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A puzzle

Find an n× n unitary matrix σ:

with diagonal entries 0, and

off-diagonal entries with absolute value (n− 1)−1/2.

For example (2× 2)

σ =

(
0 1
1 0

)
.

Hint: n = 3 is impossible. . .
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What is a quantum graph?

A metric graph has bonds that have lengths L1, . . . ,Lv > 0.

Standing waves satisfy

−
d2ψj

dx2
= k2ψj +

Boundary
conditions

j = 1, . . . , v.

For k = k0,k1,k2, . . . the spectrum of the quantum graph.
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Scattering at a vertex
(Boundary conditions for the differential equation)

An incoming wave is scattered at a vertex

1

3

2

eikx

Scattering is controlled by a d× d unitary matrix σ. d is the
degree of the vertex.
We do not say anything about the process causing the scattering.
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The quantum evolution operator

Collect all entries of vertex scattering matrices σ in a 2v× 2v
matrix S.

Indexing is by directed bonds.

In this example

S =



0 σ12 σ13 σ11 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 σ22 σ23 σ21 0 0
0 σ32 σ33 σ31 0 0

 .
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The quantum evolution operator
Continued

Waves travelling along a bond of length L acquire a phase
eikL.

Put these phases into a 2v× 2v diagonal matrix D(k).

Define the quantum evolution operator U(k) = D(k)S.

The spectrum

There is a standing wave of energy k2 iff

det(I−U(k)) = 0.

A sequence (kn)∞
n=1 of “eigenvalues”.

Alternatively: Use the von Neumann theory to construct
self-adjoint extensions of the Laplace operator. . . (Kostrykin &
Schrader approach.)
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A classical evolution operator

Classical dynamics is a Markov process on the directed bonds,
with matrix of transition probabilities M, where

Mbb ′ = |Ubb ′ |2.

Since U is unitary, M is stochastic (indeed doubly stochastic).

M has an eigenvalue 1 and all other eigenvalues have absolute
value 6 1.
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A classical evolution operator

Classical dynamics is a Markov process on the directed bonds,
with matrix of transition probabilities M, where

Mbb ′ = |Ubb ′ |2.

Since U is unitary, M is stochastic (indeed doubly stochastic).

M has an eigenvalue 1 and all other eigenvalues have absolute
value 6 1.

1

∆

Denote by ∆ the
spectral gap.
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Random matrix conjecture

Conjecture (Tanner)

For a sequence of quantum graphs with v → ∞, the statistics of
eigenvalues converge to random matrix theory if v∆→∞.

Gnutzmann & Altland approach. True if
√
v∆→∞. (Not a

periodic orbit theory).

Are there “nicer” choices of vertex scattering matrix?

Quantum ergodicity? Scarring??
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Possible vertex scattering matrices

Neumann

σ
[N]
jk =

2

d
− δjk.

Back-scattering strongly favoured.

Fourier transform

σ
[F]
jk =

1√
d

e−2πijk/d.

All amplitudes equal.

Equi-transmitting

|σjk|
2 =

1 − δjk

d− 1
.

All forward amplitudes equal; back-scattering weighted zero.
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Examples
Partial solution to puzzle

d = 3, no examples (impossible).

d = 4, σ =
1√
3


0 1 1 1
1 0 −1 1
1 1 0 −1
1 −1 1 0

.

d = 5, σ =
1

2


0 1 1 1 1
1 0 1 ω ω2

1 1 0 ω2 ω

1 ω ω2 0 1
1 ω2 ω 1 0

, where ω = e2πi/3.

Examples for d any multiple of 4, up to 184, related to
existence of skew Hadamard matrices.

Examples for d = p+ 1, for all odd primes p.

Examples for d = 2n.
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The trace formula

For suitable test functions h,

∞∑
n=1

h(kn) =

∑
b Lb

π
ĥ(0) +

1

π

∑
p

Ap`p

rp
ĥ(`p),

where `p are (metric) lengths of periodic orbits, rp is repetition
number and

Ap = Sb1,b2Sb2,b3 · · ·Sbn,b1

is product of elements of S accumulated on the orbit.

With equi-transmitting scattering matrices, back-tracking
orbits are eliminated.

c.f. Ihara-Selberg zeta function.
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Further Ihara connections

In a regular graph all vertices have the same degree.

Theorem 1 (Harrison, Smilansky, W.)

For a regular quantum graph with equi-transmitting vertex
scattering matrices the eigenvalues of M are (up to scaling) at the
positions of the poles of the Ihara-Selberg zeta function.

This allows us to prove:

Theorem 2 (Harrison, Smilansky, W.)

For a regular quantum graph with equi-transmitting vertex
scattering matrices the spectral gap is strictly greater than the
spectral gap for the same graph with Neumann or Fourier
transform scattering matrices.
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Spectral statistics for an example

We considered the 5-regular graph
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with vertex scattering matrix

σ =
1

2


0 1 1 1 1
1 0 1 ω ω2

1 1 0 ω2 ω

1 ω ω2 0 1
1 ω2 ω 1 0


at each vertex.
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Spectral statistics for an example
continued
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Lies
To simplify the exposition

Specifying vertex scattering matrix is not equivalent to
self-adjoint extension of the Laplace operator.

I omitted a technical condition from Theorem 2.

I did not compute eigenvalues to draw the figures—instead I
averaged statistics of eigenphases of U(k) over bond lengths.

There are no lies in the article.
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Outlook

Equi-transmitting matrices of other dimensions. First open
dimension is d = 7.

Can one “hear” the shape of quantum graphs with
equi-transmitting scattering matrices? Gutkin & Smilansky
proof breaks down here.

Are there other interesting connections to discrete graph
objects?
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