Quantum graphs where back-scattering is

prohibited

Brian Winn

School of Mathematics
Loughborough University

26th February 2008

b
Brian Winn Quantum graphs without back-scattering



Joint work with

Jon Harrison

and Uzy Smilansky

@ Journal of Physics A 40 14181-14193.

b
o = E 9ODaAce
Brian Winn Quantum graphs without back-scattering



A puzzle
Find an n X n unitary matrix o:
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Find an n X n unitary matrix o:

@ with diagonal entries 0, and

e off-diagonal entries with absolute value (n —1)~1/2,
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Find an n X n unitary matrix o:
@ with diagonal entries 0, and

e off-diagonal entries with absolute value (n —1)~1/2,

Gz(?é)

For example (2 x 2)
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Find an n X n unitary matrix o:
@ with diagonal entries 0, and

e off-diagonal entries with absolute value (n —1)~1/2,

Gz(?é)

HINT: n = 3 is impossible. . .

For example (2 x 2)
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What is a quantum graph?
A metric graph has bonds that have lengths L1, .

.., Ly, >0.
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What is a quantum graph?
A metric graph has bonds that have lengths [

Standing waves satisfy

d211’i 2
T2 Kby

j=1,...,v.
b
For k = ko, k1, ko, . .. the spectrum of the quantum graph.
[m] = = = P NEd




What is a quantum graph?
A metric graph has bonds that have lengths [

Standing waves satisfy

Py

2
dx? =K

Boundary
+ .
conditions

j=1,...,v.
b
For k = ko, k1, ko, . .. the spectrum of the quantum graph.
[m] = = = P NEd



Scattering at a vertex

(Boundary conditions for the differential equation)

An incoming wave is scattered at a vertex
2
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Scattering at a vertex

(Boundary conditions for the differential equation)

An incoming wave is scattered at a vertex
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Scattering at a vertex

(Boundary conditions for the differential equation)

An incoming wave is scattered at a vertex
2

0.12eikx

ikx

¢ J U ’
0.1leikx

Scattering is controlled by a d x d wunitary matrix o.
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(Boundary conditions for the differential equation)

An incoming wave is scattered at a vertex
2

0.12eikx

ikx

¢ J U ’
0.1leikx

Scattering is controlled by a d x d wunitary matrix 0. d is the
degree of the vertex.
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Scattering at a vertex

(Boundary conditions for the differential equation)

An incoming wave is scattered at a vertex
2

0.12eikx

ikx

¢ J U ’
0.1leikx

Scattering is controlled by a d x d wunitary matrix 0. d is the
degree of the vertex.
We do not say anything about the process causing the scattering.

1
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The quantum evolution operator
@ Collect all entries of vertex scattering matrices o in a 2v X 2v
matrix S.
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The quantum evolution operator

@ Collect all entries of vertex scattering matrices o in a 2v X 2v
matrix S.

@ Indexing is by directed bonds.
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@ Collect all entries of vertex scattering matrices o in a 2v X 2v
matrix S.

@ Indexing is by directed bonds.
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The quantum evolution operator

@ Collect all entries of vertex scattering matrices o in a 2v X 2v
matrix S.

@ Indexing is by directed bonds.

2//1¢5
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The quantum evolution operator

@ Collect all entries of vertex scattering matrices o in a 2v X 2v

matrix S.
@ Indexing is by directed bonds. 5 //1 ¢5

Scattering matrix at centre

011 012 013 4/ O
0= 021 022 023 . \
031 032 033 /1 3
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The quantum evolution operator

@ Collect all entries of vertex scattering matrices o in a 2v X 2v
matrix S.
@ Indexing is by directed bonds.
g Is by ) //1 ¢5

Scattering matrix at centre

011 012 013 4/ O
0= 021 022 023 . \
031 032 033 /1 3

In this example

O22 023 021
032 033 031

0 o012 o013 0117 0 O
0 O 0 0 1 0
S _ 0 O 0 0 01
1 0 0 0 0O
0 0 0
0 0 0
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The quantum evolution operator
Continued

@ Waves travelling along a bond of length L acquire a phase
ikl
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The quantum evolution operator
Continued

@ Waves travelling along a bond of length L acquire a phase
ikl

@ Put these phases into a 2v x 2v diagonal matrix D(k).
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The quantum evolution operator
Continued

@ Waves travelling along a bond of length L acquire a phase
ikl

@ Put these phases into a 2v x 2v diagonal matrix D(k).
@ Define the quantum evolution operator U(k) = D(k)S.
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The quantum evolution operator
Continued

@ Waves travelling along a bond of length L acquire a phase
ikl

@ Put these phases into a 2v x 2v diagonal matrix D(k).
@ Define the quantum evolution operator U(k) = D(k)S.

There is a standing wave of energy k? iff

det(I — U(k)) = 0.

A sequence (kn)%_; of “eigenvalues”.
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The quantum evolution operator
Continued

@ Waves travelling along a bond of length L acquire a phase
ikl

@ Put these phases into a 2v x 2v diagonal matrix D(k).
@ Define the quantum evolution operator U(k) = D(k)S.

There is a standing wave of energy k? iff

det(I — U(k)) = 0.

A sequence (kn)%_; of “eigenvalues”.

Alternatively: Use the von Neumann theory to construct
self-adjoint extensions of the Laplace operator. .. (Kostrykin & ¢
Schrader approach.)
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A classical evolution operator

@ Classical dynamics is a Markov process on the directed bonds,
with matrix of transition probabilities M, where

2
Mpp’ = [Upp/|*.
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A classical evolution operator

@ Classical dynamics is a Markov process on the directed bonds,
with matrix of transition probabilities M, where

2
Mpp’ = [Upp/|*.

@ Since U is unitary, M is stochastic (indeed doubly stochastic).
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A classical evolution operator

@ Classical dynamics is a Markov process on the directed bonds,
with matrix of transition probabilities M, where

2
Mpp’ = [Upp/|*.

@ Since U is unitary, M is stochastic (indeed doubly stochastic).

@ M has an eigenvalue 1 and all other eigenvalues have absolute
value < 1.
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A classical evolution operator

@ Classical dynamics is a Markov process on the directed bonds,
with matrix of transition probabilities M, where

2
Mpp’ = [Upp/|*.

@ Since U is unitary, M is stochastic (indeed doubly stochastic).

@ M has an eigenvalue 1 and all other eigenvalues have absolute
value < 1.
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A classical evolution operator

@ Classical dynamics is a Markov process on the directed bonds,
with matrix of transition probabilities M, where

2
Mpp’ = [Upp/|*.

@ Since U is unitary, M is stochastic (indeed doubly stochastic).

@ M has an eigenvalue 1 and all other eigenvalues have absolute
value < 1.

Denote by A the
spectral gap.
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Random matrix conjecture

For a sequence of quantum graphs with v — oo, the statistics of
eigenvalues converge to random matrix theory if vA — oo.
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Random matrix conjecture

For a sequence of quantum graphs with v — oo, the statistics of
eigenvalues converge to random matrix theory if vA — oo.

@ Gnutzmann & Altland approach. True if \/VA — oo.
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Random matrix conjecture

For a sequence of quantum graphs with v — oo, the statistics of
eigenvalues converge to random matrix theory if vA — oo.

@ Gnutzmann & Altland approach. True if \/VA — oo. (Not a
periodic orbit theory).
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Random matrix conjecture

For a sequence of quantum graphs with v — oo, the statistics of
eigenvalues converge to random matrix theory if vA — oo.

@ Gnutzmann & Altland approach. True if \/VA — oo. (Not a
periodic orbit theory).

@ Are there “nicer” choices of vertex scattering matrix?
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Random matrix conjecture

For a sequence of quantum graphs with v — oo, the statistics of
eigenvalues converge to random matrix theory if vA — oo.

@ Gnutzmann & Altland approach. True if \/VA — oo. (Not a
periodic orbit theory).

@ Are there “nicer” choices of vertex scattering matrix?
@ Quantum ergodicity? Scarring??
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Possible vertex scattering matrices
@ Neumann
[N]
o

ik — 3
Back-scattering strongly favoured.
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Possible vertex scattering matrices

@ Neumann
Ujk = a — 6jk-
Back-scattering strongly favoured.

@ Fourier transform

[F] i —2mijk/d
Ok —\/ae .

All amplitudes equal.
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Possible vertex scattering matrices

@ Neumann
Ujk = a — 6jk-
Back-scattering strongly favoured.

@ Fourier transform

[F] i —2mijk/d
Ok —\/ae .

All amplitudes equal.

M
o Equi-transmitting 235

1—9;
2 jk
|G]k| d—1 -
All forward amplitudes equal; back-scattering weighted zero. |

Brian Winn Quantum graphs without back-scattering



SETES

Partial solution to puzzle

e d = 3, no examples (impossible).
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SETES
Partial solution to puzzle

e d = 3, no examples (impossible).

01 1 1

1|1 0 -1 1
cd=to=411 1 0o -1
1 -1 1 0
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SETES
Partial solution to puzzle

e d =3, no examples (|mp055|ble

0
1 1
ed=40=—
V3l 1
1
0 1 1 1 1
1 1 0 1 w w?
od:5,c;:E 1 1 0 w? w |, where w=e27/3,
1 w w2 0 1
1 w?2 w 1 0

v
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SETES
Partial solution to puzzle

e d = 3, no examples (impossible).
1 1 1
1 0 -1 |
-1 1 0

0 1 1

1 1 w

1 0 w? w |, wherew=ce

1 w 0 1

1 w?> w 1 0

@ Examples for d any multiple of 4, up to 184, related to
existence of skew Hadamard matrices.

ed=4 0=

Sl
w
=)
(e)
|
—_
—

od:5,0‘:% 2mi/3,

E RO R
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SETES
Partial solution to puzzle

e d = 3, no examples (impossible).
1 1 1
0o -1 1
1 0 -1 |
-1 1 0

0 1 1

1 1 w

1 0 w? w |, wherew=ce

1 w 0 1

1 w?> w 1 0

@ Examples for d any multiple of 4, up to 184, related to
existence of skew Hadamard matrices.

%\H
w
=)

27ti/3

N | =
E RO R

@ Examples for d =p + 1, for all odd primes p.
G



SETES
Partial solution to puzzle

e d = 3, no examples (impossible).

0 1 1 1
o d— i ( 1 0 -1 1 )
Vil 1 1 0 -1 [
1 -1 1 0
0 1 1 1 1
01w w?
ed=50c==-|1 1 0 w? w |, wherew =e?m/3
21 w @2 0 1
1 w? w 1 0
@ Examples for d any multiple of 4, up to 184, related to

existence of skew Hadamard matrices.
@ Examples for d =p + 1, for all odd primes p.
e Examples for d =2™. L
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The trace formula

For suitable test functions h,
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The trace formula

For suitable test functions h,

Y

P

S _2oleg
nZlh(kn) = =220

7—1\'—‘

where {,, are (metric) lengths of periodic orbits, T, is repetition
number
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The trace formula

For suitable test functions h,

Y

P

7—1\'—‘

S _2oleg
nZlh(kn) = =220

where {,, are (metric) lengths of periodic orbits, T, is repetition
number and

Ap =Sby,b,5bs,b5 " Sby by

is product of elements of S accumulated on the orbit.
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The trace formula

For suitable test functions h,

Y

P

7—1\'—‘

- 2 Lo o
nZlh(kn) = =2—h(

where {,, are (metric) lengths of periodic orbits, T, is repetition
number and

Ap = Sb1,02505,b3 " Sty by
is product of elements of S accumulated on the orbit.

e With equi-transmitting scattering matrices, back-tracking
orbits are eliminated.
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The trace formula

For suitable test functions h,

Y

P

7—1\'—‘

- 2 Lo o
nZlh(kn) = =2—h(

where {,, are (metric) lengths of periodic orbits, T, is repetition
number and

Ap = Sb1,02505,b3 " Sty by
is product of elements of S accumulated on the orbit.

e With equi-transmitting scattering matrices, back-tracking
orbits are eliminated.

@ c.f. lhara-Selberg zeta function.
b



Further Ihara connections

In a regular graph all vertices have the same degree.
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Further Ihara connections

In a regular graph all vertices have the same degree.

For a regular quantum graph with equi-transmitting vertex
scattering matrices the eigenvalues of M are (up to scaling) at the
positions of the poles of the lhara-Selberg zeta function.
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Further Ihara connections

In a regular graph all vertices have the same degree.

For a regular quantum graph with equi-transmitting vertex
scattering matrices the eigenvalues of M are (up to scaling) at the
positions of the poles of the lhara-Selberg zeta function.

This allows us to prove:

For a regular quantum graph with equi-transmitting vertex
scattering matrices the spectral gap is strictly greater than the
spectral gap for the same graph with Neumann or Fourier
transform scattering matrices.
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Spectral statistics for an example

We considered the 5-regular graph
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Spectral statistics for an example

We considered the 5-regular graph

with vertex scattering matrix

0o 1 1 1 1
1 0 1 w w?
1 2
o= 5 1 1 0 w w
1 w w?2 0 1
1 w? w 1 0

at each vertex.

Brian Winn
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Spectral statistics for an example
continued

P(s)' " 07 Quantum graph — V(L= Quantum graph

09 COE_ 9l COE

oof GUE 08} GUE

S 07

06 .
s e -

oaf /T

02t/

01

Nearest neighbour spacing Number variance L
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Lies

To simplify the exposition

@ Specifying vertex scattering matrix is not equivalent to
self-adjoint extension of the Laplace operator.
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Lies
To simplify the exposition

@ Specifying vertex scattering matrix is not equivalent to
self-adjoint extension of the Laplace operator.

@ | omitted a technical condition from Theorem 2.
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Lies
To simplify the exposition

@ Specifying vertex scattering matrix is not equivalent to
self-adjoint extension of the Laplace operator.

@ | omitted a technical condition from Theorem 2.

@ | did not compute eigenvalues to draw the figures—instead |
averaged statistics of eigenphases of U(k) over bond lengths.
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Lies
To simplify the exposition

@ Specifying vertex scattering matrix is not equivalent to
self-adjoint extension of the Laplace operator.

@ | omitted a technical condition from Theorem 2.

@ | did not compute eigenvalues to draw the figures—instead |
averaged statistics of eigenphases of U(k) over bond lengths.

There are no lies in the article.

v
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@ Equi-transmitting matrices of other dimensions. First open
dimension is d = 7.
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@ Equi-transmitting matrices of other dimensions. First open
dimension is d = 7.

@ Can one “hear” the shape of quantum graphs with
equi-transmitting scattering matrices? Gutkin & Smilansky
proof breaks down here.
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@ Equi-transmitting matrices of other dimensions. First open
dimension is d = 7.

@ Can one “hear” the shape of quantum graphs with
equi-transmitting scattering matrices? Gutkin & Smilansky
proof breaks down here.

@ Are there other interesting connections to discrete graph
objects?
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