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What do we know about chaotic eigenstates?

• Hamiltonian H(q, p), such that the dynamics on ΣE is chaotic. H~ = Op~(H) has
discrete spectrum (E~,n, ψ~,n) near the energy E.

• Laplace operator on a “chaotic cavity”, or on a surface of negative curvature.

What do the eigenstates ψ~ look like in the semiclassical limit ~¿ 1.?
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Chaotic quantum maps

• chaotic map Φ on a compact phase space Ã propagators UN(Φ), N ∼ ~−1 (advantage:
easy numerics, some models are “partially solvable”).

Husimi densities of some eigenstates.
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Phase space localization

Interesting to study the localization of ψ~ in both position and momentum: phase space
description.

Ex: for any bounded test function (observable) f(q, p), study the matrix elements

f(ψ~) = 〈ψ~,Op~(f)ψ~〉 =
∫
dqdp f(q, p) ρψ~(q, p)

Depending on the quantization, the function ρψ~ can be the Wigner function, the Husimi
function.

Def: from any sequence (ψ~)~→0, one can always extract a subsequence (ψ~′) such that

for any f , lim
~′→0

f(ψ~′) = µ(f)

µ is a measure on phase space, called the semiclassical measure of the sequence (ψ~′).

µ takes the macroscopic features of ρψ~ into account. Fine details (e.g. oscillations,
correlations, nodal lines) have disappeared.
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Quantum-classical correspondence

For the eigenstates of H~, µ is supported on ΣE.

Let us use the flow Φt generated by H, and call U t = e−itH~/~ the quantum propagator.

Egorov’s theorem: for any observable f ,

U−t Op~(f)U t = Op~(f ◦ Φt) +O(~ eΛt)

Idem for a quantum map U = UN(Φ).
Breaks down at the Ehrenfest time TE = | log ~|/Λ (cf. R.Whitney’s talk).

Ã the semiclassical measure µ is thus invariant through the classical dynamics.
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→ do ALL eigenstates become equidistributed [Rudnick-Sarnak’93]? Or are there
exceptional sequences of eigenstates?

4



Some counter-examples

No exceptional sequences for arithmetic eigenstates of (2D) cat maps [Rudnick-

Sarnak’00] and for arithmetic surfaces [Lindenstrauss’06].
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→ in general, can ANY invariant measures occur as a semiclassical measure?

In particular, can one have strong scars µsc = δPO?
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Symbolic dynamics of the classical flow

To classify Φ-invariant measures, one may use a phase space partition; each trajectory
will be represented by a symbolic sequence · · · ε−1ε0ε1 · · · · · · denoting its “history”.

[   ]ε i

εΦ
−1

i[   ]

Φ
−2

iε[   ]

21
t=0

t=1t=2

At each time n, the rectangle [ε0 · · · εn] contains all points sharing the same history
between times 0 and n (ex: [121]).

Let µ be an invariant proba. measure. The time-n entropy

Hn(µ) = −
∑

ε0,...,εn

µ([ε0 · · · εn]) logµ([ε0 · · · εn])

measures the distribution of the weights µ([ε0 · · · εn]).
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KS entropy of semiclassical measures

The Kolmogorov-Sinai entropy HKS(µ) = limn n
−1Hn(µ) represents the “information

complexity” of µ w.r.to the flow.

• Related to localization: HKS(δPO) = 0, HKS(µL) =
∫

log Ju dµL.
• Affine function of µ.



KS entropy of semiclassical measures

The Kolmogorov-Sinai entropy HKS(µ) = limn n
−1Hn(µ) represents the “information

complexity” of µ w.r.to the flow.

• Related to localization: HKS(δPO) = 0, HKS(µL) =
∫

log Ju dµL.
• Affine function of µ.

t=0

t=1t=2

1 2

What can be the entropy of a semiclassical measure for an Anosov system?
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Semiclassical measures are at least “half-delocalized”

Theorem [Anantharaman-Koch-N’07]: For any quantized Anosov system, any semiclas-
sical measure µ satisfies

HKS(µ) ≥
∫

log Ju dµ− 1
2
Λmax(d− 1)

Ã “full scars” are forbidden. Some of the exceptional measures saturate this lower
bound.

q

p
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Quantum partition of unity

Using quasi-projectors Pj = Op~(χj) on the components of the partition, we construct

a quantum partition of unity Id =
∑J
j=1Pj.

Egorov thm ⇒ for n < TE the operator

Pε0···εn = U−nP̃ε0···εn
def= U−nPεnU · · ·Pε1UPε0

is a quasi-projector on the rectangle [ε0 · · · εn].

t=0

t=1t=2

1 2

Can we get some information on the distribution of the weights

‖Pε0···εnψ~‖2
h→0−−−→ µ([ε0 · · · εn])?
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Can we get some information on the distribution of the weights

‖Pε0···εnψ~‖2
h→0−−−→ µ([ε0 · · · εn])?

YES, provided we consider times n > TE (for which the quasi-projector interpretation
breaks down).

9



Evolution of “adapted elementary states”

To estimate Pε0···εnψ~, we decompose ψ~ in a well-chosen family of states ψΛ, and
compute each Pε0···εnψΛ separately.

The Anosov dynamics is anisotropic (stable/unstable foliations).
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q
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Λ

⇒ use states adapted to these foliations.

We consider Lagrangian states associated with Lagrangian manifolds “close to” the
unstable foliation:

ψΛ(q) = a(q) eiSΛ(q)/~ is localized on Λ = {(q, p = ∇SΛ(q))}
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• Summing over all [ε0 · · · εn] we recover UnψΛ: no breakdown of the semiclassical
evolution at TE [Heller-Tomsovic’91].

• The amplitude of P̃ε0···εnψΛ is governed by the unstable Jacobian along the path
ε0 · · · εt:

‖P̃ε0···εnψΛ‖ ∼ Jnu (ε0 · · · εn)−1/2 ∼ e−Λn/2

From the decomposition ψ~ =
∑1/h
η=1 cη ψΛη, one obtains the bound [Anantharaman’06]

‖Pε0···εn‖ ≤ h−1/2 Jnu (ε0 · · · εn)−1/2 ∼ h−1/2 e−Λn/2 .

This “hyperbolic estimate” is nontrivial for times t > TE (no more a quasi-projector).
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What to do with this estimate?

[Anantharaman-N’06’07]: rewrite the operator at time 2n as

UnPε0···ε2n = Pεn+1···ε2n U
nPε0···εn

This can be seen as a “block matrix element” of the unitary propagator Un, expressed
in the block-basis {Pε0···εn}.
Setting n = TE, the hyperbolic estimate at time 2n states that these “block matrix
elements” are all ≤ ~1/2.

An entropic uncertainty principle then implies that the entropy constructed from the
weights ‖Pε0···εnψ~‖2 satisfies

Hn(ψ~) ≥ | log ~1/2| = nΛ
2
.

From this bound at n = TE, one uses subadditivity and Egorov to get a similar bound
at finite time n, and then the bound for HKS(µ). ¤
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Where else to use this hyperbolic estimate?

• semiclassical resonance spectra of chaotic scattering systems.

E0
gh

E−c E+c

Discrete model: open quantum baker

B

8

Ã subunitary propagator BN = UN ◦ΠN .
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Gap in the resonance spectrum

Use a quantum partition outside the hole: ΠN =
∑
j Pj.

(BN)n =
∑

ε0···εn−1

P̃ε0···εn−1

=⇒ ‖(BN)n‖ ≤
∑

ε0···εn−1

‖P̃ε0···εn−1‖

≤
∑

ε0···εn−1

h−1/2 Jnu (ε0 · · · εn−1)−1/2

For nÀ TE, the RHS is approximately given by the topological pressure P(− log Ju/2)
associated with the classical trapped set:

‖(BN)n‖ ≤ exp
(
nP(− log Ju/2)

)

If P(− log Ju/2) < 0 (“thin trapped set”), this gives an upper bound on the quantum
lifetimes [Ikawa’88,Gaspard-Rice’89,N-Zworski’07].
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Perspectives

To obtain nontrivial information on eigenstates, it was crucial to analyze the dynamics
beyond the Ehrenfest time.

The partition allows to control the evolution of Lagrangian states (also wavepackets)
[Heller-Tomsovic’91,Schubert’08]

The decomposition into
∑
Pε0···εn could also be useful to:

• analyze the phase space structure of resonant states [Keating-Novaes-Prado-

Sieber’06, N-Rubin’06]

• expand the validity of the Gutzwiller trace formula to times nÀ TE [Faure’06]

• show that (some) resonances are close to the zeros of the Gutzwiller-Voros Zeta
function

• analyze transport through chaotic cavities
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