Periodic orbit encounters: a mechanism for trajectory correlations

Jack Kuipers and Martin Sieber (Bristol)

Quantum chaos: Routes to RMT and beyond, Banff, 25/02/2008
Content

- Wigner time delay
- The average time delay
- Periodic orbit encounters
- Combinations of periodic orbit encounters and self-encounters
- Conclusions
Wigner time delay

\[\tau_W(E) = - \frac{i\hbar}{M} \text{Tr} \left[S^\dagger(E) \frac{d}{dE} S(E) \right] \]

with scattering matrix \(S(E) \) and \(M \) open scattering channels.

Relation to the ‘density of states’ (Friedel (1952))

\[\tau_W(E) = \frac{2\pi\hbar}{M} d(E) \approx \frac{2\pi\hbar}{M} (\bar{d}(E) + d^{\text{osc}}(E)) \]

The mean time delay is

\[\bar{\tau}_W(E) \approx \frac{1}{\mu} \]

where \(\mu \) is the classical escape rate.
The two semiclassical formulas

The semiclassical formula for the elements of the scattering matrix is

\[S_{ba}(E) \approx \frac{1}{\sqrt{T_H}} \sum_{\alpha(a \to b)} A_\alpha e^{\frac{i}{\hbar} S_\alpha} e^{-\frac{i\pi}{2} \nu_\alpha} \]

where \(T_H = 2\pi \hbar d \) is the Heisenberg time.

We arrive at two different semiclassical formulae for the Wigner time delay, and we expect the following to hold

\[\frac{1}{MT_H} \sum_{a,b} \sum_{\alpha,\alpha'} T_\alpha A_\alpha A^*_\alpha' e^{\frac{i}{\hbar} (S_\alpha - S_{\alpha'})} e^{-\frac{i\pi}{2} (\nu_\alpha - \nu_{\alpha'})} \]

\[\approx \bar{\tau}_W + \frac{2}{M} \text{Re} \sum_{p,r} A_{p,r}(E) e^{\frac{i}{\hbar} r S_p(E)} e^{-\frac{i\pi}{2} r \mu_p} \]

We will start from the double sum over scattering trajectories and derive all terms in the periodic orbit formula.
The correlation function $C(\epsilon)$

Instead of working with the time delay, it is convenient to consider instead the following correlation function

$$C(\epsilon) = \sum_{a,b} S_{ba} \left(E + \frac{\epsilon \mu \hbar}{2} \right) S^*_{ba} \left(E - \frac{\epsilon \mu \hbar}{2} \right)$$

where μ is the classical escape rate. Using the unitarity of the scattering matrix, one obtains the Wigner time delay as

$$\tau_W = \left. \frac{-i}{\mu M} \frac{d}{d\epsilon} C(\epsilon) \right|_{\epsilon=0}$$

The semiclassical approximation for $C(\epsilon)$ is very similar to that of the Landauer-Büttiker conductance which is proportional to

$$\mathcal{T} = \sum_{b_{\text{out}}a_{\text{in}}} \langle S_{b_{\text{out}}a_{\text{in}}}(E) S^*_{b_{\text{out}}a_{\text{in}}}(E) \rangle$$
The diagonal approximation

A trajectory is paired only with itself (or its time-reverse). One uses a sum rule for open trajectories which is based on the ergodic exploration of the available phase space plus the finite escape probability

\[\sum_{\alpha(a \rightarrow b)} |A_\alpha|^2 e^{i\epsilon \mu T_\alpha} \approx \int_0^\infty dT \ e^{-\mu T} \ e^{i\epsilon \mu T} \]

The sum over channels gives a factor M^2 for systems without TRS ($\kappa = 1$), and a factor of $M(M + 1)$ for systems with TRS ($\kappa = 2$), because one can pair a trajectory with its time-reverse if $a = b$

\[C_{\text{diag}}(\epsilon) \approx \frac{(M + \kappa - 1)}{(1 - i\epsilon)} \]

This yields the correct mean time delay μ^{-1} for systems without TRS, but it is slightly wrong for systems with TRS (the numerator should be M)
Off-diagonal terms for τ_W

The off-diagonal contributions come from trajectories with self-encounters and their partner orbits. Similar to conductance (Richter, M.S. (2002); Heusler et al. (2006); Müller et al. (2007)).

The number of l-encounters are collected in a vector ν.

Diagrammatic rules:

For each link: \[[M (1 - i\epsilon)]^{-1} \]

For each l-encounter: \[-M (1 - il\epsilon) \]

With a sum rule for the number of structures $\tilde{N}(\nu)$ one arrives at

\[\tilde{C}(\epsilon) \approx M [1 + i\epsilon + O(\epsilon^2)] \]
Periodic orbit encounters

For the periodic orbit contributions we consider trajectories that approach a periodic orbit p, follow it a number of times, and leave it again.

The Poincaré map has a simple form in the vicinity of p

$$s' = \Lambda_p^{-1} s, \quad u' = \Lambda_p u$$

where $\Lambda_p = \pm e^{\lambda_p T_p}$ is an eigenvalue of the stability matrix M_p.
The trajectory pairs

Consider an orbit that has k intersections in the Poincaré surface, P_1, \ldots, P_k, limited by the constant c. Its partner orbit has r more intersections

$$P_1 = (u_1, s_1) \implies P'_1 \approx (\Lambda_p^{-r} u_1, s_1)$$

The action difference is

$$\Delta S = S_\alpha - S_{\alpha'} = su(1 - \Lambda_p^{-r}) - rS_p$$

One can define an encounter time for α which is given by

$$t_{\text{enc}}^p(s, u) = k T_p \approx \frac{1}{\lambda_p} \ln \frac{c^2}{us}$$
The semiclassical contribution

The semiclassical amplitudes are proportional to the M_{12}-element of the stability matrix. We can write $M_\alpha = M_f M_p^k M_i$ and $M_{\alpha'} = M_f M_p^{k+r} M_i$. For large k one has

$$M_p^k = \Lambda_p^k P_u + \Lambda_p^{-k} P_s \sim \Lambda_p^k P_u \quad \text{as} \quad k \to \infty$$

It follows that

$$A_{\alpha'} \approx A_\alpha |\Lambda_p|^{-r/2}$$

and

$$\nu_{\alpha'} = \nu_\alpha + r \mu_p$$

Now one has all ingredients to calculate the semiclassical contribution of the trajectories
The semiclassical contribution

One replaces the sum over trajectories by a phase space integral

$$
\sum_{\alpha, \alpha'(a \rightarrow b)} |A_\alpha|^2 \ldots \approx \int dT \, ds \, du \, w_{p,T}(s, u) \, e^{-\mu T_{\text{exp}}} ,
$$

where $T_{\text{exp}} = T - t_{\text{enc}}^p$, $w_{p,T}(s, u) = \int dt_1 \frac{1}{k \Omega}$ and $k = t_{\text{enc}}^p / T_p$.

One finds again a factorization into contribution from links and the encounter. For the contribution of the periodic orbit encounter one needs

$$
\int ds \, du \, \frac{e^{\frac{i}{\hbar} s u (1 - \Lambda_p^{-r})}}{\Omega t_{\text{enc}}^p} e^{i \epsilon \mu t_{\text{enc}}^p} = \frac{i \epsilon \mu}{T_H |1 - \Lambda_p^{-r}|}
$$

This integral sums over all trajectories α with an arbitrary number of k iterations of the periodic orbit. The semiclassical contribution to the integral comes from the vicinity of the origin where $k \rightarrow \infty$.
The semiclassical contribution

The amplitude of the periodic orbit is obtained by using

$$\frac{1}{|\Lambda_p|^{r/2} |1 - \Lambda_p^{-r}|} = \frac{1}{\sqrt{|\text{det}(M_p^r - 1)|}}$$

Altogether one obtains the following diagrammatic rule for the encounter with the periodic orbit

$$2i\epsilon\mu A_{p,r} \cos \left(-\frac{1}{\hbar} r S_p + \frac{\pi}{2} r \mu_p + \frac{\epsilon\mu}{2} r T_p \right)$$

This yields the correct periodic orbit contribution to the time delay for systems without TRS. However, for systems with TRS the prefactor is slightly wrong. It contains one factor of $(M + 1)$ instead of M.

12
Periodic orbit encounters plus self-encounters

One has to consider also combinations of periodic orbit encounters and self-encounters. There are two different cases

- Periodic orbit encounters and self-encounters are separated from each other. These cases can be calculated by using the three diagrammatic rules that have been obtained before.

- Periodic-orbit encounters and self-encounters overlap. In other words, a self-encounter happens to occur in the close vicinity of a periodic orbit. This leads to interesting consequences. The simplest case is that of a two-encounter near a periodic orbit p in systems with TRS.
A two-encounter near a periodic orbit ρ

In contrast to a usual self-encounter a trajectory α has many partners α'. They can differ in the number of periodic orbit traversals before and after the loop, as long as the total number is the same as for α.

If α has k_1 and k_2 periodic orbit traversals before and after the loop, then α' can have $k_1 + d$ and $k_2 - d$ traversals.

The number of “squares” belonging to the same partner orbit is

$$k \approx \frac{t_{p,\sigma}^p}{T_p}, \quad t_{enc}^{p,\sigma} = \frac{1}{\lambda_p T_p} \ln \frac{c^2}{\max_i |s_i| \times \max_j |u_j|}$$
An l-encounter near a periodic orbit p

An l-encounter is characterized by a permutation matrix π which describes the reconnection of the links in the encounter region. We are interested in trajectories that have additional periodic orbit traversals r_1, \ldots, r_l (whose sum is r) during the l encounters with the periodic orbit.

$$\Delta S = s^T Bu - rS_p$$

where $B_{ji} = \delta_{ji} - \delta_{i(\pi(j))} \Lambda_p^{-r_j}$. One has $\det B = 1 - \Lambda_p^r$.

The resulting diagrammatic rule for the joint encounter is

$$2i\ell \epsilon \mu A_{p,r} \cos \left(-\frac{1}{\hbar}rS_p + \frac{\pi}{2}r\mu_p + \frac{\epsilon \mu}{2}rT_p \right)$$

Summing up all contributions one obtains the correct periodic orbit terms for the time delay in systems with or without TRS.
Conclusions

- The periodic orbit terms were obtained from trajectories that approach a periodic orbit very closely.
- For systems without TRS periodic encounters are sufficient, but for systems with TRS one needs to consider also combinations of periodic orbit encounters and self-encounters.
- The vicinity of periodic orbits leads to a rich variety of possible correlations between trajectories, not all of which have been explored. It is probable that they are relevant also in other contexts and deserve further study.
- The present calculation does not give periodic orbit terms for the Landauer-Büttiker conductance, because the conductance does not involve an energy difference.