Quantum graphs where back-scattering is prohibited

Brian Winn
School of Mathematics
Loughborough University
26th February 2008

Credits

Joint work with

- Journal of Physics A 40 14181-14193.

Find an $n \times n$ unitary matrix σ :

- with diagonal entries 0, and
- off-diagonal entries with absolute value $(n-1)^{-1 / 2}$.

For example (2×2)

$$
\sigma=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Hint: $n=3$ is impossible.

Find an $n \times n$ unitary matrix σ :

- with diagonal entries 0 ,
- off-diagonal entries with absolute value $(n-1)^{-1 / 2}$.

For example (2×2)

$$
\sigma=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Hint: $n=3$ is impossible.

Find an $n \times n$ unitary matrix σ :

- with diagonal entries 0 , and
- off-diagonal entries with absolute value $(n-1)^{-1 / 2}$.

For example (2×2)

Hint: $n=3$ is impossible.

A puzzle

Find an $n \times n$ unitary matrix σ :

- with diagonal entries 0 , and
- off-diagonal entries with absolute value $(n-1)^{-1 / 2}$.

For example (2×2)

$$
\sigma=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Hint: $n=3$ is impossible.

Find an $n \times n$ unitary matrix σ :

- with diagonal entries 0 , and
- off-diagonal entries with absolute value $(n-1)^{-1 / 2}$.

For example (2×2)

$$
\sigma=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Hint: $n=3$ is impossible. .

What is a quantum graph?

A metric graph has bonds that have lengths $L_{1}, \ldots, L_{v}>0$.

Standing waves satisfy

 Boundary
 conditions

What is a quantum graph?

A metric graph has bonds that have lengths $L_{1}, \ldots, L_{v}>0$.

Standing waves satisfy

$$
-\frac{\mathrm{d}^{2} \psi_{j}}{\mathrm{dx} \mathrm{x}^{2}}=\mathrm{k}^{2} \psi_{j}+\underset{\text { conditions }}{\text { Boundary }} \quad j=1, \ldots, v .
$$

For $k=k_{0}, k_{1}, k_{2}, \ldots$ the spectrum of the quantum graph.

What is a quantum graph?

A metric graph has bonds that have lengths $L_{1}, \ldots, L_{v}>0$.

Standing waves satisfy

$$
-\frac{\mathrm{d}^{2} \psi_{j}}{\mathrm{dx} \mathrm{x}^{2}}=\mathrm{k}^{2} \psi_{j} \quad+\begin{aligned}
& \text { Boundary } \\
& \text { conditions }
\end{aligned} \quad j=1, \ldots, v .
$$

For $k=k_{0}, k_{1}, k_{2}, \ldots$ the spectrum of the quantum graph.

Scattering at a vertex

(Boundary conditions for the differential equation)

An incoming wave is scattered at a vertex

Scattering is controlled by a $\mathrm{d} \times \mathrm{d}$ unitary matrix σ. d is the degree of the vertex.
We do not say anything about the process causing the scattering.

Scattering at a vertex

(Boundary conditions for the differential equation)

An incoming wave is scattered at a vertex

Scattering is controlled by a $\mathrm{d} \times \mathrm{d}$ unitary matrix σ. d is the degree of the vertex.
We do not say anything about the process causing the scattering.

Scattering at a vertex

(Boundary conditions for the differential equation)

An incoming wave is scattered at a vertex

Scattering is controlled by a $\mathrm{d} \times \mathrm{d}$ unitary matrix σ. d is the degree of the vertex.
We do not say anything about the process causing the scattering

An incoming wave is scattered at a vertex

Scattering is controlled by a $\mathrm{d} \times \mathrm{d}$ unitary matrix σ. d is the degree of the vertex.
We do not say anything about the process causing the scattering.

An incoming wave is scattered at a vertex

Scattering is controlled by a $\mathrm{d} \times \mathrm{d}$ unitary matrix σ. d is the degree of the vertex.
We do not say anything about the process causing the scattering.

- Collect all entries of vertex scattering matrices σ in a $2 v \times 2 v$ matrix S.
- Indexing is by directed bonds.

In this example

- Collect all entries of vertex scattering matrices σ in a $2 v \times 2 v$ matrix S.
- Indexing is by directed bonds.

In this example

- Collect all entries of vertex scattering matrices σ in a $2 v \times 2 v$ matrix S.
- Indexing is by directed bonds.

In this example

- Collect all entries of vertex scattering matrices σ in a $2 v \times 2 v$ matrix S.
- Indexing is by directed bonds.

In this example

- Collect all entries of vertex scattering matrices σ in a $2 v \times 2 v$ matrix S.
- Indexing is by directed bonds.

Scattering matrix at centre $\sigma=\left(\begin{array}{lll}\sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33}\end{array}\right)$.

In this example

- Collect all entries of vertex scattering matrices σ in a $2 v \times 2 v$ matrix S .
- Indexing is by directed bonds.

Scattering matrix at centre $\sigma=\left(\begin{array}{lll}\sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33}\end{array}\right)$.

In this example

$$
S=\left(\begin{array}{cccccc}
0 & \sigma_{12} & \sigma_{13} & \sigma_{11} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma_{22} & \sigma_{23} & \sigma_{21} & 0 & 0 \\
0 & \sigma_{32} & \sigma_{33} & \sigma_{31} & 0 & 0
\end{array}\right)
$$

The quantum evolution operator

 Continued- Waves travelling along a bond of length L acquire a phase $e^{i k L}$.
- Put these phases into a $2 v \times 2 v$ diagonal matrix $\mathrm{D}(\mathrm{k})$
- Define the quantum evolution operator $\mathrm{U}(\mathrm{k})=\mathrm{D}(\mathrm{k}) \mathrm{S}$

There is a standing wave of energy k^{2} iff

A sequence $\left(k_{n}\right)_{n=1}^{\infty}$ of "eigenvalues"

Alternatively: Use the von Neumann theory to construct self-adjoint extensions of the Laplace operator. . . (Kostrykin \& Schrader approach.)

- Waves travelling along a bond of length L acquire a phase $e^{i k L}$.
- Put these phases into a $2 v \times 2 v$ diagonal matrix $\mathrm{D}(\mathrm{k})$.
- Define the quantum evolution operator $\mathrm{U}(\mathrm{k})=\mathrm{D}(\mathrm{k}) \mathrm{S}$.
\square

Alternatively: Use the von Neumann theory to construct self-adjoint extensions of the Laplace operator. . . (Kostrykin \& Schrader approach.)

- Waves travelling along a bond of length L acquire a phase $e^{i k L}$.
- Put these phases into a $2 v \times 2 v$ diagonal matrix $\mathrm{D}(\mathrm{k})$.
- Define the quantum evolution operator $\mathrm{U}(\mathrm{k})=\mathrm{D}(\mathrm{k}) \mathrm{S}$.
\square

Alternatively: Use the von Neumann theory to construct self-adjoint extensions of the Laplace operator. . . (Kostrykin \& Schrader approach.)

The quantum evolution operator Continued

- Waves travelling along a bond of length L acquire a phase $e^{i k L}$.
- Put these phases into a $2 v \times 2 v$ diagonal matrix $\mathrm{D}(\mathrm{k})$.
- Define the quantum evolution operator $\mathrm{U}(\mathrm{k})=\mathrm{D}(\mathrm{k}) \mathrm{S}$.

The spectrum

There is a standing wave of energy k^{2} iff

$$
\operatorname{det}(I-U(k))=0
$$

A sequence $\left(k_{n}\right)_{n=1}^{\infty}$ of "eigenvalues".

Alternatively: Use the von Neumann theory to construct self-adjoint extensions of the Laplace operator. . . (Kostrykin \& Schrader approach.)

The quantum evolution operator Continued

- Waves travelling along a bond of length L acquire a phase $e^{i k L}$.
- Put these phases into a $2 v \times 2 v$ diagonal matrix $\mathrm{D}(\mathrm{k})$.
- Define the quantum evolution operator $\mathrm{U}(\mathrm{k})=\mathrm{D}(\mathrm{k}) \mathrm{S}$.

The spectrum

There is a standing wave of energy k^{2} iff

$$
\operatorname{det}(I-U(k))=0
$$

A sequence $\left(k_{n}\right)_{n=1}^{\infty}$ of "eigenvalues".

Alternatively: Use the von Neumann theory to construct self-adjoint extensions of the Laplace operator... (Kostrykin \& Schrader approach.)

A classical evolution operator

- Classical dynamics is a Markov process on the directed bonds, with matrix of transition probabilities M, where

$$
\mathrm{M}_{\mathrm{b} \mathrm{~b}^{\prime}}=\left|\mathrm{u}_{\mathrm{b} \mathrm{~b}^{\prime}}\right|^{2}
$$

- Since U is unitary, M is stochastic (indeed doubly stochastic) - M has an eigenvalue 1 and all other eigenvalues have absolute value $\leqslant 1$

A classical evolution operator

- Classical dynamics is a Markov process on the directed bonds, with matrix of transition probabilities M, where

$$
M_{\mathrm{bb}^{\prime}}=\left|\mathrm{u}_{\mathrm{b} \mathrm{~b}^{\prime}}\right|^{2}
$$

- Since U is unitary, M is stochastic (indeed doubly stochastic).
- M has an eigenvalue 1 and all other eigenvalues have absolute value $\leqslant 1$.

A classical evolution operator

- Classical dynamics is a Markov process on the directed bonds, with matrix of transition probabilities M, where

$$
M_{\mathrm{bb}^{\prime}}=\left|\mathrm{u}_{\mathrm{b} \mathrm{~b}^{\prime}}\right|^{2}
$$

- Since U is unitary, M is stochastic (indeed doubly stochastic).
- M has an eigenvalue 1 and all other eigenvalues have absolute value $\leqslant 1$.

A classical evolution operator

- Classical dynamics is a Markov process on the directed bonds, with matrix of transition probabilities M, where

$$
M_{\mathrm{b} \mathrm{~b}^{\prime}}=\left|\mathrm{u}_{\mathrm{b} \mathrm{~b}^{\prime}}\right|^{2}
$$

- Since U is unitary, M is stochastic (indeed doubly stochastic).
- M has an eigenvalue 1 and all other eigenvalues have absolute value $\leqslant 1$.

A classical evolution operator

- Classical dynamics is a Markov process on the directed bonds, with matrix of transition probabilities M, where

$$
M_{\mathrm{bb}^{\prime}}=\left|\mathrm{u}_{\mathrm{b} \mathrm{~b}^{\prime}}\right|^{2}
$$

- Since U is unitary, M is stochastic (indeed doubly stochastic).
- M has an eigenvalue 1 and all other eigenvalues have absolute value $\leqslant 1$.

Denote by Δ the spectral gap.

Random matrix conjecture

Conjecture (Tanner)

For a sequence of quantum graphs with $v \rightarrow \infty$, the statistics of eigenvalues converge to random matrix theory if $v \Delta \rightarrow \infty$.

- Gnutzmann \& Altland approach. True if $\sqrt{v} \Delta \rightarrow \infty$. (Not a periodic orbit theory)
- Are there "nicer" choices of vertex scattering matrix?
- Quantum ergodicity? Scarring??

Random matrix conjecture

Conjecture (Tanner)

For a sequence of quantum graphs with $v \rightarrow \infty$, the statistics of eigenvalues converge to random matrix theory if $v \Delta \rightarrow \infty$.

- Gnutzmann \& Altland approach. True if $\sqrt{v} \Delta \rightarrow \infty$. (Not a periodic orbit theory).
- Are there "nicer" choices of vertex scattering matrix?
- Quantum ergodicity? Scarring??

Random matrix conjecture

Conjecture (Tanner)

For a sequence of quantum graphs with $v \rightarrow \infty$, the statistics of eigenvalues converge to random matrix theory if $v \Delta \rightarrow \infty$.

- Gnutzmann \& Altland approach. True if $\sqrt{v} \Delta \rightarrow \infty$. (Not a periodic orbit theory).
- Are there "nicer" choices of vertex scattering matrix?
- Quantum ergodicity? Scarring??

Random matrix conjecture

Conjecture (Tanner)

For a sequence of quantum graphs with $v \rightarrow \infty$, the statistics of eigenvalues converge to random matrix theory if $v \Delta \rightarrow \infty$.

- Gnutzmann \& Altland approach. True if $\sqrt{v} \Delta \rightarrow \infty$. (Not a periodic orbit theory).
- Are there "nicer" choices of vertex scattering matrix?
- Quantum ergodicity? Scarring??

Random matrix conjecture

Conjecture (Tanner)

For a sequence of quantum graphs with $v \rightarrow \infty$, the statistics of eigenvalues converge to random matrix theory if $v \Delta \rightarrow \infty$.

- Gnutzmann \& Altland approach. True if $\sqrt{v} \Delta \rightarrow \infty$. (Not a periodic orbit theory).
- Are there "nicer" choices of vertex scattering matrix?
- Quantum ergodicity? Scarring??

Possible vertex scattering matrices

- Neumann

$$
\sigma_{j k}^{[\mathrm{N}]}=\frac{2}{\mathrm{~d}}-\delta_{j \mathrm{k}} .
$$

Back-scattering strongly favoured.

- Fourier transform

All amplitudes equal.

Possible vertex scattering matrices

- Neumann

$$
\sigma_{j k}^{[\mathrm{N}]}=\frac{2}{\mathrm{~d}}-\delta_{j k} .
$$

Back-scattering strongly favoured.

- Fourier transform

$$
\sigma_{j k}^{[F]}=\frac{1}{\sqrt{\mathrm{~d}}} \mathrm{e}^{-2 \pi i j k / \mathrm{d}} .
$$

All amplitudes equal.

- Neumann

$$
\sigma_{j k}^{[\mathrm{N}]}=\frac{2}{\mathrm{~d}}-\delta_{j k} .
$$

Back-scattering strongly favoured.

- Fourier transform

$$
\sigma_{j k}^{[\mathrm{F}]}=\frac{1}{\sqrt{\mathrm{~d}}} \mathrm{e}^{-2 \pi \mathrm{ijk} / \mathrm{d}}
$$

All amplitudes equal.

- Equi-transmitting

$$
\left|\sigma_{j k}\right|^{2}=\frac{1-\delta_{j k}}{d-1}
$$

All forward amplitudes equal; back-scattering weighted zero.

Examples

Partial solution to puzzle

- $\mathrm{d}=3$, no examples (impossible).

- Examples for d any multiple of 4 , up to 184 , related to existence of skew Hadamard matrices.
- Examples for $\mathrm{d}=\mathrm{p}+1$, for all odd primes p.
- Examples for $\mathrm{d}=2^{\mathrm{n}}$

Examples

Partial solution to puzzle

- $\mathrm{d}=3$, no examples (impossible).
- $d=4, \sigma=\frac{1}{\sqrt{3}}\left(\begin{array}{cccc}0 & 1 & 1 & 1 \\ 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0\end{array}\right)$.
$-\mathrm{d}=5, \sigma=\frac{1}{2}\left(\begin{array}{ccccc}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & \omega & \omega^{2} \\ 1 & 1 & 0 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2} & 0 & 1 \\ 1 & \omega^{2} & \omega & 1 & 0\end{array}\right)$
where $\omega=e^{2 \pi i / 3}$
- Examples for d any multiple of 4, up to 184, related to existence of skew Hadamard matrices.
- Examples for $\mathrm{d}=p+1$, for all odd primes p.
- Examples for $d=2^{n}$
- $\mathrm{d}=3$, no examples (impossible).
- $\mathrm{d}=4, \sigma=\frac{1}{\sqrt{3}}\left(\begin{array}{cccc}0 & 1 & 1 & 1 \\ 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0\end{array}\right)$.
- $\mathrm{d}=5, \sigma=\frac{1}{2}\left(\begin{array}{ccccc}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & \omega & \omega^{2} \\ 1 & 1 & 0 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2} & 0 & 1 \\ 1 & \omega^{2} & \omega & 1 & 0\end{array}\right)$, where $\omega=\mathrm{e}^{2 \pi \mathrm{i} / 3}$.
- Examples for d any multiple of 4, up to 184, related to existence of skew Hadamard matrices.
- Examples for $\mathrm{d}=\mathrm{p}+1$, for all odd primes p.
- Examples for $\mathrm{d}=2^{n}$
- $\mathrm{d}=3$, no examples (impossible).
- $d=4, \sigma=\frac{1}{\sqrt{3}}\left(\begin{array}{cccc}0 & 1 & 1 & 1 \\ 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0\end{array}\right)$.
- $d=5, \sigma=\frac{1}{2}\left(\begin{array}{ccccc}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & \omega & \omega^{2} \\ 1 & 1 & 0 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2} & 0 & 1 \\ 1 & \omega^{2} & \omega & 1 & 0\end{array}\right)$, where $\omega=\mathrm{e}^{2 \pi \mathrm{i} / 3}$.
- Examples for d any multiple of 4 , up to 184 , related to existence of skew Hadamard matrices.
- Examples for $\mathrm{d}=\mathrm{p}+1$, for all odd primes p.
- Examples for $\mathrm{d}=2^{n}$
- $\mathrm{d}=3$, no examples (impossible).
- $d=4, \sigma=\frac{1}{\sqrt{3}}\left(\begin{array}{cccc}0 & 1 & 1 & 1 \\ 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0\end{array}\right)$.
- $d=5, \sigma=\frac{1}{2}\left(\begin{array}{ccccc}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & \omega & \omega^{2} \\ 1 & 1 & 0 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2} & 0 & 1 \\ 1 & \omega^{2} & \omega & 1 & 0\end{array}\right)$, where $\omega=e^{2 \pi i / 3}$.
- Examples for d any multiple of 4 , up to 184 , related to existence of skew Hadamard matrices.
- Examples for $d=p+1$, for all odd primes p.
- $\mathrm{d}=3$, no examples (impossible).
- $d=4, \sigma=\frac{1}{\sqrt{3}}\left(\begin{array}{cccc}0 & 1 & 1 & 1 \\ 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0\end{array}\right)$.
- $d=5, \sigma=\frac{1}{2}\left(\begin{array}{ccccc}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & \omega & \omega^{2} \\ 1 & 1 & 0 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2} & 0 & 1 \\ 1 & \omega^{2} & \omega & 1 & 0\end{array}\right)$, where $\omega=e^{2 \pi i / 3}$.
- Examples for d any multiple of 4 , up to 184 , related to existence of skew Hadamard matrices.
- Examples for $d=p+1$, for all odd primes p.
- Examples for $\mathrm{d}=2^{\mathrm{n}}$.

For suitable test functions h,

$$
\sum_{n=1}^{\infty} h\left(k_{n}\right)=\frac{\sum_{b} L_{b}}{\pi} \hat{h}(0)+\frac{1}{\pi} \sum_{p} \frac{A_{p} \ell_{p}}{r_{p}} \hat{h}\left(\ell_{p}\right)
$$

where ℓ_{p} are (metric) lengths of periodic orbits, r_{p} is repetition number and

$$
A_{p}=S_{b_{1}, b_{2}} S_{b_{2}, b_{3}} \cdots S_{b_{n}, b_{1}}
$$

is product of elements of S accumulated on the orbit.

- With equi-transmitting scattering matrices, back-tracking orbits are eliminated.
- c.f. Ihara-Selberg zeta function.

For suitable test functions h,

$$
\sum_{n=1}^{\infty} h\left(k_{n}\right)=\frac{\sum_{b} L_{b}}{\pi} \hat{h}(0)+\frac{1}{\pi} \sum_{p} \frac{A_{p} \ell_{p}}{r_{p}} \hat{h}\left(\ell_{p}\right)
$$

where ℓ_{p} are (metric) lengths of periodic orbits, r_{p} is repetition number
is product of elements of S accumulated on the orbit.

- With equi-transmitting scattering matrices, back-tracking orbits are eliminated.
- c.f. Ihara-Selberg zeta function.

For suitable test functions h,

$$
\sum_{n=1}^{\infty} h\left(k_{n}\right)=\frac{\sum_{b} L_{b}}{\pi} \hat{h}(0)+\frac{1}{\pi} \sum_{p} \frac{A_{p} \ell_{p}}{r_{p}} \hat{h}\left(\ell_{p}\right)
$$

where ℓ_{p} are (metric) lengths of periodic orbits, r_{p} is repetition number and

$$
A_{p}=S_{b_{1}, b_{2}} S_{b_{2}, b_{3}} \cdots S_{b_{n}, b_{1}}
$$

is product of elements of S accumulated on the orbit.

- With equi-transmitting scattering matrices, back-tracking orbits are eliminated.
- c.f. Ihara-Selberg zeta function.

For suitable test functions h,

$$
\sum_{n=1}^{\infty} h\left(k_{n}\right)=\frac{\sum_{b} L_{b}}{\pi} \hat{h}(0)+\frac{1}{\pi} \sum_{p} \frac{A_{p} \ell_{p}}{r_{p}} \hat{h}\left(\ell_{p}\right)
$$

where ℓ_{p} are (metric) lengths of periodic orbits, r_{p} is repetition number and

$$
A_{p}=S_{b_{1}, b_{2}} S_{b_{2}, b_{3}} \cdots S_{b_{n}, b_{1}}
$$

is product of elements of S accumulated on the orbit.

- With equi-transmitting scattering matrices, back-tracking orbits are eliminated.
- c.f. Ihara-Selberg zeta function.

For suitable test functions h,

$$
\sum_{n=1}^{\infty} h\left(k_{n}\right)=\frac{\sum_{b} L_{b}}{\pi} \hat{h}(0)+\frac{1}{\pi} \sum_{p} \frac{A_{p} \ell_{p}}{r_{p}} \hat{h}\left(\ell_{p}\right)
$$

where ℓ_{p} are (metric) lengths of periodic orbits, r_{p} is repetition number and

$$
A_{p}=S_{b_{1}, b_{2}} S_{b_{2}, b_{3}} \cdots S_{b_{n}, b_{1}}
$$

is product of elements of S accumulated on the orbit.

- With equi-transmitting scattering matrices, back-tracking orbits are eliminated.
- c.f. Ihara-Selberg zeta function.

In a regular graph all vertices have the same degree.

For a regular quantum graph with equi-transmitting vertex scattering matrices the eigenvalues of M are (up to scaling) at the positions of the poles of the Ihara-Selberg zeta function.

This allows us to prove:

For a regular quantum graph with equi-transmitting vertex scattering matrices the spectral gap is strictly greater than the spectral gap for the same graph with Neumann or Fourier transform scattering matrices.

In a regular graph all vertices have the same degree.

> Theorem 1 (Harrison, Smilansky, W.)
> For a regular quantum graph with equi-transmitting vertex scattering matrices the eigenvalues of M are (up to scaling) at the positions of the poles of the Ihara-Selberg zeta function.

This allows us to prove:

For a regular quantum graph with equi-transmitting vertex
scattering matrices the spectral gap is strictly greater than the
spectral gap for the same graph with Neumann or Fourier
transform scattering matrices.

In a regular graph all vertices have the same degree.

Theorem 1 (Harrison, Smilansky, W.)
 For a regular quantum graph with equi-transmitting vertex scattering matrices the eigenvalues of M are (up to scaling) at the positions of the poles of the Ihara-Selberg zeta function.

This allows us to prove:
Theorem 2 (Harrison, Smilansky, W.)
For a regular quantum graph with equi-transmitting vertex scattering matrices the spectral gap is strictly greater than the spectral gap for the same graph with Neumann or Fourier transform scattering matrices.

We considered the 5-regular graph

We considered the 5-regular graph

with vertex scattering matrix

$$
\sigma=\frac{1}{2}\left(\begin{array}{ccccc}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & \omega & \omega^{2} \\
1 & 1 & 0 & \omega^{2} & \omega \\
1 & \omega & \omega^{2} & 0 & 1 \\
1 & \omega^{2} & \omega & 1 & 0
\end{array}\right)
$$

at each vertex.

Nearest neighbour spacing

Number variance

To simplify the exposition

- Specifying vertex scattering matrix is not equivalent to self-adjoint extension of the Laplace operator.
- I omitted a technical condition from Theorem 2.
- I did not compute eigenvalues to draw the figures-instead I averaged statistics of eigenphases of $\mathrm{U}(\mathrm{k})$ over bond lengths.

There are no lies in the article.

To simplify the exposition

- Specifying vertex scattering matrix is not equivalent to self-adjoint extension of the Laplace operator.
- I omitted a technical condition from Theorem 2.
- I did not compute eigenvalues to draw the figures-instead I averaged statistics of eigenphases of $\mathrm{U}(\mathrm{k})$ over bond lengths.

There are no lies in the article.

- Specifying vertex scattering matrix is not equivalent to self-adjoint extension of the Laplace operator.
- I omitted a technical condition from Theorem 2.
- I did not compute eigenvalues to draw the figures-instead I averaged statistics of eigenphases of $\mathrm{U}(\mathrm{k})$ over bond lengths.

There are no lies in the article.

- Specifying vertex scattering matrix is not equivalent to self-adjoint extension of the Laplace operator.
- I omitted a technical condition from Theorem 2.
- I did not compute eigenvalues to draw the figures-instead I averaged statistics of eigenphases of $\mathrm{U}(\mathrm{k})$ over bond lengths.

There are no lies in the article.

Outlook

- Equi-transmitting matrices of other dimensions. First open dimension is $\mathrm{d}=7$.
- Can one "hear" the shape of quantum graphs with equi-transmitting scattering matrices? Gutkin \& Smilansky proof breaks down here.
- Are there other interesting connections to discrete graph objects?
- Equi-transmitting matrices of other dimensions. First open dimension is $\mathrm{d}=7$.
- Can one "hear" the shape of quantum graphs with equi-transmitting scattering matrices? Gutkin \& Smilansky proof breaks down here.
- Are there other interesting connections to discrete graph objects?
- Equi-transmitting matrices of other dimensions. First open dimension is $\mathrm{d}=7$.
- Can one "hear" the shape of quantum graphs with equi-transmitting scattering matrices? Gutkin \& Smilansky proof breaks down here.
- Are there other interesting connections to discrete graph objects?

