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Abstract

We consider a class of bistable periodically perturbed ODEs of importance in mathematical physics

and derive an asymptotic criterion for the existence of a tricritical point (TCP). Surprisingly, in

the adiabatic limit the criterion is local and very simple. It also allows one to calculate the location

of TCP in parameter space, which we illustrate with three examples.

PACS numbers: 05.70.Jk;64.60.Kw;75.10.Hk

∗Electronic address: Gregory.Berkolaiko@math.tamu.edu
†Electronic address: michael@maths.strath.ac.uk

1



I. INTRODUCTION

Phase transitions in non-equilibrium systems have attracted much attention in the past few

decades. In this paper we address the question of the type of phase transition seen in systems

placed in oscillating field. While there has been many investigations of such systems using

Monte Carlo simulations [1–3] and while the phenomenon has been observed experimentally

[4], to achieve progress by analytical tools one has first of all to study mean-field models.

It is in the mean-field context that dynamic phase transition (DPT) were first discussed by

Tomé and de Oliveira [5] (see also Mendes and Lage [6]). Other analytical investigations of

the nature of the DPT include [7–9].

In this paper we address the type of dynamic phase transition undergone, and the existence

of the tri-critical point in equations of the general type

ǫx′ = f(x, β) + h cos 2πt, x ∈ R (I.1)

where, for all β, f is an odd function of x with at most three zeros. If f(x) has exactly three

zeros, it is called bistable (see Assumptions (A-i)–(A-iii) for precise conditionson f(x)). This

type of equations arises in many different mean-field models. For example, in the context of

ferromagnetic Ising model in an oscillating magnetic field, x would correspond to the mean

magnetization, β is proportional to the inverse of the temperature of the sample, h is the

amplitude of the external field and ǫ is the time relaxation parameter. In the present paper

we study the small ǫ behavior which corresponds to low-frequency external field.

We shall now attempt to explain the phenomenon of dynamic phase transition using model

equation

ǫx′ = −x + tanh(βx) + h cos 2πt. (I.2)

This equation is equivalent to the Suzuki–Kubo equation, equation (2.9) of [10]; for the

changes of variables required to put the Suzuki–Kubo equation into the form (I.2), the

reader is referred to [9]. This equation was also studied by Tomé and de Oliveira [5]. First

of all, setting h to zero (no external field) we observe two stable stationary nonzero solutions

when β > 1. Decreasing β (which corresponds to increasing the temperature), we see that

at β = 1 the equilibrium solutions merge in a supercritical pitchfork bifurcation producing

a single stable equilibrium solution at zero: f(x) ceases to be bistable. The temperature
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FIG. 1: Two possible minimal scenarios of the emergence of a single periodic solution. In scenario

(a) three solutions merge in a subcritical pitchfork bifurcation. In scenario (b) the central solu-

tion first undergoes a supercritical pitchfork bifurcation, emitting two unstable solutions. These

unstable solutions disappear in fold bifurcations upon meeting the stable solutions.

corresponding to the value 1 of our parameter β is the Curie temperature and the transition

described is the ferro-para phase transition. It is important for the forthcoming discussion

that if the parameter β is increased , the transition from paramagnetic to ferromagnetic

phase happens at the same value of β, β = 1.

Now we fix β > 1 and switch on the external field, h > 0. By the implicit function theorem,

stationary solutions now become 1-periodic ones. For small values of h there are two stable

periodic cycles oscillating around the stationary solutions of equation (I.2) with h = 0.

However, it can be shown (for a proof, see [9]), that for large h there is only one stable

periodic cycle and that its average over a period is zero:

x̄ =

∫

1

0

x(t)dt = 0.

An important question is to understand how the two stable cycles (and an unstable one

which is not normally seen in numerical simulations unless one performs calculations in

reverse time) merge to produce a single stable cycle. Two possible minimal scenarios are

depicted in Fig. 1, with h as a parameter and x̄ as the dependent variable.

The difference between two scenarios is of high physical relevance. Assume that we start

with a stable periodic solution and the parameter h is being increased adiabatically. This

solution has non-zero mean; we will call it the ferromagnetic cycle. As h is increased we will
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FIG. 2: If the bifurcation of the zero-mean solution is a supercritical pitchfork (scenario (b) of

Fig. 1), one can effect a discontinuous change (a first-order phase transition) on the stable periodic

cycle by adiabatically changing h. Here the fragment of the bifurcation diagram is drawn in thin

lines and the evolution of the mean of the periodic cycle is indicated by the thick lines. When

increasing the h, the transition from ferro (non-zero-mean) to para (zero-mean) cycle happens at

h = hfp (part (a)). However, if h is decreased the para-ferro transition happens at a different

value, h = hpf 6= hfp (part (b)).

see a transition between ferromagnetic and paramagnetic (zero-mean) cycles which happens

at some value of h which we will denote by hfp. It has been observed by Tomé and de Oliveira

[5] that for small temperature (large β) this transition happens discontinuously. Moreover,

for these values of β, the transition between paramagnetic and ferromagnetic cycles when h

is being decreased happens a value hpf which is smaller than hfp. This is consistent with

the supercritical bifurcation (scenario (b) of Fig. 1) of the paramagnetic cycle, see Fig. 2 for

more details. The point in the β-h plane where the curves hpf(β) and hfp(β) meet is called

the tricritical point (TCP). In other words, at TCP the phase transition changes from being

continuous to being discontinuous.

An alternative mean-field theory in the Ising context leading to an equation of the type

ǫx′ = λx − µx3 + h cos 2πt, (I.3)

(also known as the optical bistability equation [11]) was proposed by Zimmer [7], who argued

that only continuous phase transition can occur. In Monte Carlo simulations, some authors
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(e.g. [1, 12]) detected the TCP and some authors (e.g. [3]) disputed its existence. For more

references and a review, see [13].

In this work, rather than address the adequacy of different mean-field theories, we will

analytically derive a simple criterion on f which determines whether or not a TCP exists in

an equation of the general type (I.1). In cases where TCP exists, our approach also allows

to calculate its position in the ǫ → 0 limit.

II. STATEMENT OF THE MAIN RESULT

In [9] we have considered the Suzuki–Kubo equation (I.2) and the optical bistability equation

(I.3). The main result of [9] is that (I.3) has at most 3 periodic solutions, while in (I.2) for

sufficiently large β, there is an interval of values of h for which it has at least 5 1-periodic

solutions.

However, the approach of [9] does not make any use of the additional parameter of the

problem, the relaxation time ǫ. In the present paper we consider a general bistable equation,

ǫx′ = f(x) + h cos 2πt, (II.4)

with precise assumptions on f(x) to be specified later, and derive a very simple criterion on

f which ensures that for ǫ > 0 small enough there is an interval of values of h for which

(II.4) has at least 5 1-periodic solutions. Amazingly, the type of such a global event as

bifurcation of periodic solutions is governed by the behavior of f(x) at one point only.

The precise assumptions on f(x) used below are as follows:

A-i: f(x) = −f(−x);

A-ii: there is a unique value α > 0 such that f(α) = f(0) = f(−α) = 0; f(x) < 0 for x > α;

A-iii: there is a unique value a > 0, such that f ′(a) = 0.

Since f(x) is an odd function by (A-i), by (A-iii) it has a global maximum in the region

x > 0 at a. We find that if f ′′′(a) > 0 then, for small ǫ, the bifurcation of the unstable

symmetric solution is a supercritical pitchfork (Fig. 1b) and, therefore, the corresponding

5



phase transition is discontinuous. If f ′′′(a) < 0 then the bifurcation is a subcritical pitchfork

(Fig. 1a) and the phase transition is (locally) continuous.

If the function f(x) depends on a parameter β, then our criterion can be used to investigate

existence of the TCP and, moreover, to find the location of the TCP in the ǫ → 0 limit.

Essentially, the TCP is located at the value of β where the function fxxx(a(β), β) changes

sign.

The structure of remainder of the paper is as follows. After collecting the necessary defi-

nitions and results from [9], in section IV we derive the above criterion for having at least

5 periodic solutions as ǫ → 0; this criterion is then used in section V to derive the value(s)

of β for which the tricritical point occurs as ǫ → 0 in Suzuki-Kubo equation (I.2). In that

section we also show that even an equation (II.4) with f(x) being the simplest “correct”

Padé approximant of tanh(βx)−x (the [3/2] one) correctly reproduces the (local) bifurcation

behaviour of (I.2).

III. PRELIMINARY RESULTS

It is proved in [9, Theorem 2.1] that there exists a value of h, h0, such that for all h > h0

(II.4) has precisely one 1-periodic solution (which from symmetry considerations is then

necessarily Liapunov–stable and has mean zero).

We want to understand the nature of the bifurcation that the zero-mean solution undergoes

at the value h = hcs where it becomes stable never to lose stability again as we increase h.

To achieve our aim, we apply the Liapunov-Schmidt reduction (LSR). The reduction, based

on a particular solution x0(t), leads to the construction of a reduced function g : R
3 → R

such that the solutions of g(y, h, ǫ) = 0 are locally in one-to-one correspondence with the

solutions of the original equation. Under this correspondence the solution x0(t) is mapped

into the zero solution of g(y, h, ǫ) = 0. It is rarely possible to compute g(y, h, ǫ) explicitly,

but one can examine the bifurcation picture around x0 by computing the derivatives of g.

For more details on the reduction we refer the reader to [14].

In [9] it is shown that, due to the symmetry of f(x), the bifurcation of the zero-mean solution

has to be a pitchfork. Thus, at the bifurcation point we have the criticality condition gy = 0,
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and gyy = 0.

Furthermore, since it is the stability-gaining bifurcation, gyh ≥ 0 and hence the direction of

bifurcation in the non-degenerate case is determined by the sign gyyy. The relevant formulae

derived by the LSR in [9] are:

gy =

∫

1

0

f ′(x0(t)) dt ≡ 0; (III.5)

gyyy = −
∫

1

0

f ′′′(x0(t)) exp

(

2

ǫ

∫ t

0

f ′(x0(s)) ds

)

dt, (III.6)

where x0(t) is the zero-mean solution undergoing bifurcation. Here equation (III.5) should be

considered as a condition on x0(t) to be undergoing a bifurcation (a “criticality condition”).

If gyyy is negative, the bifurcation at h = hcs is a supercritical pitchfork, the scenario shown

on Fig. 1(b). Hence the main question we need to ask ourselves is: Under what condition

on f(x) is gyyy negative?

It turns out that, under the assumption that ǫ is sufficiently small, the answer to this question

is very simple.

IV. DIRECTION OF THE PITCHFORK AS ǫ → 0

First of all, we need to characterise the critical solution x0(t). Note that x0(t+1/2) = −x(t).

As before, we let a be the point of global maximum of f(x) for x > 0.

Lemma IV.1 There are values tj± ∈ (0, 1), j = 1, 2, such that x0(t
j
±) = ±a.

This is obvious as otherwise the criticality condition (III.5) cannot be met.

Now let us set

φ(t) =

∫ t

0

f ′(x0(s)) ds. (IV.7)

Then at tj± we have φ′(t) = f ′(x0(t)) = 0 by definition of tj± and a. Furthermore,

φ′′(t) = f ′′(x0(t))x
′
0
(t).

Hence φ(t) reaches a maximum twice over a period of the solution, at points t∗ and (by

symmetry) t∗ + 1/2. Since t∗ is one of the points of the set
{

tj±
}

, we have x0(t
∗) = a. Also,

φ(t∗) = φ(t∗ + 1/2) and φ′′(t∗) = φ′′(t∗ + 1/2).
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Now we apply the method of Laplace [15], as ǫ → 0, to the integral in (III.6). We compute

the value of gyyy as

gyyy = −2
√

2π
exp

(

2

ǫ
φ(t∗)

)

f ′′′(a)
√

−2

ǫ
φ′′(t∗)

[1 + O(ǫ)] . (IV.8)

From (IV.8) we see that as ǫ → 0, amazingly, the direction of the pitchfork bifurcation is

determined solely by the sign of f ′′′(a): if this is positive, the bifurcation is supercritical and

we will have an interval of values of h where (II.4) has 5 periodic solutions. We formulate

this as a theorem.

Theorem IV.2 As ǫ → 0, under the assumptions (A-i)–(A-iii), the stability-gaining bifur-

cation of the symmetric solution at h = hcs is a subcritical bifurcation if f ′′′(a) < 0 and it is

a supercritical pitchfork if f ′′′(a) > 0.

V. EXAMPLES

Example 1. If f(x) = λx−µx3, see equation (I.3), with positive λ and µ then f ′′′(a) = −6µ

is always negative, again confirming that the bifurcation of the symmetric solution must be

a subcritical pitchfork.

Example 2. Let us consider again the Suzuki–Kubo equation (I.2) and compute the loca-

tion, as ǫ → 0, of the tricritical point (see Fig. 3), that is, the value of β > 1 such that the

bifurcation flips from being sub- to supercritical.

In other words, we want to find the value of β, such that if a(β) > 0 solves the equation

f ′(a(β)) = 0, where f(x) = tanh(βx) − x, we also have f ′′′(a(β)) = 0. We obtain

a(β) =
1

β
tanh−1

(
√

β − 1

β

)

.

Hence we find that f ′′′(a(β)) = 0 is equivalent to the amazingly simple expression

2β(−3 + 2β) = 0,

so that

βtcp =
3

2
+ O(ǫ).
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FIG. 3: Dependence of the type of the periodic solutions on the parameters β and h in equation

(I.2) with ǫ = 1/2. F marks the region of existence of a non-zero-mean (ferro-magnetic) stable

periodic solution and P marks the region with a stable zero-mean solution (para-magnetic). For

large values of β there is a range of h in which F and P solutions can co-exists. The point at which

this range shrinks to zero is the tri-critical point (TCP). Inset: location of the TCP as a function

of ǫ. For small values of ǫ the computation becomes unstable [5] due to the exponential narrowing

of the overlap (F+P) region [9].

Incidentally, in [9] (see Theorem 4.1 and Remark 4.2) it was shown that for β < 3/2 the

bifurcation is subcritical for all values of ǫ, so we expect the correction term to be positive.

This prediction is verified numerically in the inset of Fig. 3.

Example 3. Let us consider the simplest “correct” Padé approximant of the right-hand

side of the Suzuki–Kubo equation (I.2). To be “correct” we would like it to have the same

(linear) rate of growth at infinity as the Suzuki–Kubo equation itself. Thus, the simplest

such approximant would be the [3/2] Padé,

f(x) =
1

3

x[15(β − 1) + x2(β3 − 6β2)]

5 + 2β2x2
.
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Following the same procedure as before, we find that (II.4) with the above right-hand side

also has a tricritical point and that

βtcp = 1.493366856 + O(ǫ).

We remind the reader that the cubic approximation to the Suzuki–Kubo f(x) has no tricriti-

cal point, the bifurcation being always subcritical. For comparison, the fifth order McLaurin

series truncation of the Suzuki–Kubo f(x) is not in general bistable at all.

VI. CONCLUSIONS

We have developed a simple criterion to detect if an equation of the type (I.1) has a discon-

tinuous phase transition for a physically important class of nonlinearities f(x). Applying

this criterion allows one to check for existence of a tricritical point and even find it location.

It would be interesting to extend our theory to cover the mean-filed theory derived for

Blume-Capel model by Keskin et al [16]. The results of [16] seem to predict a more compli-

cated bifurcation diagrams than the minimal ones of Fig. 1, with multiple tricritical points.

Another obvious extension would be to relax the somewhat restrictive assumption (A-iii).

In particular, if the range of the bifurcating solution x0(t) is [−A, A], the behaviour of f(x)

for |x| > A is not relevant to the bifurcation picture. Furthermore, we left unproved the

question of uniqueness of bifurcation from the zero-mean solution; it seems plausible that

this is related to (A-iii).
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