perturbation theory

Relevance for semiclassics

Keep all terms

- perturbation theory

Relevance for semiclassics

Keep all terms
\Rightarrow perturbation theory

Relevance for semiclassics

Keep all terms
\Rightarrow perturbation theory
encounters =
vertices

Relevance for semiclassics

Keep all terms

- perturbation theory
encounters =
vertices
links =
propagator lines

Constructing a sigma model from semiclassics

Constructing a sigma model from semiclassics

Replica trick also works in semiclassics!

Constructing a sigma model from semiclassics

Replica trick also works in semiclassics!

r`original` pseudo-orbits

Constructing a sigma model from semiclassics

Replica trick also works in semiclassics!

r`original` pseudo-orbits
r `partner` pseudo-orbits

Constructing a sigma model from semiclassics

Replica trick also works in semiclassics!

r `original` pseudo-orbits
r `partner` pseudo-orbits
differing in encounters

Drawing orbits

Drawing orbits

Draw encounters

Drawing orbits

Draw encounters

Drawing orbits

2

Choose pseudo-orbits (colors)

Drawing orbits

3 Connect!

Drawing orbits

Draw encounters

Drawing orbits

Draw encounters

write B for each entrance port, B^{\dagger} for each exit port

Drawing orbits

1
 Draw encounters

write B for each entrance port, B^{\dagger} for each exit port

$B \quad B^{\dagger} B \quad B^{\dagger}$

$B \quad B^{\dagger} B \quad B^{\dagger}$

Drawing orbits

2
 Choose pseudo-orbit (colors)

Drawing orbits

2

Choose pseudo-orbit (colors)

choose indices according to pseudo-orbits

$$
B \quad B^{\dagger} B \quad B^{\dagger}
$$

$B \quad B^{\dagger} B \quad B^{\dagger}$

Drawing orbits

2

Choose pseudo-orbit (colors)

choose indices according to pseudo-orbits

$$
B_{31} B_{13}^{\dagger} B_{31} B_{13}^{\dagger}
$$

$$
B_{31} B_{13}^{\dagger} B_{32} B_{23}^{\dagger}
$$

Drawing orbits

3 Connect!

Drawing orbits

Connect!

- numbers of entrances \& corresp. exits must coincide

Drawing orbits

Connect!

- numbers of entrances \& corresp. exits must coincide
- possible connections = factorial

Drawing orbits

Connect!

- numbers of entrances \& corresp. exits must coincide
- possible connections = factorial

Gaussian integral with powers
$\int d^{2} B_{j k} e^{-\left|B_{j k}\right|^{2}}\left(B_{j k}\right)^{m}\left(B_{j k}^{*}\right)^{n}=\delta_{m, n} m!$

Drawing orbits

3
 Connect!

- numbers of entrances \& corresp. exits must coincide
- possible connections = factorial

Gaussian integral with powers
$\int d^{2} B_{j k} e^{-\left|B_{j k}\right|^{2}}\left(B_{j k}\right)^{m}\left(B_{j k}^{*}\right)^{n}=\delta_{m, n} m!$

Drawing orbits

3
 Connect!

- numbers of entrances \& corresp. exits must coincide
- possible connections = factorial

Gaussian integral with powers
$\int d^{2} B_{j k} e^{-\left|B_{j k}\right|^{2}}\left(B_{j k}\right)^{m}\left(B_{j k}^{*}\right)^{n}=\delta_{m, n} m!$

also put in energy differences

Result

Result

Summation gives

Result

Summation gives

$$
Z_{1}=\int d[B] \exp \left[\operatorname{tr} X^{\prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B B^{\dagger}\right)^{l}\right)+\operatorname{tr} X^{\prime \prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B^{\dagger} B\right)^{l}\right)\right]
$$

Result

Summation gives

$$
Z_{1}=\int d[B] \exp \left[\operatorname{tr} X^{\prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B B^{\dagger}\right)^{l}\right)+\operatorname{tr} X^{\prime \prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B^{\dagger} B\right)^{l}\right)\right]
$$

Agreement with sigma model, RMT

Result

Summation gives

$$
Z_{1}=\int d[B] \exp \left[\operatorname{tr} X^{\prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B B^{\dagger}\right)^{l}\right)+\operatorname{tr} X^{\prime \prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B^{\dagger} B\right)^{l}\right)\right]
$$

Agreement with sigma model, RMT

Difference to
ballistic sigma model:

Result

Summation gives

$$
Z_{1}=\int d[B] \exp \left[\operatorname{tr} X^{\prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B B^{\dagger}\right)^{l}\right)+\operatorname{tr} X^{\prime \prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B^{\dagger} B\right)^{l}\right)\right]
$$

Agreement with sigma model, RMT

Difference to ballistic sigma model:

Muzykantskii \& Khmel'nitskii, JETP Lett. (1995)
Andreev, Agam, Simons \& Altshuler, PRL (1996)
Jan Müller, Micklitz, Altland (2007)

Result

Summation gives

$$
Z_{1}=\int d[B] \exp \left[\operatorname{tr} X^{\prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B B^{\dagger}\right)^{l}\right)+\operatorname{tr} X^{\prime \prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B^{\dagger} B\right)^{l}\right)\right]
$$

Agreement with sigma model, RMT

Difference to ballistic sigma model:

Muzykantskii \& Khmel'nitskii, JETP Lett. (1995)
Andreev, Agam, Simons \& Altshuler, PRL (1996)
Jan Müller, Micklitz, Altland (2007)

- perturbative

Result

Summation gives

$$
Z_{1}=\int d[B] \exp \left[\operatorname{tr} X^{\prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B B^{\dagger}\right)^{l}\right)+\operatorname{tr} X^{\prime \prime}\left(\frac{1}{2}+\sum_{l=1}^{\infty}\left(B^{\dagger} B\right)^{l}\right)\right]
$$

Agreement with sigma model, RMT

Difference to ballistic sigma model:

Muzykantskii \& Khmel'nitskii, JETP Lett. (1995)
Andreev, Agam, Simons \& Altshuler, PRL (1996)
Jan Müller, Micklitz, Altland (2007)

- perturbative
- no problems due to regularisation

Outlook

Outlook

possible extension: localization e.g. in long wires

Outlook

possible extension: localization e.g. in long wires

- semiclassical contributions changed (diffusion)

Outlook

possible extension: localization e.g. in long wires

- semiclassical contributions changed (diffusion)
- expect one-dimension sigma model

Conclusions

Conclusions

Semiclassics

Conclusions

Semiclassics

Sigma model

Conclusions

Semiclassics

Sigma model

Universality

Conclusions

Semiclassics

Sigma model

Universality

- Same relation between non-osc. \& osc. contributions

Conclusions

Semiclassics

Sigma model

Universality

- Same relation between non-osc. \& osc. contributions
- encounters = perturbation series

Conclusions

Semiclassics

Sigma model

Universality

- Same relation between non-osc. \& osc. contributions
- encounters = perturbation series
- count link connections using matrix integral

