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Today’s Thread of Logic

1) The statistics of extreme eigenstate intensities

• Densities and distribution functions

Largest and smallest intensities

• Universal distributions

Weibull/Fréchet

Gumbel

2) Random states and chaotic quantum eigenstates

• Complex random states and unitary ensembles1

Exact results

Kicked rotor

• Real random states and orthogonal ensembles

Saddle point approximations

1recent published work: A. Lakshminarayan et al., Phys. Rev. Lett. 100, 044103 (2008).



Distribution functions for maxima and minima intensities

• Suppose an ensemble of systems acts in an N -dimensional vector space,{|j〉},
j = 1, ..., N with eigenvectors of a member system,{|φn〉}, n = 1, ..., N .
Then, the intensities for a single eigenstate are

sj = |〈φn|j〉|2

• Using n and the system ensemble, a joint intensity probability density
can be defined and denoted

ρ(~s; N) = ρ(s1, s2, ..., sN ; N)

• Let the maximum intensity be s = max [sj ] , j = 1, ...N

• The distribution function is given by,

Fmax(t; N) =

∫ t

1
N

ds ρmax(s; N) =

∫ t

0

d~s ρ(~s; N) ;

[

d

dt
Fmax(t; N) = ρmax(t; N)

]

• Or for the minimum intensity s = min [sj ] , j = 1, ...N

Fmin(t; N) = 1 −
∫ 1

N

t

ds ρmin(s; N) = 1 −
∫ 1

t

d~s ρ(~s; N)



Distribution functions for maxima and minima
uncorrelated variables

• Let the {sj}, j = 1, ..., N be similarly distributed independent random
variables.

• A joint probability density can be defined and denoted

ρ(~s; N) = ρ(s1, s2, ..., sN ; N) =

N
∏

j=1

ρ(sj ; N)

• The distribution function of the maximum is given by,

Fmax(t; N) =

∫ t

d~s ρ(~s; N) =

[
∫ t

dsj ρ(sj ; N)

]N

(any j)

• Or for the minimum

Fmin(t; N) = 1 −
∫

t

d~s ρ(~s; N) = 1 −
[

1 −
∫ t

dsj ρ(sj ; N)

]N



Universal distribution functions - Fisher/Tippett 1928
uncorrelated variables (cont.)

• The Weibull/Fréchet distribution function

F (t; N) = 1 − exp[−(±t − aN )γN /bN ]

is expected for uncorrelated random variables with compact support from
above or below (or heavy tailed densities).

• The Gumbel distribution function

F (t; N) = exp[−e−(t−aN)/bN ]

is expected for uncorrelated random variables with non-compact support
whose tails decay at least exponentially fast.

• For example, consider the uniform density ρ(t) = 1 (0 ≤ t ≤ 1):

Fmax(t; N) = tN −→ e−N(1−t) Weibull

Fmin(t; N) = 1 − (1 − t)N −→ 1 − e−Nt Fréchet



Two relevant examples: complex and real Gaussian amplitudes
uncorrelated variables (cont.)

• Complex Gaussian amplitude leads to 1
N -mean intensity density:

ρ(t) = Ne−Nt (0 ≤ t ≤ ∞)

• and hence

Fmax(t; N) =
(

1 − e−Nt
)N → exp

(

−e−N(t− 1
N

ln N)
)

Gumbel

Fmin(t; N) = 1 −
[

1 −
(

1 − e−Nt
)]N

= 1 − e−N2t Fréchet

• Real Gaussian amplitude leads to 1
N -mean intensity density:

ρ(t) =

√

N

2πt
e−Nt/2 (0 ≤ t ≤ ∞)

• and hence

Fmax(t; N) = erfN
(

√

Nt/2
)

→ exp
(

−e−
N

2
(t− 1

N
ln 2N

πt
)
)

Gumbel?

Fmin(t; N) = 1 −
[

1 − erf
(

√

Nt/2
)]N

→ 1 − e−
q

2N3t

π Fréchet



Joint probability densities for intensities
correlated variables

• A norm constraint is naturally expressed in amplitude variables:

ρβ(z1, z2, . . . , zN ) =
Γ
(

Nβ
2

)

πNβ/2
δ





N
∑

j=1

|zj |2 − 1





where β = 1, 2 for real and complex respectively. The real case corre-
sponds to the orthogonal random matrix ensembles and the complex case
to the unitary ensembles. Switching to intensities:

ρβ(~s; N) = πN(β/2−1)Γ

(

Nβ

2

)





N
∏

j=1

s
β/2−1
j dsj



 δ





N
∑

j=1

sj − 1





• The complex case is equivalent to the “broken stick problem” in which
N −1 cuts at uniformly random locations are made in a unit length stick.

• The real case is intimately connected to the relationship between hyper-
spherical and cartesian coordinates.



An auxiliary function for “decorrelating” intensities

• The distribution function for the maximum is:

F β
max(t; N) = πN(β/2−1)Γ

(

Nβ

2

)





N
∏

j=1

∫ t

0

s
β/2−1
j dsj



 δ





N
∑

j=1

sj − 1





• Define the auxiliary function Gβ(t, u; N) which results from replacing
unity in the norm constraint by u and thus, F β

max(t; N) = Gβ(t, u = 1; N).

• The Laplace transform of Gβ(t, u; N) renders the integrals over the N
differentials dsj into a product form and gives:

∫ ∞

0

e−usGβ(t, N, u)du =











Γ(N
2 )
(

erf(
√

st)
√

s

)N

real

Γ(N)
(

1−e−st

s

)N

complex

• The N integrals have been performed at the cost of now needing the
inverse Laplace transforms of these expressions.



Exact results for unitary ensembles

• The distribution function for the maximum follows by expanding the N th

power and using the inverse Laplace transform:

L−1
s

(

e−smt

sN

)

=
1

Γ(N)
(u − mt)N−1Θ(u − mt)

and gives

F β=2
max(t; N) =

N
∑

m=0

(

N

m

)

(−1)m(1 − mt)N−1Θ(1 − mt)

• Interestingly, this reduces to a piecewise smooth expression with the in-
tervals Ik = [1/(k + 1), 1/k], where k = 1, 2, · · · , N − 1

Fmax(t ∈ Ik; N) =
k
∑

m=0

(

N

m

)

(−1)m(1 − mt)N−1

• All distributions resulting from correlated variables possessing at least
unit norm constraints, satisfy a combinatoric form of this type.



Exact results for unitary ensembles (cont.)
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The exact probability density and the asymptotic Gumbel density using the
scaled variable x = N(t − ln(N)/N) with increasing N . The inset shows the
difference between the exact and the Gumbel densities for the same values of
N , but in the unscaled variable.



The quantum kicked rotor as an example of a chaotic system
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The probability densities (histograms) of the scaled maximum and minimum
(inset) intensity of eigenfunctions in the position basis of the quantum kicked
rotor for N = 32 in the parameter range 13.8 < K < 14.8. Shown as a
continuous line is the exact density for random states while the dotted ones are
the respective Gumbel and Fréchet densities.



A saddle point approximation for the orthogonal ensembles

A saddle point approximation for the inverse Laplace transform:

L−1
s

(

(πst)
m/2

emsterfcm(
√

st)
(

1
πt

)m/2 e−smt

s
N+m

2

)

≈
(

N+m
2−2mt

)m/2

× exp
(

m(N+m)t
2−2mt

)

erfcm

(

√

(N+m)t
2−2mt

)

1

Γ
(

N+m
2

) (1 − mt)
N+m

2
−1Θ(1 − mt)

gives F β=1
max(t; N) =

k
∑

m=0

(

N
m

)

(−1)m
(

N+m
2

)
m

2 Γ
(

N
2

)

(1 − mt)
N

2
−1

Γ
(

N+m
2

) exp

(

m
(

N+m
2

)

t

1 − mt

)

erfcm





√

(

N+m
2

)

t

1 − mt





or more simply using only the asymptotic form of erfc(z),

F β=1
max(t; N) =

k
∑

m=0

(

N

m

)

(−1)m Γ
(

N
2

)

Γ
(

N+m
2

)

(1 − mt)
N+m

2
−1

(πt)
m

2
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The orthogonal ensembles

Gumbel distribution

saddle point w/o erfc

Comparison of the maximum intensity distribution functions for the orthogonal
ensembles. The saddle point approximation improves considerably the agree-
ment with the “exact” result from simulation vis-a-vis the asymptotic Gumbel
form. The simpler form without the complementary error function is an im-
provement, but not good enough for small N to warrant its use.



Concluding remarks

• The statistical properties of extreme intensities has not previously been
applied to understanding better the eigenstates of quantum systems.

• It is possible to derive some compact, exact results for the unitary ensem-
bles with any dimensionality and give excellent approximations for the
same quantities in the orthogonal ensemble.

• The maximum intensities tend to the infinite dimensional limit very slowly
and thus the functional forms contain some information about system size.
They further tend toward the Gumbel distribution although, a priori, one
might have expected Weibull. Means scale as ln aβN/N for unitary and
(roughly for) orthogonal ensembles.

• The minimum intensity statistics tend much more rapidly toward their
infinite dimensional Fréchet limiting form. The mean minima are N−2

and πN−3 for the unitary and orthogonal ensembles respectively.

• These “extreme” measures give us a new way to explore non-ergodic eigen-
state behaviors.

– It would be worthwhile exploring: i) other measures such as the
intensity densities in the neighborhood of the maxima or minima,
and ii) how system dynamics lead to deviations from the chaotic
statistical extremes.


