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Today’s Thread of Logic

1) The statistics of extreme eigenstate intensities
e Densities and distribution functions
Largest and smallest intensities

e Universal distributions

Weibull /Fréchet
Gumbel

2) Random states and chaotic quantum eigenstates
e Complex random states and unitary ensembles!

Exact results

Kicked rotor
e Real random states and orthogonal ensembles

Saddle point approximations

lrecent published work: A. Lakshminarayan et al., Phys. Rev. Lett. 100, 044103 (2008).



Distribution functions for maxima and minima intensities

e Suppose an ensemble of systems acts in an N-dimensional vector space,{|j)},
j = 1,..., N with eigenvectors of a member system,{|¢,)}, n = 1,..., N.
Then, the intensities for a single eigenstate are

sj = [dnlg)I’

e Using n and the system ensemble, a joint intensity probability density
can be defined and denoted

10(‘;7 N) — p(817827 7SN7N)

e Let the maximum intensity be s = max|[s;|, j =1,..N

e The distribution function is given by,
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e Or for the minimum intensity s = min [s;], j=1,...N

1

1 1
N
me(t;N)Zl—/ ds pmin(S;N):l_/ ds p(s; N)
t

t



Distribution functions for maxima and minima
uncorrelated variables

Let the {s;}, 7 = 1,..., N be similarly distributed independent random

variables.

A joint probability density can be defined and denoted

N
p(5;N) = p(s1, 52, ..., sn; N) = [ [ p(s5: N)
=1
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The distribution function of the maximum is given by,
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Universal distribution functions - Fisher/Tippett 1928
uncorrelated variables (cont.)

e The Weibull /Fréchet distribution function
EF(t; N) =1 —exp[—(£t — an)"™ /bn]

is expected for uncorrelated random variables with compact support from
above or below (or heavy tailed densities).

e The Gumbel distribution function
F(t;N) = exp[—e_(t_aN)/bN]

is expected for uncorrelated random variables with non-compact support
whose tails decay at least exponentially fast.

e For example, consider the uniform density p(t) =1 (0 <t < 1):

Fraz(t; N) = Y — s e VU Weibull
Font;N) = 1—-(1-t) —1—eM Fréchet



Two relevant examples: complex and real Gaussian amplitudes
uncorrelated variables (cont.)

1_

e Complex Gaussian amplitude leads to +

mean intensity density:
p(t) = Ne V! (0 <t <o0)
e and hence
Frar(t; N) = (1 — e_Nt)N — exp (—e_N(t_% In N)) Gumbel
Foin(t; N) = 1— [1 — (1 — e_Nt)}N —1—e N Fréchet

e Real Gaussian amplitude leads to %—mean intensity density:

N _nNij2
t) = — 0 <t<
p(1) 57 ¢ (0 <t < o0)
e and hence
Fraz(t; N) = erf’y ( Nt/Q) — exp (—e_%(t_% In %)) Gumbel?

N 2N3¢
Frint:N) = 1-— [1 - erf( Nt/Q)} 1o VE Fréchet



Joint probability densities for intensities
correlated variables

e A norm constraint is naturally expressed in amplitude variables:
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where 5 = 1,2 for real and complex respectively. The real case corre-
sponds to the orthogonal random matrix ensembles and the complex case
to the unitary ensembles. Switching to intensities:
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e The complex case is equivalent to the “broken stick problem” in which
N —1 cuts at uniformly random locations are made in a unit length stick.

e The real case is intimately connected to the relationship between hyper-
spherical and cartesian coordinates.



An auxiliary function for “decorrelating” intensities

The distribution function for the maximum is:
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Define the auxiliary function GP(t,u; N) which results from replacing

unity in the norm constraint by v and thus,
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(t; N) = G°(t,u = 1; N).

The Laplace transform of G”(t,u; N) renders the integrals over the N
differentials ds; into a product form and gives:
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The N integrals have been performed at the cost of now needing the
inverse Laplace transforms of these expressions.



Exact results for unitary ensembles

e The distribution function for the maximum follows by expanding the N*"
power and using the inverse Laplace transform:

£t (i;mt> _ r(iv) (= mt)NLO(u — m)

and gives

FP=2(t; N) = Z (g) (=1)™(1 —mt)N1e(1 — mt)
m=0

e Interestingly, this reduces to a piecewise smooth expression with the in-
tervals I, = [1/(k+1),1/k], where k =1,2,--- /N — 1

Frnaz(t € Ii;; N zk: ( ) (1 —mt)N

e All distributions resulting from correlated variables possessing at least
unit norm constraints, satisfy a combinatoric form of this type.



Exact results for unitary ensembles (cont.)

The exact probability density and the asymptotic Gumbel density using the
scaled variable x = N(t — In(N)/N) with increasing N. The inset shows the
difference between the exact and the Gumbel densities for the same values of
N, but in the unscaled variable.



The quantum kicked rotor as an example of a chaotic system
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The probability densities (histograms) of the scaled maximum and minimum
(inset) intensity of eigenfunctions in the position basis of the quantum kicked
rotor for N = 32 in the parameter range 13.8 < K < 14.8. Shown as a
continuous line is the exact density for random states while the dotted ones are
the respective Gumbel and Fréchet densities.



A saddle point approximation for the orthogonal ensembles

A saddle point approximation for the inverse Laplace transform:

- —smt m/2
L1 ((wst)m/2 e"sterfc™ (v/st) (%) 2 6N+m ) ~ (2]\—[—5%5)

S~ 2
m m m ]‘
xexp( éjj;mt)t) erfcm( (;I—Zmlt)r N (1 —mt)™= (1 —mt)
(55™)
gives FP=1(t: N) =
k NY/(_1\ym (N+m 5] N o %—1 N+m N+m
s G () T (E) 0 -m T () \/< ) ¢
m=0 F( 2m) 1 —mt 1 — mt

or more simply using only the asymptotic form of erfc(z),
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The orthogonal ensembles
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Comparison of the maximum intensity distribution functions for the orthogonal
ensembles. The saddle point approximation improves considerably the agree-
ment with the “exact” result from simulation vis-a-vis the asymptotic Gumbel
form. The simpler form without the complementary error function is an im-
provement, but not good enough for small N to warrant its use.



Concluding remarks

The statistical properties of extreme intensities has not previously been
applied to understanding better the eigenstates of quantum systems.

It is possible to derive some compact, exact results for the unitary ensem-
bles with any dimensionality and give excellent approximations for the
same quantities in the orthogonal ensemble.

The maximum intensities tend to the infinite dimensional limit very slowly
and thus the functional forms contain some information about system size.
They further tend toward the Gumbel distribution although, a priori, one
might have expected Weibull. Means scale as Inag/N/N for unitary and
(roughly for) orthogonal ensembles.

The minimum intensity statistics tend much more rapidly toward their
infinite dimensional Fréchet limiting form. The mean minima are N 2
and mN 3 for the unitary and orthogonal ensembles respectively.

These “extreme” measures give us a new way to explore non-ergodic eigen-
state behaviors.

— It would be worthwhile exploring: i) other measures such as the
intensity densities in the neighborhood of the maxima or minima,
and ii) how system dynamics lead to deviations from the chaotic
statistical extremes.



