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Abstract: We investigate statistical properties of the eigenfunctions of the Schrödinger
operator on families of star graphs with incommensurate bond lengths. We show that
these eigenfunctions are not quantum ergodic in the limit as the number of bonds tends
to infinity by finding an observable for which the quantum matrix elements do not con-
verge to the classical average. We further show that for a given fixed graph there are
subsequences of eigenfunctions which localise on pairs of bonds. We describe how to
construct such subsequences explicitly. These structures are analogous to scars on short
unstable periodic orbits.

1. Introduction

Let ψn denote the wave-function corresponding to the nth energy level of a quantum
system that has a Hamiltonian dynamical system as its classical limit. We are interested
in these wave-functions in the n → ∞ limit, which corresponds to the semi-classical
regime. Numerical and some theoretical evidence supports the hypothesis that their
behaviour in this limit is determined by general properties of the underlying Hamiltonian
such as, for example, time-reversibility, integrability and statistical properties of the flow
(ergodicity, mixing, etc.). A deeper understanding of this is one of the goals of current
research in quantum chaology.

When the classical Hamiltonian generates chaotic motion, the semi-classical
eigenfunction hypothesis asserts that the wave-functions should equidistribute over the
appropriate energy shell [Be1, V]. A physical explanation for this is that in the semi-clas-
sical limit the quantum system should mimic the behaviour of the classical system; if
the classical motion is chaotic, then a typical trajectory ergodically explores the surface

� Present address: Department of Mathematics, Texas A&M University, College Station, TX 77843-
3368, USA. E-mail: gregory.berkolaiko@math.tamu.edu
�� Present address: Dipartimento di Matematica, Università di Bologna, 40127 Bologna, Italy. E-mail:
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of constant energy in phase space. Another interpretation is that eigenstates are invariant
under time evolution, so it is natural to associate them in the semi-classical limit with
classical invariant sets. One such invariant set is the energy shell itself.

The Schnirelman theorem [S, CdV, Z, GL] states that for systems in which the
Hamiltonian flow is ergodic the sequence of measures induced by ψn converges to
Liouville measure in the limit as n → ∞ along a subsequence of density one. This
behaviour has been termed “quantum ergodicity”. Quantum ergodicity implies a weak
version of the semi-classical eigenfunction hypothesis [BSS].

It is possible that quantum ergodic systems have subsequences of states for which
the corresponding measures do not converge to Liouville measure (of course such sub-
sequences have density zero). These subsequences, if they exist, are expected to be
associated with other classical invariant sets, such as periodic orbits. The case where
the limit of an exceptional subseqence is a singular measure supported on one-or-more
isolated, unstable periodic orbits of the classical system is called “scarring”.

Scarred eigenstates were observed numerically by Heller [H], who proposed the first
theoretical explanation for their existence, based on the semi-classical evolution of a
wave-packet centred on a periodic orbit under linearised dynamics. Another important
development was an understanding of the contribution to wave-functions from all peri-
odic orbits [Bo, Be2] resulting in formulæ related to the semi-classical trace formula for
the density of states. Later, the theory was extended to include non-linear effects [KH]
and, more recently, situations where the orbit in question undergoes a bifurcation [KP].
A review of related works was given in [K1].All of the above mentioned theories relate to
scar effects in averages over a semi-classically increasing number of states. This may be
thought of as a weakened form of scarring, because it is not clear that any one state in the
averaging range causes the scar; the scars may be a collective effect. It is a much harder
problem to show that a particular sequence of individual states is scarred. Currently,
the only systems known rigorously to support scarring in this strong form are the cat
maps [FNdB] which have non-generic spectral statistics caused by number-theoretical
symmetries [Ke].

For quantum graphs [KS1] the wave-functions are the eigenfunctions of the (contin-
uous) Laplace operator on the bonds with matching conditions at the vertices chosen to
make the problem self-adjoint. The semi-classical limit is equivalent to the limit b → ∞
where b is the number of bonds. The classical dynamics is realised as a Markov random
walk on the bonds of the graph defined by a bistochastic matrix of bond-to-bond transi-
tion probabilities. Such motion is ergodic if 1 is the only eigenvalue of this matrix lying
on the unit circle. Although the classical dynamics on graphs is not Hamiltonian, for
a sequence of graphs with an increasing number of bonds, each with ergodic Markov
dynamics, we might expect that something equivalent to a Schnirelman theorem holds
in the limit. However, because the semi-classical limit for graphs fundamentally affects
the classical dynamics, one cannot simply adapt the reasoning used in the proof of the
Schnirelman theorem.

The same problem presents itself in formulating an equivalent version of the
Bohigas-Giannoni-Schmit conjecture for spectral statistics [BGS]. In this case we have
a more complete understanding. It has been conjectured by Tanner [T] that the spectral
statistics of a sequence of quantum graphs in the limit b → ∞ will be the same as those
of generic quantised, classically-chaotic, systems (i.e. of random matrix type) provided
that the spectral gap between the largest and second largest eigenvalues of the associ-
ated Markov transition matrix for the classical dynamics closes more slowly than 1/b.
The Tanner conjecture is supported by much numerical evidence [KS2] and in recent
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theoretical developments [BSW1, BSW2, B] a similar condition was used, namely that
the onset of the ergodic regime increases not faster than the number of bonds. 1 Since
there is no universally accepted definition of ergodicity in the limit of infinite-sized
graphs the Tanner conjecture represents the natural replacement for ergodicity as a cri-
terion for random matrix statistics. Although there are no conjectures for a Schnirelman
theorem for quantum graphs, it would not be surprising if the same spectral gap criterion
proved necessary for the realisation of quantum ergodic behaviour.

In parallel to the developments in their spectral statistics cited above, graphs have
been a rich source of problems in quantum chaology and related fields. Recent works
have considered: scattering problems [KS3, TM, KS4], the spacing distribution of eigen-
values [BG], nodal domain statistics [GSW], the Dirac operator on graphs [BH1, BH2],
Brownian motion on graphs [CDM, D] and the important question of how to construct
families of graphs with increasing numbers of bonds [PTŻ].

Recently, authors have begun to investigate the wave-functions of quantum graphs.
Kaplan [K2] studied eigenfunction statistics for ring-graphs using a combination of
numerical techniques and analytical calculations of the short-time semiclassical behav-
iour of a wave-packet close to a 1-bond periodic orbit. The inverse participation ratio (a
measure of localisation in a given state) was found to be well-described by this contribu-
tion, and shows deviation from the ergodically expected behaviour. Similar deviations
were noticed for lattice-graphs. Remarkably, Schanz and Kottos [SK] observed that
it would be impossible for the shortest orbits that are responsible for this enhanced
localisation to support strong scarring. They wrote down an explicit criterion which
must be satisfied by the energy of any strongly scarred state, and deduced asymptotics
of the probability distribution of scarring strengths. In [KMW] a study was made of the
eigenfunctions of a family of graphs known as star graphs (the name being derived from
the connectivity of graphs in the family). The value distribution for the amplitude of
eigenfunctions on a single bond of the graph, subject to an appropriate normalisation,
was rigorously calculated in the limit as the number of bonds tends to infinity. In fact the
normalisation implies that star graphs with a fixed, finite number of bonds are not quan-
tum ergodic, although they are classically ergodic [T]. However, this result leaves open
the question of whether star graphs are quantum ergodic in the limit as the number of
bonds tends to infinity. This is because one bond represents a vanishingly small fraction
of a graph when the number of bonds becomes infinite, whereas quantum ergodicity is
concerned with structures on macroscopic (classical) scales.

The results we present here extend the work in [KMW] on star graphs. We review
the definition of a quantum star graph in Sect. 2 below. We show that (see the following
subsection for precise statements) quantum star graphs are not quantum ergodic in the
limit as the number of bonds tends to infinity. We also show that for any given star graph
there exist exceptional subsequences of eigenfunctions that become localised on pairs of
bonds as n → ∞. Orbits on a graph are simply itineraries of bonds, so this localisation
is analogous to strong scarring on short period-2 orbits. Such orbits are unstable in the
sense that there is an exponentially small probability of remaining on a given orbit. Our
explicit construction supports the observation of Schanz and Kottos [SK] that star graphs
support a large number of states scarred in such a way.

The spectral statistics of star graphs are different from those associated with the more
general graphs described above [BK]. In fact the spectral gap of their Markov transition

1 While the present manuscript was in an advanced stage of preparation the preprint [GA] was released
in which it is demonstrated that the quantum spectra of graphs with gaps closing more slowly than b−1/2

exhibit the same correlations as the spectrum of large random matrices.
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matrices closes precisely at the critical rate, 1/b, of the Tanner conjecture [KS2] and so
star graphs are excluded from its scope. Our result, therefore, implies that any extension
of the Schnirelman theorem to quantum graphs must exclude sequences of star graphs.
This does not contradict the possibility of a quantum ergodicity theorem for other fami-
lies of graphs (such as, for example, those whose spectral gap closes strictly more slowly
than 1/b) which remains an open problem. Note that it is not clear a priori that absence
of random matrix spectral statistics should indicate the failure of quantum ergodicity;
the Schnirelman theorem applies in the case of quantum cat maps [BdB], although the
spectral statistics are not of random matrix type [Ke].

It is known that the spectral statistics of quantum star graphs are the same as those
associated with the family of Šeba billiards [Še, BBK], so-called “intermediate statis-
tics”. There is evidence to suggest that the results we present on scarring can also be
extended to Šeba billiards [BKW].

1.1. Main results. To investigate quantum ergodicity for large star graphs, we consider
an observable that picks out a positive proportion of the graph. We consider a graph with
αv bonds, where α, v ∈ N, and the observable B = (Bi(x))

αv
i=1 defined by

Bi :=
{

1 for i = 1, . . . , v
0 for i = v + 1, . . . , αv. (1)

B may be thought of as the indicator function of the first v bonds. The classical average
of B is approximately 1/α. We shall consider the limit v → ∞.

Wave-functions on graphs have a component on each bond, so we shall use the nota-
tion

ψ (n) := (ψ
(n)
i )αvi=1

for the nth eigenstate. The inner product 〈·|·〉 is defined in (8) below.
Each bond of the graph has a length, and the vector of bond lengths will be denoted

L := (Li)
αv
i=1.

Theorem 1. For each v let the components of L be linearly independent over Q. Then
there exists a probability density pv(η) such that for any continuous function h,

lim
N→∞

1

N

N∑
n=1

h(〈ψ (n)|B|ψ (n)〉) =
∫ ∞

−∞
h(η)pv(η)dη. (2)

The density pv(η) is supported on the interval [0, 1].

Theorem 2. For each v let the bond lengths Lj , j = 1, . . . , αv lie in the range [L̄, L̄+
�L] and be linearly independent over Q. If v�L → 0 as v → ∞ then there exists a
probability distribution function F(R) such that for any R ∈ (0, 1),

lim
v→∞

∫ R

−∞
pv(η)dη = F(R), (3)

where

F(R) = 1

2
− 1

πα
Re

∫ ∞

−∞
Pη(ξ)

(
arg(τη(ξ))− i log |τη(ξ)|

)
dξ

∣∣∣∣
η=1/R−1

, (4)
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and

Pη(ξ) = 1√
πη

exp

(−iπ

4
+ iξ2

4η

)
+ (α − 1)√

π
exp

(
iπ

4
− iξ2

4

)
,

τη(ξ) = 2√
π

√
η exp

(
iπ

4
+ iξ2

4η

)
+ ξ erf

(
e−iπ/4ξ

2
√
η

)

+ 2(α − 1)√
π

exp

(
− iπ

4
− iξ2

4

)
+ ξ(α − 1) erf

(
eiπ/4ξ

2

)
.

The function F(R) is plotted in Fig. 1.

Remark 1. If star graphs satisfied quantum ergodicity, then F(R) would be the step-
function

F(R) =
{

1, for R > 1/α
0, for R < 1/α (5)

for this observable.

In Fig. 1 we compare the numerical data for the value distribution of 〈ψ (n)|B|ψ (n)〉 for
a star graph with 90 bonds with the v → ∞ analytical prediction F(R). The difference
between the actual distributionF(R) and that which would be expected if the graph were
quantum ergodic (Remark 1) is clear. Figure 2 shows the difference between numerical
data and F(R) for increasing values of v.

We also show that for graphs with fixed number of bonds, there are subsequences of
eigenfunctions that localise on two bonds.

Theorem 3. Let the elements of L be linearly independent over Q. Given any distinct
two bonds, indexed by i1 and i2, of a v-bond star graph, there exists a subsequence
(knr ) ⊆ (kn) such that for any f = (fi)

v
i=1 smooth in each component,

lim
r→∞〈ψ (nr )|f |ψ (nr )〉 = 1

Li1 + Li2

(∫ Li1

0
fi1(x)dx +

∫ Li2

0
fi2(x)dx

)
. (6)
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Numerical study
Analytical prediction

Fig. 1. Comparing numerical data with the analytical prediction, F(R). For this plot α = 3 and in the
numerical study, v = 30
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Fig. 2. Convergence to F(R) for v = 5(+), 10(×), 15(+×), 20(�), 25(�), 30(�)
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Fig. 3. A star graph with 5 bonds

2. Quantum Star Graphs

A star graph2 is a metric graph with b vertices all connected only to one central vertex.
Thus there are b+ 1 vertices and b bonds (Fig. 3). We shall denote by L ∈ R

b the vector
of bond lengths.

We define the quantum star graph in the following way. Let H denote the real Hilbert
space

H := L2([0, L1])× · · · × L2([0, Lb]) (7)

with inner product

〈f |g〉 :=
b∑
j=1

∫ Lj

0
fj (x)gj (x)dx. (8)

2 sometimes referred to as a Hydra graph
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Elements of H are denoted f = (f1, . . . , fb). Let F ⊆ H be the subset of functions f
which are twice-differentiable in each component and satisfy the conditions

fj (0) = fi(0) =: f0, j, i = 1, . . . , b, (9)
b∑
j=1

f ′
j (0) = 1

λ
f0, (10)

f ′
j (Lj ) = 0, j = 1, . . . , b, (11)

The parameter λ may be varied to give different boundary conditions at the central ver-
tex of the graph. Henceforth we shall concentrate on the case 1/λ = 0, the so-called
Neumann condition. The Laplace operator 
 on F is defined by


f :=
(

d2f1

dx2 , . . . ,
d2fb

dx2

)
. (12)


 defined on F is self-adjoint. Since the space on which the functions in F are defined
is compact, the operator 
 has a discrete spectrum of eigenvalues ([DS], Sect. XIII.4).
i.e. the equation

−
ψ = k2ψ (13)

has non-trivial solutions for k = k1, k2, . . . Such ψ are the wave-functions [KS1, KS2].
We shall use the notation that ψ (n) := (ψ

(n)
i (x))bi=1 is the wave-function corresponding

to k = kn.
Solving (13) with boundary conditions (9)–(11), we find that the component of the

nth normalised eigenfunction of the Laplace operator on the ith bond of a star graph is

ψ
(n)
i (x) = A

(n)
i cos kn(x − Li), (14)

where the amplitude is given by

A
(n)
i =

(
2 sec2 knLi∑b

j=1 Lj sec2 knLj

)1/2

(15)

and kn is the nth positive solution to

Z(k,L) :=
b∑
j=1

tan kLj = 0. (16)

In Sects. 3–5 it will be convenient to take b = αv, where α ∈ N is fixed. This is so
that we can easily describe a fraction of the total number of bonds as the number of bonds
becomes large (v → ∞). In Sect. 6 we shall take α = 1 for notational convenience,
since there we will only be concerned with fixed graphs.
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3. Distribution of the Observable B

In this section we prove the existence of a limit distribution for the diagonal matrix
elements of B on star graphs with a fixed number, αv of bonds.

Lemma 1. Consider a star graph with αv bonds with fixed lengths given by the vector
L. Then for B defined by (1),

〈ψ (n)|B|ψ (n)〉 =
∑v
i=1 Li sec2 knLi∑αv
j=1 Lj sec2 knLj

+ O

(
1

kn

)
, (17)

where the error estimate is uniform in v and Li � Lmin > 0 for each i.

Proof. We recall that

〈ψ (n)|B|ψ (n)〉 =
αv∑
j=1

∫ Lj

0
|ψ(n)j (x)|2Bj (x)dx. (18)

Integrating (14) gives, for i = 1, . . . , v,

∫ Li

0
|ψ(n)i (x)|2Bi(x)dx = 1∑αv

j=1 Lj sec2 knLj

(
Li sec2 knLi + 1

kn
tan knLi

)
,

(19)

and for i � v + 1,
∫ Li

0
|ψ(n)i (x)|2Bi(x)dx = 0. (20)

Thus

〈ψ (n)|B|ψ (n)〉 =
∑v
i=1 Li sec2 knLi∑αv
j=1 Lj sec2 knLj

+ E

kn
, (21)

where

E =
∑v
i=1 tan knLi∑αv

j=1 Lj sec2 knLj
. (22)

Let Lmin := minj {Lj }. Then

|E| �
∑v
i=1 | tan knLi |

(α − 1)Lminv + Lmin
∑v
j=1 sec2 knLj

(23)

�
(
Lmin + (α − 1)vLmin∑v

i=1 sec2 knLj

)−1

(24)

using the fact that | tan θ | � sec2 θ for any θ ∈ R. Hence E = O(1) as n → ∞
uniformly in v, Lmin > 0. ��
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Proof of Theorem 1. By Lemma 1,

h(〈ψ (n)|B|ψ (n)〉) = h

( ∑v
i=1 Li sec2 xi∑αv
j=1 Lj sec2 xj

)
+ En, (25)

where En = o(1) as n → ∞ since h is uniformly continuous on [0, 1]. Hence

1

N

N∑
n=1

En → 0 as N → ∞. (26)

Therefore

lim
N→∞

1

N

N∑
n=1

h(〈ψ (n)|B|ψ (n)〉) = lim
N→∞

1

N

N∑
n=1

h

( ∑v
i=1 Li sec2 knLi∑αv
j=1 Lj sec2 knLj

)
. (27)

According to Barra and Gaspard, there is an absolutely continuous measure ν(ξ) such
that for piecewise continuous functions, f : � → R,

lim
N→∞

1

N

N∑
n=1

f (knL) =
∫
�

f (ξ)dν(ξ),

where � is the surface embedded in the αv dimensional torus with side π , defined by

tan x1 + · · · + tan xαv = 0.

ξ is a set of αv − 1 coordinates which parameterise �. To avoid repetition, we refer
the reader to [BG, KMW] for more detail about this result and its application to similar
problems.

Let

f (x) = h

( ∑v
i=1 Li sec2 xi∑αv
j=1 Lj sec2 xj

)
, (28)

we can define pv(η) by
∫
�

f (ξ)dν(ξ) =:
∫ ∞

−∞
h(η)pv(η)dη. (29)

Since 0 � 〈ψ (n)|B|ψ (n)〉 � 1, it follows that pv(η) is supported on [0, 1]. ��

4. The Large Graph Limit

Let η ∈ R and define

Xη(n) := 1

v2

αv∑
j=v+1

Lj sec2 knLj − η

v2

v∑
i=1

Li sec2 knLi (30)

for n = 1, 2, . . . . The key result of this section is the following.
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Proposition 1. For each v, there exists a probability density function fXη,v such that

lim
N→∞

1

N
#
{
n ∈ {1, . . . , N} : Xη(n) < S

} =
∫ S

−∞
fXη,v(σ )dσ. (31)

Furthermore, for each S ∈ R,

∫ S

−∞
fXη,v(σ )dσ →

∫ S

−∞
fXη(σ )dσ

as v → ∞, provided that v�L → 0 in this limit, where

fXη(σ ) = −1

4α
√
π

Re

∫ ∞

−∞
Pη(ξ)

e3iπ/4τη(ξ)

(−σ)3/2 w

(
e3iπ/4τη(ξ)

2
√−σ

)
dξ.

The functionsPη and τη are defined by (43) and (44) below, andw(z) := e−z2
erfc(−iz).

Proof. The existence of theN → ∞ limiting density,fXη,v is a consequence of the result
of Barra and Gaspard [BG]. The proof is entirely analogous to the proof of Theorem 1.

We turn our attention to the v → ∞ limit of this density. With n a random variable
uniformly distributed on the set {1, . . . , N} for someN ∈ N, the characteristic function
for this random variable Xη(n) is

ev,N (β) := E(eiβXη) = 1

N

N∑
n=1

f (knL)+ O(v�L),

where f : [0, π ]v → C is defined to be

f (x) := exp


 iβ

v2


 αv∑
j=v+1

sec2 xj − η

v∑
i=1

sec2 xi




 .

Following the argument of [KMW] we can write

lim
N→∞

1

N

N∑
n=1

f (knL)

= 1

2αv2

1

παv

∫ ∞

−∞

∫ π

0
· · ·
∫ π

0


 αv∑
j=1

sec2 xj


 f (x) exp


 iζ

v

αv∑
j=1

tan xj


 dαvxdζ.

Denoting this limit for each fixed v, β by ev(β), we can write

ev(β) = 1

2αv

∫ ∞

−∞
I1I

v−1
2 Iαv−v3 + (α − 1)I4I

v
2 I

αv−v−1
3 dζ, (32)
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where the integrals I1, . . . , I4 are:

I1 := 1

π

∫ π

0
sec2 x exp

(
iζ

v
tan x − iβη

v2 sec2 x

)
dx, (33)

I2 := 1

π

∫ π

0
exp

(
iζ

v
tan x − iβη

v2 sec2 x

)
dx, (34)

I3 := 1

π

∫ π

0
exp

(
iζ

v
tan x + iβ

v2 sec2 x

)
dx, (35)

I4 := 1

π

∫ π

0
sec2 x exp

(
iζ

v
tan x + iβ

v2 sec2 x

)
dx. (36)

An integral similar to (32) was tackled in [KMW]. We quote here the relevant results,
mutatis mutandis. Asymptotic analysis of the integrals in (33–36) gives

I1 = v√
πβη

exp

(
− iπ

4
+ iζ 2

4βη

)
+ O(1) as v → ∞ (37)

and

I4 = v√
πβ

exp

(
iπ

4
− iζ 2

4β

)
+ O(1) as v → ∞. (38)

For I2 and I3 we consider separately the cases −√
v < ζ <

√
v and |ζ | > √

v. For
−√

v < ζ <
√
v,

I v2 = exp

(
− 2√

π

√
βη exp

(
iπ

4
+ iζ 2

4βη

)
− ζ erf

(
e−iπ/4ζ

2
√
βη

))(
1 + O

(
1 + ζ 2

v

))

(39)

and

I
(α−1)v
3 = exp

(
− 2(α − 1)√

π

√
β exp

(
− iπ

4
− iζ 2

4β

)
−ζ(α − 1) erf

(
eiπ/4ζ

2
√
β

))
(40)

×
(

1 + O

(
1 + ζ 2

v

))
,

both error estimates are as v → ∞. For |ζ | > √
v,

|I2| �
√
βη

vπ

(
βη

v2 + ζ 2

βη

)−1

+ O(ζ−3) (41)

as ζ → ∞, and

|I3| �
√
β

vπ

(
β

v2 + ζ 2

β

)−1

+ O(ζ−3). (42)

Using these estimates, we can find an expression for the limit of ev(β) as v → ∞,

e(β) := lim
v→∞ ev(β) = 1

2α

∫ ∞

−∞
1√
β
Pη

(
ζ√
β

)
exp

(
−
√
βτη

(
ζ√
β

))
dζ

= 1

2α

∫ ∞

−∞
Pη(ξ) exp

(
−
√
βτη(ξ)

)
dξ.
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For ease of notation, we have introduced

Pη(ξ) := 1√
πη

exp

(−iπ

4
+ iξ2

4η

)
+ (α − 1)√

π
exp

(
iπ

4
− iξ2

4

)
(43)

and

τη(ξ) := 2√
π

√
η exp

(
iπ

4
+ iξ2

4η

)
+ ξ erf

(
e−iπ/4ξ

2
√
η

)

+ 2(α − 1)√
π

exp

(
− iπ

4
− iξ2

4

)
+ ξ(α − 1) erf

(
eiπ/4ξ

2

)
. (44)

In the above, wherever
√
β occurs forβ < 0, this should be understood to mean ±i

√−β,
where the sign is taken in such a way that

e(−β) = e(β),

the usual condition for the characteristic function of a probability density. This can always
be done. We also note that e(0) = 1 which is consistent with e(β) being the characteristic
function of a probability distribution. e(β) is continuous at β = 0 since the defining
integral is uniformly convergent in β (see Lemma 7 below). Thus the limiting density,
fXη exists and is given by

fXη(σ ) = 1

2π

∫ ∞

−∞
1

2α

∫ ∞

−∞
Pη(ξ) exp(−

√
βτη(ξ)− iσβ)dξdβ, (45)

where we have made the substitution ξ = ζ/
√
β. We here switch the order of integra-

tion. This is a non-trivial operation since both integrals are improper. However in this
case we can rigorously justify the manoeuvre. Justification is provided in Appendix A,
Proposition 5,

fXη(σ ) = 1

2πα
Re

∫ ∞

−∞
Pη(ξ)

∫ ∞

0
exp(−

√
βτη(ξ)− iσβ)dβ dξ

= 1

2πα
Re

∫ ∞

−∞
Pη(ξ)

(
1

iσ
−

√
π

2

e3iπ/4τη(ξ)

(−σ)3/2 w

(
e3iπ/4τη(ξ)

2
√−σ

))
dξ. (46)

To evaluate the final integration we have used the following result (a variant of formula
3.462.5 in [GR]),

∫ ∞

0
exp(−ax − b

√
x)dx = 1

a
−

√
π

2

b

a3/2w

(
ib

2a1/2

)
. (47)

To conclude we observe that since
∫ ∞

−∞
Pη(ξ)dξ = 2α ∈ R

the first term in (46) vanishes as it has zero real part. ��
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Some properties of w(z) are discussed in [AS] Chapter 7. We shall use the following

Lemma 2. The function w(z) has the asymptotic expansion

w(z) ∼ i√
π

∞∑
m=0

(2m)!

4mm!z2m+1 (48)

as z → ∞, valid for
−π
4
< arg z <

5π

4
.

Proof. This follows from the asymptotic expansion of erfc,

√
πzez

2
erfc(z) ∼

∞∑
m=0

(2m)!

(4z2)mm!
,

as z → ∞, | arg z| < 3π/4, taken from [AS] (formula 7.1.23; see also [BlHa] Exercise
3.11). The series for w comes from making the substitution z �→ −iz. ��

Since erfc and w are analytic functions, they are bounded in the domain of validity
of their asymptotic expansions quoted in Lemma 2.

Proposition 2. Let z ∈ C and −π/4 < arg z < 5π/4. Then
∫ R

0
zw(zp)dp =

√
π

2
− arg(z)√

π
+ i√

π
log |z| + iCR + O

(
1

|z|2R2

)
, (49)

where CR ∈ R is independent of z, but may depend on R.

Proof. Write z = |z|eiϕ where ϕ = arg z. Then
∫ R

0
zw(zp)dp =

∫ |z|R

0
eiϕw(eiϕp)dp (50)

via p �→ p/|z|. Using Cauchy’s theorem,
∫ |z|R

0
eiϕw(eiϕp)dp =

∫
γ1

w(t)dt =
∫
γ2

w(t)dt +
∫
γR

w(t)dt. (51)

The contours γ1, γ2 and γR in the complex t-plane are illustrated in Fig. 4.
On γ2,

∫
γ2

w(t)dt =
∫ |z|R

0
w(x)dx

=
∫ 1

0
w(x)dx +

∫ |z|R

1

(
w(x)− i√

πx

)
dx +

∫ |z|R

1

i√
πx

dx

=
∫ 1

0
w(x)dx +

∫ ∞

1

(
w(x)− i√

πx

)
dx

−
∫ ∞

|z|R

(
w(x)− i√

πx

)
dx +

∫ |z|R

1

i√
πx

dx

=
∫ ∞

0
e−x2

dx + i × const −
∫ ∞

|z|R

(
w(x)− i√

πx

)
dx +

∫ |z|R

1

i√
πx

dx,
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γ1

|z|R

γR

γ2

|z|Reiϕ

Fig. 4. The contours γ1, γ2 and γR

using w(z) = e−x2
(1 + i erfi z) to separate the real and imaginary contributions. The

imaginary part goes into the constant CR , the value of which is not important since we
shall always be considering only the real part of resulting expressions. By the use of
Lemma 2,∫

γ2

w(t)dt =
√
π

2
+ i × const + i√

π
(logR + log |z|)+ O

(
1

|z|2R2

)
(52)

as R → ∞ uniformly for |z| � c for some c.
On γR ,∫

γR

f (t)dt =
∫ ϕ

0
i|z|Reiθw(|z|Reiθ )dθ

=
∫ ϕ

0
i|z|Reiθ

( −1√
π i|z|Reiθ

+ O

(
1

|z|3R3

))
dθ by Lemma 2

= −ϕ√
π

+ O

(
1

|z|2R2

)
. (53)

Combining (52) and (53) gives (49). ��
The following lemma from probability theory will also be useful.

Lemma 3. Let U,V be random variables, then

P

(
U

V
< η

)
=
∫ 0

−∞
fXη(σ )dσ,

where fXη is the probability density function of the random variable Xη := U − ηV .

Proof. This follows immediately from the fact that

P

(
U

V
< η

)
= P(U − ηV < 0).

��
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5. Proof of Theorem 2

We first observe that
∑v
i=1 Li sec2 knLi∑αv
j=1 Lj sec2 knLj

=
(

1 +
∑αv
j=v+1 Lj sec2 knLj∑v

1=1 Li sec2 knLi

)−1

, (54)

so we can concentrate on finding the probability distribution, F̃ (η), of
∑αv
j=v+1 Lj sec2 knLj∑v

1=1 Li sec2 knLi

as v → ∞. This will be then related to the distribution in which we are interested by a
simple transformation (see Eq. (57) below). In light of Lemma 3, F̃ (η) is given by

F̃ (η) =
∫ 0

−∞
fXη(σ )dσ

with fXη found in Proposition 1. It is more instructive to take the range of integration
from −R2 to 0, with a view to taking the limit R → ∞ later,
∫ 0

−R2
fXη(σ )dσ = −1√

πα
Re

∫ ∞

−∞

∫ 0

−R2
Pη(ξ)

e3π i/4τη(ξ)

4(−σ)3/2 w
(

e3π i/4τη(ξ)√−σ
)

dσdξ.

(55)

The ξ -integral is uniformly convergent by Lemma 10, so we have legitimately switched
the order of integration. We can then write
∫ 0

−R2
fXη(σ )dσ = −1

α
√
π

Re

∫ ∞

−∞

∫ 0

−∞
Pη(ξ)

e3π i/4τη(ξ)

4(−σ)3/2 w
(

e3π i/4τη(ξ)√−σ
)

dσdξ

− −1√
πα

Re

∫ ∞

−∞

∫ −R2

−∞
Pη(ξ)

e3π i/4τη(ξ)

4(−σ)3/2 w
(

e3π i/4τη(ξ)√−σ
)

dσdξ.

The second term vanishes asR → ∞, as shown in Proposition 6. Making the substitution
(−σ)−1/2 = 2p, leads to

F̃ (η) = −1√
πα

Re

∫ ∞

−∞

∫ ∞

0
Pη(ξ)e

3π i/4τη(ξ)w(e
3π i/4τη(ξ)p)dpdξ.

We can apply Proposition 2 with z = e3iπ/4τη(ξ). We can integrate ξ out of the error
term provided by this proposition since∫ ∞

−∞
1

τη(ξ)2
dξ < ∞.

We get, finally,

F̃ (η) = −1

α
√
π

Re

∫ ∞

−∞
Pη(ξ)

(√
π

2
− arg(e3iπ/4τη(ξ))√

π
+ i

log |τη(ξ)|√
π

)
dξ

= 1

2
+ 1

πα
Re

∫ ∞

−∞
Pη(ξ)

(
arg(τη(ξ))− i log |τη(ξ)|

)
dξ. (56)
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This is related to F(η) by

F(η) = 1 − F̃

(
1

η
− 1

)
. (57)

��

6. Scarred States on Finite Star Graphs

We recall that Theorem 3 is concerned with the quantity 〈ψ (n)|f |ψ (n)〉 which can be
written as

〈ψ (n)|f |ψ (n)〉 =
v∑
i=1

∫ Li

0
|ψ(n)i (x)|2fi(x)dx.

Now using (14) and the identity cos2 θ = 1/2 + (1/2) cos 2θ yields

〈ψ (n)|f |ψ (n)〉 =
v∑
i=1

A
(n)
i

2

2

(∫ Li

0
fi(x)dx +

∫ Li

0
cos 2kn(x − Li)fi(x)dx

)
. (58)

Since we are interested in a subsequence knr → ∞, we may hope that the second
integrals do not survive. Thus our prime concern is the prefactors

A
(n)
i

2 = 2 sec2 knLi∑v
j=1 Lj sec2 knLj

,

and to prove the theorem we need to find kn such that the prefactors are small for all i
other than (without loss of generality) 1 and 2.

To do this we study the poles of the function Z(k,L). Let

pn,i := π

Li

(
1

2
+ n

)
.

Then | tanpLi | → ∞ and secpLi → ∞ as p → pn,i .
Since the function Z(k,L) is an increasing function of k, between any two poles

there is a zero. We will use this important feature to “trap” zeros knr of Z(k,L) between
pairs of nearby poles pn,1 and pm,2, also requiring that all other poles are far away (see
Fig. 5). The implications will be that as r → ∞,

sec2 knrLi � sec2 knrLj with i = 1, 2 and j > 2,

and

sec2 knrL1 ∼ sec2 knrL2,

ensuring that (6) holds.
To make the above arguments rigorous we need the following propositions.

Proposition 3. Let the elements of L be linearly independent over Q. Let 1 < v∗ < v

for v � 3. Given ε > 0 there exist infinitely many n ∈ N such that:



No Quantum Ergodicity for Star Graphs 275

knr

ε

Fig. 5. Poles pn,i and nodes �n,i on the real line. Different symbols correspond to different values of i
(the circle corresponds to pn,1). Filled symbols correspond to the poles, empty symbols to the nodes. In
this example v = 5 and v∗ = 2

1. for each i = 2, . . . , v∗ there exists m ∈ N satisfying

|pm,i − pn,1| � ε/2, (59)

2. for all i = v∗ + 1, . . . , v and for all m ∈ N,

|pm,i − pn,1| � π

2Li
− ε/2, (60)

Proof. The idea behind the proof is that for linearly independent elements of L the poles
p·,i for different i behave like independent random variables, therefore every permitted
pole configuration happens infinitely often. To substantiate this claim we express the
nearest-pole distances as the states of an ergodic dynamical system.

For n ∈ N and i = 2, . . . , v∗, let δn,i denote the distance between pn,1 and the
closest pole of tan kLi ;

δn,i := pn,1 − pm,i,

where m is such that

|pm,i − pn,1| = min
m

{|pm,i − pn,1|}.

Since the poles of tan kLi are π/Li-periodic, we have

δn,i + π

2Li
= pn,1 − p0,i + π

2Li
mod

π

Li
(61)

= π

2L1
+ π

L1
n mod

π

Li
. (62)

Let �m,i denote the mth zero of tan kLi . We note that (60) is implied by the condition
that

|�m,i − pn,1| � ε/2

for somem ∈ N. For i = v∗ + 1, . . . , v, define ηn,i to be the distance between pn,1 and
the closest zero of tan kLi . Similarly to (62),

ηn,i + π

2Li
= π

2

(
1

L1
+ 1

Li

)
+ π

L1
n mod

π

Li
. (63)
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From (62) and (63), δn,i and ηn,i satisfy the recurrence{
δn+1,i = δn,i + π

L1
mod π

Li
i = 2, . . . , v∗

ηn+1,i = ηn,i + π
L1

mod π
Li

i = v∗ + 1, . . . , v . (64)

Since the bond lengths are not rationally related, the dynamical system (64) is equiva-
lent to an irrational translation on a torus. In this case, Weyl’s equidistribution result [W]
applies, and any subset of the torus with positive Lebesgue measure is visited infinitely
many times. The volume of the area in δ − η space defined by

−ε/2 < δn,i, ηn,i < ε/2 (65)

is non-zero and so there are infinitely many n for which (65), and therefore (59-60), are
satisfied. ��

The interpretation of Proposition 3 is that we can find situations on the real line where
v∗ poles of the functions tan kLi are bunched together and the remaining v − v∗ poles
are not close to these bunched poles (see Fig. 5).

Proposition 4. Under the conditions of Proposition 3 there is a subsequence (knr ) ⊆
(kn) for which

sec2 knrLi → ∞ for i = 1, . . . , v∗,
sec2 knrLi → 1 for i = v∗ + 1, . . . , v

as r → ∞.

Proof. Let (εr ) be a sequence satisfying εr → 0 as r → ∞. We choose knr as follows.
Applying Proposition 3 with ε = εr yields a set of v∗ poles ofZ(k,L) inside a region

with width εr . Since there is a zero of Z(k,L) between any two poles of Z(k,L), we
can find v∗ − 1 zeros in this region. Set knr to be one of these zeros.

From Proposition 3 we have

|knr − pm,i | � εr for all i = 1, . . . , v∗ and some m = m(r, i),

|knr − �m,i | � εr for all i = v∗ + 1, . . . , v and some m = m(r, i).

Since sec2 Lipm,i = ∞, sec2 Li�m,i = 1 and sec θ is a periodic function, the statement
of the proposition follows trivially. ��
Corollary 1. If v∗ = 2 in Proposition 4 then we additionally have

lim
r→∞

sec2 knrL1

sec2 knrL2
= 1.

Proof. We recall that since knr is an eigenvalue, Z(knr ,L) = 0, and hence

tan knrL1 = − tan knrL2 − tan knrL3 − · · · − tan knrLv. (66)

On the other hand, by Proposition 4, tan knrLi remains bounded for i > 2 and tends to
infinity for i = 1, 2. Dividing (66) through by tan knrL2 we obtain

lim
r→∞

tan knrL1

tan knrL2
= −1.

Further observations that sin2 knrLi → 1 for i = 1, 2 and sec2 θ = tan2 θ/ sin2 θ

conclude the proof. ��



No Quantum Ergodicity for Star Graphs 277

Lemma 4. Let f : [0, L] → R be continuously differentiable. Then

lim
k→∞

∫ L

0
cos(kx)f (x)dx = 0.

Proof. Integration by parts yields

∫ L

0
cos(kx)f (x)dx = 1

k

(
sin(kL)f (L)−

∫ L

0
sin(kx)f ′(x)dx

)

and the statement follows immediately from the boundedness of f and its derivative.
��

Proof of Theorem 3. Without loss of generality, we can assume that i1 = 1 and i2 = 2.
We take the subsequence whose existence is guaranteed by Proposition 4 with v∗ = 2.
By Corollary 1,

lim
r→∞A

(nr )
i

2 = 2


 v∑
j=1

Lj lim
r→∞

sec2 knrLj

sec2 knrLi




−1

=
{

2(L1 + L2)
−1 if i = 1, 2

0 otherwise.

We use Lemma 4 to get rid of the second integrals in (58) and conclude

lim
r→∞〈ψ (nr )|f |ψ (nr )〉 = 1

L1 + L2

(∫ L1

0
f1(x)dx +

∫ L2

0
f2(x)dx

)
.

��
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A. Appendix: The Order of Integration in (45)

In this appendix we deal with some technical issues regarding the change of order of
integration in (45).

We first consider some asymptotics of τη(ξ).

Lemma 5. For ξ ∈ R,

τη(ξ) = α|ξ | + Oη(ξ
−2)

as |ξ | → ∞, where the error estimate depends on η.
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Proof. We first note that τη is an even function, so we may assume ξ > 0, and the result
for ξ < 0 will follow by symmetry. We can write τη(ξ) as

τη(ξ) = √
ηt

(
ξ√
η

)
+ (α − 1)t (ξ),

where

t (ξ) := 2√
π

exp

(
− iπ

4
− iξ2

4

)
+ ξ erf

(
eiπ/4ξ

2

)
. (67)

We expand the error function asymptotically,

erf

(
eiπ/4ξ

2

)
= 1 − erfc

(
eiπ/4ξ

2

)

= 1 − 2

ξ
√
π

exp

(
− iξ2

4
− iπ

4

)
+ O(ξ−3) (68)

as ξ → ∞. Substituting (68) into (67) gives

t (ξ) = ξ + O(ξ−2), as ξ → ∞, (69)

and the lemma follows. ��

Lemma 6. For ξ > 0, Re
dτη
dξ

� 0 and for all ξ ∈ R, there exists τ ∗ > 0 such that

Re τη(ξ) � τ ∗.

Proof. By differentiation,

dt

dξ
= erf

(
eiπ/4ξ

2

)

= 2√
π

eiπ/4
∫ ξ/2

0
e−ir2

dr.

We see that

Re
dt

dξ
= 2√

π

∫ ξ/2

0
cos

(
r2 − π

4

)
dr � 0.

Thus,

Re
dτη
dξ

= Re t ′
(
ξ√
η

)
+ (α − 1)Re t ′(ξ) � 0.

Hence it follows that Re τη(ξ) � Re τη(0) = √
2(

√
η + α − 1)/

√
π =: τ ∗. ��

Lemma 7. The integral ∫ ∞

0
Pη(ξ) exp

(
−
√
βτη(ξ)

)
dξ

is uniformly convergent for β ∈ [0, β0] for all β0 > 0.
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Proof. By making the substitution ν = ξ2 we can consider the uniform convergence of
∫ ∞

Pη(
√
ν) exp

(
−
√
βτη(

√
ν)
) dν√

ν
.

Let

f (ν, β) := 1

ν1/4 exp
(
−
√
βRe τη(

√
ν)
)
,

φ(ν, β) := Pη(
√
ν)

ν1/4 exp
(
−
√
βiIm τη(

√
ν)
)
.

By Lemma 5, Im τη(
√
ν) = O(ν−1) as ν → ∞. (We drop the η-dependence since we

are concerned here only with fixed η.) So

exp
(
−
√
βiIm τη(

√
ν)
)

= 1 + O(ν−1) (70)

uniformly for β ∈ [0, β0]. This means that
∫ ∞

φ(ν, β)dν

converges uniformly, i.e. given any ε > 0 there exists ν1 such that for any ν2 > ν1,
∣∣∣∣
∫ ν2

ν1

φ(ν, β)dν

∣∣∣∣ < ε

for all β ∈ [0, β0]. f (ν, β) is differentiable in ν, and decreasing, so that

∂f

∂ν
� 0.

If we let ψ(ν, β) := ∫ ν
ν1
φ(ν′, β)dν′ then integrating by parts gives

∫ ν2

ν1

f (ν, β)φ(ν, β)dν = f (ν2, β)ψ(ν2, β)−
∫ ν2

ν1

∂f

∂ν
(ν, β)ψ(ν, β)dν

� f (ν2, β)ε − ε

∫ ν2

ν1

∂f

∂ν
dν

= εf (ν1, β),

where we have used the mean value theorem for integrals. If additionally, ν1 > 1 then
f (ν1, β) < 1 and we are done. ��
Corollary 2.

∫ ∞

0

∫ 1

0
Pη(ξ)e

−√
βτη(ξ)−iσβdβdξ =

∫ 1

0

∫ ∞

0
Pη(ξ)e

−√
βτη(ξ)−iσβdξdβ. (71)

Proof. This follows immediately from Lemma 7, see, for example, §11.55.II of [St].
��
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Lemma 8. The integral
∫ ∞

1
exp

(
−
√
βτη(ξ)− iσβ

)
dβ

is uniformly convergent for ξ ∈ [0, ξ0] for all ξ0 > 0.

Proof. We, in fact, prove the stronger statement that the integral in question is uniformly
convergent for all ξ > 0. Taking M(β) := e−τ∗√β ,

| exp
(
−
√
βτη(ξ)− iσβ

)
| � M(β)

and the integral is uniformly convergent by the Weierstrass M-test. ��
Lemma 9. The iterated integral

∫ ∞

0

∫ R2

1
Pη(ξ)e

−√
βτη(ξ)−iσβdβdξ (72)

converges uniformly for R > 1.

Proof. We shall first consider the case where σ < 0. A lengthy calculation gives

∫ R2

1
e−√

βτη(ξ)−iσβdβ = 1

iσ
e−iσ−τη(ξ) − 1

iσ
e−iR2σ−Rτη(ξ)

−
√
πτη(ξ)

2e−3π i/4(−σ)3/2 exp

(
τη(ξ)

2

4iσ

)[
erfc

(
e−iπ/4√−σ

+ τη(ξ)eiπ/4

2
√−σ

)
− erfc

(
Re−iπ/4√−σ + τη(ξ)eiπ/4

2
√−σ

)]
.

By Lemma 5, τη(ξ) ∼ αξ as ξ → ∞, so

∫ ∞

0
Pη(ξ)e

−iR2σ−Rτη(ξ)dξ

is uniformly convergent for R > 1 by the WierstrassM-test withM(ξ) := Ce−τη(ξ) for
some constant C which does not depend on ξ .

We can write

exp

(−iτη(ξ)2

4σ

)
erfc

(
Re−iπ/4√−σ + τη(ξ)eiπ/4

2
√−σ

)

= exp
(
−R2iσ − Rτη(ξ)

)
w

(
Reiπ/4√−σ + τη(ξ)e3π i/4

2
√−σ

)

and since w(z) = O(z−1) as z → ∞ and |τη(ξ)| � τ ∗,

w

(
Reiπ/4√−σ + τη(ξ)e3π i/4

2
√−σ

)
= O(1)
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as ξ → ∞, uniformly for R > 1. Since | exp(−Rτη(ξ))| � exp(−τη(ξ)) we see that
the convergence of

∫ ∞

0
Pη(ξ)τη(ξ) exp

(−iτη(ξ)2

4σ

)
erfc

(
Re−iπ/4√−σ + τη(ξ)eiπ/4

2
√−σ

)
dξ

is uniform for R > 1, by the Wierstrass M-test.
In the case σ = 0 we have the simpler integral

∫ R2

1
exp(−

√
βτη(ξ))dβ = 2

τη(ξ)2

(
τη(ξ)

(
e−τη(ξ) − Re−Rτη(ξ)

)

+
(

e−τη(ξ) − e−Rτη(ξ)
))
.

The integral with respect to ξ then converges uniformly by the WierstrassM-test, since

| exp(−Rτη(ξ))| � exp(−Re τη(ξ))

and

|R exp(−Rτη(ξ))| � 2

τ ∗e
exp(− 1

2Re τη(ξ))

for R > 1. ��
The following theorem from §11.55.III of [St] describes criteria which permit the

change of order of two improper integrals.

Theorem 4. Let f (x, α) be continuous in α1 � α � α2 and c � x � d, where both α2
and d may be arbitrarily large, and;

i)
∫ ∞

c

f (x, α)dx be uniformly convergent for α ∈ [α1, α2],

ii)
∫ ∞

α1

f (x, α)dα be uniformly convergent for x ∈ [c, d],

iii)
∫ ∞

c

∫ R

α1

f (x, α)dαdx be uniformly convergent for R ∈ [α1,∞],

then ∫ ∞

α1

∫ ∞

c

f (x, α)dxdα =
∫ ∞

c

∫ ∞

α1

f (x, α)dαdx.

Applying Theorem 4 to the integral in (45) allows us to conclude the following.

Proposition 5.∫ ∞

0

∫ ∞

0
Pη(ξ) exp(−

√
βτη(ξ)− iσβ)dξdβ

=
∫ ∞

0

∫ ∞

0
Pη(ξ) exp(−

√
βτη(ξ)− iσβ)dβdξ.

Proof. This follows from Theorem 4 with Lemmas 7, 8 and 9, together with Corollary
2. ��
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B. Appendix: Simplification of (55)

We here consider some technical points that arise in Sect. 5.

Lemma 10. The integral

Re

∫ ∞

0
Pη(ξ)

(
e3iπ/4τη(ξ)

2(−σ)3/2 w
(

e3iπ/4τη(ξ)

2
√−σ

))
dξ (73)

is uniformly convergent for σ ∈ [−R2, 0] for any R > 0.

Proof. Expanding the w function, using Lemma 2,

e3π i/4τη(ξ)

2(−σ)3/2 w
(

e3iπ/4τη(ξ)

2
√−σ

)
= 1

iσ
+ O

(
1

τη(ξ)2

)

as ξ → ∞ where the implied constant is independent of σ ∈ [−R2, 0]. Since
∫∞

0 Pη(ξ)

dξ = α the leading order term in the expansion of (73) has zero real part, and the integral
of the remainder converges since τη(ξ)−2 ∼ (αξ)−2 as ξ → ∞. ��
Proposition 6. We have

lim
R→∞

∫ ∞

0

∫ −R2

−∞
Pη(ξ)

(
e3iπ/4τη(ξ)

2(−σ)3/2 w
(

e3iπ/4τη(ξ)

2
√−σ

))
dσdξ = 0.

Proof. We make the substitution 2p = (−σ)−1/2 to give

∫ −R2

−∞
e3iπ/4τη(ξ)

2(−σ)3/2 w
(

e3iπ/4τη(ξ)

2
√−σ

)
dσ =

∫ 1/2R

0
2e3iπ/4τη(ξ)w(e

3iπ/4τη(ξ)p)dp

=
∫
γξ,R

2w(t)dt,

where t ∈ C follows the contour γξ,R connecting 0 to
e3iπ/4τη(ξ)

2R
. Sincew is an analytic

function, we can write

∫ −R2

−∞
e3iπ/4τη(ξ)

2(−σ)3/2 w
(

e3iπ/4τη(ξ)

2
√−σ

)
dσ = 2W

(
e3iπ/4τη(ξ)

2R

)
,

where W is the antiderivative of w satisfying

dW

dz
= w(z) and W(0) = 0.

By making the substitution ξ �→ Rξ , we see that

∫ ∞

0
Pη(ξ)W

(
e3iπ/4τη(ξ)

2R

)
dν =R

2

∫ 1

0
Pη(R

√
ν)W

(
e3iπ/4τη(R

√
ν)

2R

)
dν√
ν

+ R

∫ ∞

1
Pη(Rξ)W

(
e3iπ/4τη(Rξ)

2R

)
dξ, (74)
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where we have, additionally, split the range of integration into two regimes and the first
integral made the substitution ν = ξ2. For the first integral in (74) we consider

∫ 1

0

R

2
exp

(
iπ

4
− iR2ν

4

)
W

(
e3iπ/4τη(R

√
ν)

2R

)
dν√
ν

which comes from the first term of Pη(R
√
ν). The second term of Pη can be handled in

the same way. Differentiating,

d

dν

[
W

(
e3iπ/4τη(R

√
ν)

2R

)]
= e3iπ/4

4
√
ν
w

(
e3iπ/4τη(R

√
ν)

2R

)
τ ′
η(R

√
ν). (75)

Since
dτη
dξ

is bounded for ξ ∈ R, we deduce from (75) that there exists a constant K

independent of R such that
∣∣∣∣ d

dν

[
W

(
e3iπ/4τη(R

√
ν)

2R

)]∣∣∣∣ � K√
ν
. (76)

Let

ψ(ν) := −√
π erfc

(
Reiπ/4√ν

2

)

which satisfies

dψ

dν
= R

2
√
ν

exp

(
iπ

4
− iR2ν

4

)
.

We can then use integration by parts,
∫ 1

0

R

2
exp

(
iπ

4
− iR2ν

4

)
W

(
e3iπ/4τη(R

√
ν)

2R

)
dν√
ν

(77)

=
[
ψ(ν)W

(
e3iπ/4τη(R

√
ν)

2R

)]1

0
−
∫ 1

0
ψ(ν)

d

dν

[
W

(
e3iπ/4τη(R

√
ν)

2R

)]
dν

→ 0 (78)

as R → ∞, since

W

(
e3iπ/4τη(0)

2R

)
→ 0

and

erfc

(
Reiπ/4

2

)
→ 0

and the fact that the final integral in (78) converges uniformly by (76).
For the second integral in (74) we apply Taylor’s theorem and Lemma 5 to get

W

(
e3iπ/4τη(Rξ)

2R

)
= W

(
e3iπ/4αξ

2

)
+ O

(
1

R3ξ2

)
.
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This gives

R

∫ ∞

1
Pη(Rξ)W

(
e3iπ/4τη(Rξ)

2R

)
dξ = R

∫ ∞

1
Pη(Rξ)W

(
e3iπ/4αξ

2

)
dξ + O(R−2)

as R → ∞. The integral which remains is of a form for which the asymptotic series
may be derived by the method of repeated integration-by-parts [BlHa] to see that this
contribution also vanishes in the limit R → ∞. ��
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