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Abstract. We study a special case of multistate maps, piecewise linear interval maps

with hysteresis. The main object of study is the global attractor. We ® nd the conditions for

it to be lower semicontinuous. We also prove that it coincides with the non-wander ing set

and prove several facts about omega-limit sets of the discontinuity points of the map.

1 General introduction

The present paper deals with a discrete-time version of hysteric behaviour. Hyster-

esis phenomena are present in various areas of science, from physics to biology.

Generally speaking, a system with hysteresis has an input± output relation composed

of a number of branches and a memory mechanism which uniquely determines

the branch to be followed at each time. For more details on varieties of hysteresis,

see Macki et al. (1993).

We model an input± output relation composed of two branches only, the branch

being chosen depending on the output and the history of the system. More

precisely, we consider two functions, f0 and f1 , of a real variable x, such that

f0(x)>x and f1(x)<x

The variable x is mapped iteratively by one of the functions until it leaves a

prede® ned interval. `Control’ is then passed to the other function and so on.

We consider the simplest type of maps possible (the functions f0 and f1 are linear)

and this allows us to reveal many surprising properties. The main object of study

is the global attractor (or limit image of the whole space under the map), see Fig. 1.

Under some additional assumptions this set turns out to be the biggest (by the

de® nition) and the smallest attractor of the system. Furthermore, it coincides with

the omega-lim it set of any point (i.e. with the set of accumulation points of the

trajectory of the point) in the space, and, as a consequence, the non-wandering set

of the system (see De® nition 3). Thus it provides us with a non-trivial, but

understandable example of what behaviour a hysteric dynamical system may

exhibit.

We have collected all relevant de® nitions in Section 3 for ready reference. All

the results of this section (Lemmas 1 and 2 and Theorem 1) are straightforward
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Fig. 1. G raph of the globa l at t racto r o f a piecewise linear m ap with hysteresis. The

globa l att ractor L is p lot ted as function o f the pa ram eter b .

and we omit the proofs. Some de® nitions use standard notation from logic which,

in our opinion, is very natural for the subject under discussion.

The paper is based on the author’ s MPhil research project (Berkolaiko, 1997)

which was supervised by Dr M. Grinfeld and supported by an ORS Scholarship

and University of Strathclyde Research Scholarship.

2 De® nition of maps with hysteresis

The phenomenon of `hysteresis’ , that is (in the de® nition of Visintin (1994)) of

rate-independent memory eþ ects, is widespread in the natural sciences. It is

frequently encountered in mechanics (slip± stick fr iction) and in electric circuits

(involving nonlinear inductances with a saturable core). A good bibliography on

these subjects is contained in Visintin (1994). Perhaps less well known are the

applications of hysteretic models to economics (for example, Cross (1993) and

Piscitelli et al. (1998)); hysteresis is inherent in the well-known Dixit ± Pindyck

theory of investment (Dixit & Pindyck, 1994). One could also easily construct

hysteretic models of conformation change in multivalent macromolecules.

In the present paper we treat simple mappings with hysteresis from the point of

view of (non-smooth) dynamical systems theory. Such maps ® t in the general

theory of multistate maps brie¯ y described later in this section. A theory of such

maps requires a signi® cant modi® cation of the techniques introduced for Lorenz

maps (Glendinning & Sparrow, 1993; Hubbard & Sparrow, 1990). Note that in
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all known cases of models in hysteresis the resulting dynamical system has continu-

ous time (see, however, Piscitelli et al. (1998)). The main motivation for the present

work is the belief that discrete dynamical systems of the type treated here will arise

as PoincareÂ maps of ordinary diþ erential equations (ODEs) with hysteresis, as in

LCR circuits with saturable cores.

First we de® ne `multistate maps’ . Given a metric space Y and an index set S,

which may be discrete or continuous, de ® ne for each s Î S a subset of Y, U s . By a

`multistate map’ (Grinfeld et al., 1996) we mean a discrete time dynamical system

de® ned on

X 5 Ä
s Î S

U s 3 {s} Ì Y 3 S (1)

We call the elements of Y `observables’ , while elements of S are `states’ . Given an

observable xn and state sn , we generate a new observable xn + 1 by the transformation

xn + 1 5 f (xn , sn )

In turn, having determined the new observable xn + 1 we generate a new state sn + 1 by

sn + 1 5 g(xn + 1 , sn )

The simplest case of multistate maps are `interval maps with hysteresis’ . Here the

index set S 5 {0, 1} and the metric space Y 5 R
1 . The functions f (´, 0) 5 f0 and

f (´, 1) 5 f1 are continuous non-decreasing functions de® ned on intervals [a, b ] and

[ a , b], respectively, where 0 < a < a < b < b

f0(x) > x, f1(x) < x

and

f0( b ) 5 b and f1( a ) 5 a

Thus, the space of equation (1) reduces to

X h 5 ([a, b ] 3 {0})e ([ a , b] 3 {1}) (2)

Throughout the work, a point x Î Xh will designate the pair (x, s). Sometimes we

use functions Obs(x) and St(x) to refer to observable x and state s, respectively.

The topology on the space Xh is induced by the standard R topology, i.e. U Ì X h

is open if and only if

U 5 ((U0 f [a, b ]) 3 {0}) e ((U1 f [ a , b]) 3 {1})

where U0 and U1 are open subsets of real line. In a similar way, we de® ne the

measure on Xh , induced by Lebesgue measure on R

l (U ) 5 l (U0 f [a, b ]) + l (U1 f [ a , b])

the partial ordering of Xh (we compare only points of the same state) and the

distance q between two points of the same state. We extend the de® nition of the

metric q on X h to points of any state by setting q (x, y) 5 P if St(x) ¹ St(y), where

the constant P is su ý ciently large to guarantee the triangle inequality. With this

metric Xh becomes a compact metric space. Having de® ned the metric we can

de® ne limit and continuity in the standard way.
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The mapping itself is de® ned on Xh as follows: f (x i , si) 5 (x i + 1, si + 1 ), where

x i + 1 5 fs i
(x i) and si + 1 5 {

0, if x i + 1 Î [a, a )

1, if x i + 1 Î ( b , b]

si , otherwise

with an initial point (x0 , s0 ) Î Xh.

As one can see, the periods of action of the two functions alternate and each

function, f0 and f1 , is applied as long as possible. The state switches when the

observable leaves the domain of de® nition of the corresponding function.

When b 5 a the map f reduces to a single-valued function with one discontinuity,

a `Lorenz-type map’ . This type of map has been thoroughly discussed in the

literature (Glendinning & Sparrow, 1993; Hubbard & Sparrow, 1990).

In our work we examine a special case of maps with hysteresis, the piecewise

linear map with hysteresis (PLMH). The PLMH is given by

f0(x) 5 c 0x, f1(x) 5 c 1x

where c 0>1> c 1 , b > a >0 and a 5 c 1 a , b 5 c 0 b . An example of the PLMH is shown

in Fig. 2. It turns out that dynamics of PLMH is fully determined by the dynamics

of its discontinuity points de® ned as preimage points of a and b (see later). For

instance, under certain conditions, the omega-lim it set of any point coincides with

the omega-lim it set of one of the discontinuity points; the non-wandering set

coincides with the global attractor which, in turn, is equal to the union of the

omega-lim it sets of the discontinuity points and their trajectories.

The paper is constructed as follows: ® rst we give the relevant de® nitions and

study some basic properties of PLMH. After proving two lemmas about omega-

limit sets of discontinuity points (which illustrate the major technique used in the

paper) we formulate and prove our main theorems.

3 General de ® nitions

In order to compensate for the discontinuity of a map with hysteresis we will be

considering its set-valued extension (see, for example, Akin (1993), Aubin and

Frankowska (1990) and Mrozek (1996). Let f be a (single or set-valued) map. The

image of a set A under f is f (A) 5 e x Î A f (x) . Iterations of the map f are de® ned by

induction f
k + 1(A) 5 e x Î f k(A) f (x). Given a set A we de® ne its forward trajectory by

Fwd(A) 5 e `
i 5 0 f

i (A).

De® nition 1. A point x is a `periodic point’ for f if x Î f
n(x) for some n>0. A point

is called `eventually periodic’ if f
k(x) contains a periodic point for some k.

De® nition 2. The `omega-lim it set’ of a set U is the set

x (U ) 5 {x Î X : ’ {n i}
`
i 5 1 , ’ { y i}

`
i 5 1 Ì U, ’ {x i}

`
i 5 1 Ì X [(x i Î f

ni ( yi )) Þ (x i ® x)]}

where the arrow ® denotes convergence.

De® nition 3. A point x Î X is called `non-wandering’ if for any open U Ì X , x Î U,

there is an integer k such that f
k(U )f U, ¹ ‡. The set X of all non-wandering points

is called the `non-wandering set’ .
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Fig. 2. A n exam ple o f a p iecewise linear m ap with hysteresis and a typ ical t ra jecto ry.

De® nition 4. A point x
2 k is said to be a k-preimage’ of x under a map f if x Î f

k(x
2 k).

Note that the preimage is not necessar ily unique.

De® nition 5. A set-valued function f: X ® C(Y ), where C(Y ) 5 {F Ì Y : F is closed},

is `upper semicontinuous’ at x0 if

; {x i}
`
i 5 1 Ì X ; { y i}

`
i 5 1 Ì Y [( y i Î f (x i)), (x i ® x0 ), ( yi ® y0 ) Þ y0 Î f (x0 )]

De® nition 6. A set-valued function f: X ® C(Y ) is `lower semicontinuous’ at x0 if

; y0 Î f (x0 ) ; {x i}
`
i 5 1 Ì X [(x i ® x0 ) Þ ’ { y i}

`
i 5 1 Ì Y [ y i Î f (x i), yi ® y0 ]]

In our study of families of maps we will need a notion of convergence of set-

valued functions.

De® nition 7. Let fn be a sequence of set-valued maps. We say that it is weakly

upper convergent to a map f if for any subsequence {m i}
`
i 5 1

; {x i}
`
i 5 1 Ì X ; { yi }

`
i 5 1 Ì Y [( y i Î fmi

(x i)), (x i ® x), ( yi ® y) Þ y Î f (x)]
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Loosely speaking, if there is a sequence {(xnÂ , ynÂ )} in the graphs of the functions fn

which converges to a point (x, y) then y Î f (x). Note, that this notion diþ ers from

upper graphical convergence (Aubin & Frankowska, 1990): in our case the graph

of f may be `bigger’ than the upper limit of graphs of fn .

De® nition 8. Let { f k } k Î K be a family of set-valued maps. We say, that it is `weakly

upper continuous’ at a point k 0 if for any sequence k n ® k 0 the sequence of functions

f k n
is weakly upper convergent to the function f k 0

.

We will also make use of the lower variant of convergence of maps. Again, our

de® nition of `weak lower convergence’ diþ ers from lower graphical convergence

(Aubin & Frankowska, 1990). We introduce this diþ erence in order to ensure that

properties of weak upper and lower convergence are inherited by iterated functions

f
k
n , see Lemma 1.

De® nition 9. Let fn be a sequence of set-valued maps. We say that it is `weakly

lower convergent’ to a function f if

; y0 Î f (x0 ) ; {x i}
`
i 5 1 Ì X [(x i ® x0 ) Þ ’ { y i}

`
i 5 1 Ì Y[ y i Î fi(x i), y i ® y0 ]]

A family { f k } k Î K of set-valued maps is said to be `weakly lower continuous’ at a

point k 0 if for any sequence k n ® k 0 , the sequence of functions f k n
is weakly lower

convergent to the function f k 0
.

De® nition 10. A family { f k } k Î K of set-valued maps is `weakly continuous’ if it is

weakly upper and lower continuous.

Lemma 1. Let a family { f k } k Î K of set-valued maps be weakly lower continuous at

a point k 0 . Then for every k the family { f k

k } k Î K is weakly lower continuous at k 0 .

For the proof of this lemma we refer to Berkolaiko (1997).

3.1 Global attractor

Let f be an upper semicontinuous set-valued map, f : X ® C(X ), on a compact

metric space X.

We de® ne the `global attractor’ (Hale, 1988) of the space X under the map f by

L 5 lim
n ® `

f
n(X ) 5 ´

`

n 5 0

f
n (X )

The set L is non-empty, closed and invariant in the sense that f (L) 5 L. For the

proofs of the subsequent results in this section we refer to Berkolaiko (1997).

Lemma 2. Let f : X ® C(X ) be an upper semicontinuous map. Then the non-

wandering set X is contained in the global attractor L.

Now let { f k } k Î K be a family of set-valued maps weakly upper continuous at a

point k 0 . One can consider the global attractor L as a set-valued function L( k )

depending on the parameter k . Then we have the following theorem (for more

general results, see (Conley (1972)).

Theorem 1. The function L( k ) is upper semicontinuous at k 0 .
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Fig. 3. A n exam ple o f a PLM H with param eters such that the globa l at t racto r, a s a

function o f the pa ram eter a, wou ld be lower d iscon t inuous. H ere po in t ( a , 1) belongs

to the global at t racto r and is isolated in it . Fo r va lues o f the pa ram eter a>a0 this

po in t does no t belong to the att ractor any m ore wh ich causes lower d iscon t inuity o f

the globa l att racto r.

However, the same is not true about lower semicontinuity. A very simple example

is given in Fig. 3, where the isolated point ( a ,1) belongs to the set L for b 5 b0 and

does not belong to it for the values of b slightly less than b0 .

4 Basic properties of the PLMH

The piecewise linear map with hysteresis is a map with

f0(x) 5 c 0k and f1(x) 5 c 1x

and

a
a

c 1

and b 5
b

c 0

A map with hysteresis, as de® ned above, is not continuous.
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Notation. If the points ( f
2 1
1 ( a ), 1) and ( f

2 1
0 ( b ), 0) belong to the space X h we call

them `discontinuity points’ and denote them by a
2 1 and b

2 1, respectively.

At the point a
2 1, the map f is discontinuous:

f (Obs(x), 1) 5 {( f1 (Obs(x)), 1) if x > a
2 1

( f1 (Obs(x)), 0) if x< a
2 1

where St(x) 5 1 and therefore comparison of x with a
2 1 is legitimate. The situation

is the same with the point b
2 1. In order to make use of facts derived in the previous

section we have to rede® ne f in such a way that it becomes continuous.

One of the ways of rede® nition (for the other, see Berkolaiko (1997) and

Hofbauer (1986)) is to consider the map f as a set-valued map, i.e. to set

f ( a
2 1) 5 {( a , 1), ( a , 0)} and f ( b

2 1) 5 {( b , 1), ( b , 0)}

With this de® nition the map f becomes an upper semicontinuous set-valued map,

it is also lower semicontinuous everywhere except at the points a
2 1 and b

2 1. From

now on by f we will understand the extended set-valued map.

De® nition 11. A map with hysteresis f is said to be `topologically expansive’ if for

any points x and y, which are not preimages of the discontinuity points, there is

an iteration n such that

St( f
n(x)) ¹ St( f

n(y))

The following lemma (Berkolaiko, 1997) gives the relation of this de® nition to the

alternative ones (Hubbard & Sparrow, 1990).

Lemma 3. The following statements are equivalent:

(1) f is topologically expansive.

(2) Preimages of the points a
2 1 and b

2 1 are everywhere dense in Xh .

(3) There exists e >0 such that for any points x and y, which are not preimages

of the discontinuity points

q ( f
i(x), f

i(y))> e

for some i.

The proof is straightforward and we omit it.

It will be shown later that a PLMH is either topologically expansive or has very

simple dynamics: all forward trajectories are ® nite.

Lemma 4. A piecewise linear map with hysteresis has periodic points if and only

if c
k
0 c 1

l
5 1 for some integers k and l. If there are any periodic points then each point

is eventually periodic. Moreover, for any x the set Fwd(x) is ® nite.

Proof. It is easy to see that existence of periodic points implies that c
k
0 c

l
15 1. To

prove the converse we consider all irreducible numbers of the form x c
i
0c 1

j , where

x 5 (x, s) is a point from Xh . We call a number irreducible if and only if there are

no iÂ and jÂ such that

iÂ < i, jÂ < j and c
iÂ
0 c

jÂ
1 5 c

i
0 c

j
1
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In other words, either i must be less than k or j less than l (otherwise take iÂ 5 i 2 k

and jÂ 5 j 2 l). This condition and condition 0<a<x c 0
i
c 1

j <b clearly imply that

there is only a ® nite number of possibilities for i and j.

For any n we have Obs( f
n(x)) 5 x c 0

i
c 1

j and, since there is only a ® nite number of

possibilities, Fwd(x) is ® nite. From this we deduce that all points are eventually

periodic. Note that the period k and the cardinality of the set Fwd(x) are uniformly

bounded. j
Another way to formulate this lemma is to say, that a PLMH has periodic points

if and only if ln c 1/ ln c 0 is rational. Observe that in this case x Î L if and only if x is

periodic (and not just eventually periodic).

A useful property of PLMH is the existence of a `non-increasing measure’ .

De® nition 12. The measure l is said to be `non-increasing’ under a map f if for

any open set U

l ( f (U )) < l (U )

Remark. The measure d l 5 d ln x is non-increasing under a PLMH. Moreover, if

St(x) 5 St(y) for any x ,y Î U then l ( f (U )) 5 l (U ). This measure is equivalent to

Lebesgue measure l L on the interval [a, b] in the sense that

m l (A) < l L(A) < M l L(A)

for any A Ì [a, b].

Now we consider a family of piecewise linear maps with hysteresis which are

obtained by varying one of the parameters a , b , c 0 or c 1 . This family is weakly

continuous at every point and, therefore, L( k ) as a function of the parameter is

upper semicontinuous at every point. We cannot say the same about lower

semicontinuity. However, we observe that in the example of a non-continuous L( k )

(see Fig. 3) a crucial role is played by a trajectory which connects two discontinuity

points.

Conjecture 1. The function L( k ) is lower semicontinuous if

a
2 1 Ï Fwd( b

2 1) b
2 1 Ï Fwd( a

2 1)

We will prove the conjecture in the case when ln c 1/ ln c 0 is irrational after learning

some properties of the discontinuity points a
2 1 and b

2 .

5 Principle of equivalent distance

Our subsequent analysis will be based mostly on the following principle:

Theorem 2 (Principle of Equivalent Distance). Let an interval (x, y) Ì X h contain no

k-preimages of the discontinuity points, where k 5 1, . . . , K . Then the set f
k((x, y))

is a connected open interval for k 5 1, . . . , K and

C1 r < q ( f
k(x) + , f

k(y) 2 ) < C 2 r
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where r 5 q (x, y), k 5 1, . . . , K

f
k(z0 ) 6 5 lim

z ® z0 6
f

k(z)

and C1 and C2 are constants depending on f only.

Since there are no preimages of the discontinuity points, f
k is continuous on

(x, y) and the ® rst part of the theorem is settled. Now the second part follows

immediately from the existence of a measure l , equivalent to Lebesgue measure

l L , such that

l ((x, y)) 5 l ( f
k((x, y)))

Indeed, if m l (U ) < l L(U ) < M l (U ) then

q ( f
k(x) + , f

k(y) 2 ) 5 l L( f
k((x, y))) < 1/m l ( f

k((x, y)))

5 1/m l ((x, y)) < M /m l L((x, y)) 5 M /mr

6 Preimages of the discontinuity points

One straightforward application of the Principle of Equivalent Distance is the

following theorem:

Theorem 3. Let ln c 1/ ln c 0 be irrational. Then the set of preimages of the discontinu-

ity points a
2 1 and b

2 1 is everywhere dense in X h .

Proof. Here we use an argument similar to the one in Hubbard and Sparrow

(1990). Let A be the set of preimages of the discontinuity points a
2 1 and b

2 1. We

are going to prove the closure AÅ 5 X.

Assume the contrary, B 5 X AÅ is non-empty. The set B is open by de® nition,

therefore it is a countable collection of intervals. Now we take an arbitrary interval

B 0 Ì B from the collection. The set B is mapped into itself, f (B ) Ì B , therefore B 0

is mapped continuously by f to another interval, which we denote by B 1 : f (B 0 ) Ì B 1.

Proceeding by induction we get the sequence {B i}
`
i 5 0 , f (B i) Ì B i + 1 .

Interval B i is new for each i, i.e. B i ¹ B j when i ¹ j. Otherwise, there exist i and

j such, that f
j(B i) Ì B i . B i does not contain preimages of points a

2 1 and b
2 1,

therefore f
j is continuous on B i and has a ® xed point. However, f does not have

periodic points and we get a contradiction.

Now by the Principle of Equivalent Distance we have

l (B j ) > l ( f
j(B 0 )) > C1 l (B 0 )

for any j, where l is (Lebesgue) measure. Therefore

` > l (Xh ) > R
`

i 5 0

l (B i) > C1 R
`

i 5 0

l (B 0 ) 5 `

and we get a contradiction. j

Corollar y 1. A piecewise linear map is topologically expansive if and only if

ln c 1/ ln c 0 is irrational.
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7 Omega-limit sets of the discontinuity points

The following lemmas are proven under the assumption that ln c 1/ ln c 0 is irrational

and the condition

b
2 1 Ï Fwd( a

2 1), a
2 1 Ï Fwd( b

2 1) (3)

is satis® ed.

Lemma 5. Let the set of preimages of the points a
2 1 be everywhere dense. Then

the global attractor L 5 x ( a
2 1).

Proof. The conditions of the lemma imply that for any point x and ® xed k the set

f
k(x) consists of two points at most. Indeed, the map f is single-valued everywhere,

except the points a
2 1 and b

2 1. If a point x is a preimage of a
2 1 then the set f

k(x)

will consist of two values for su ý ciently large values of k. But further division is

impossible because f
k( a

2 1) cannot contain a
2 1 again ( f has no periodic points) and

cannot contain b
2 1 due to condition (3).

The structure of the map f implies that for any x0 two possib le values of f
k(x0 ) are

lim
x ® x0 2 f

k(x) and lim
x ® x0 + f

k(x)

Now every point y Î L has a k-preimage yk such that

lim
x ® yk 2 f

k(x) 5 y or lim
x ® yk + f

k (x) 5 y (4)

It is easy to see that for any e >0 there is N such that n-preimages of the point a
2 1,

n 5 1, . . . , N form a e /2-net of the space X h . Let yk be a k-preimage of a point y,

k>N and y is the limit of f
k(x) as x ® yk from the left, without loss of generality.

The open interval (yk 2 e , yk ) contains at least one of the n-preimages of the point

a
2 1, n 5 1, . . . , k. Let a

2 j be the nearest to yk . Then the interval ( a
2 j, yk ) satis® es

the conditions of the Principle of Equivalent Distance and applying f
k we obtain

lim
x ® a 2 j +

f
k(x) 5 z Î Fwd( a

2 1), lim
x ® yk 2

f
k(x) 5 y, and q (z, y)<C2 e

Since e was arbitrary and C 2 is ® xed we can ® nd an image of a
2 1 in any

neighbourhood of y. Therefore, y Î x ( a
2 1).

The converse, x ( a
2 1) Ì L , is always true. j

Lemma 6. Let the sets X a and X b of limit points of the preimages of a
2 1 and b

2 1

be non-empty. Then L 5 x ( a
2 1) 5 x ( b

2 1).

Proof. First of all, Theorem 3 implies that

X h 5 X a e X b

It is easy to see that there are points p1 and p2 such that for any e there are

preimages of a
2 1 in the intervals (p1 2 e , p1 ) and (p2 , p2 + e ) and preimages of b

2 1

in the intervals ( p1 , p1 + e ) and ( p2 2 e , p2). Next we ® nd the intervals

( a
2 j1 , b

2 k1 ) Ì ( p1 2 e , p1 + e ) j1 < k1

( a
2 j2 , b

2 k2 ) Ì ( p1 2 e , p1 + e ) j2 > k2
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( b
2 j3 , a

2 k3 ) Ì ( p2 2 e , p2 + e ) j3 < k3

( b
2 j4 , a

2 k4 ) Ì ( p2 2 e , p2 + e ) j4 > k4

to satisfy the Principle of Equivalent Distance.

Applying the function f
n 2 1, n 5 max{ j, k}, to each interval we get that a

2 1 is a

limit point of images of b
2 1 with limiting sequences approaching from both left

and right. The same is true about b
2 1. Thus we have

Fwd( a
2 1) Ì x ( b

2 1)

Fwd( b
2 1) Ì x ( a

2 1)

However, observe, that x (x) Ì Fwd(x) for any x and, therefore, x ( b
2 1) 5 x ( a

2 1).

Now we repeat the proof of Lemma 5 to conclude that any y Î L is contained either

in x ( b
2 1) or in x ( a

2 1), but since they coincide we obtain

L 5 x ( b
2 1) 5 x ( a

2 1)

The lemma is proved. j

Assume that condition (3) does not hold and consider the set

L isol 5 L ( x ( a
2 1)e x ( b

2 1))

This set contains only points that are images of discontinuity points (see the

foregoing proof ). An examination of the proofs of Lemmas 5 and 6 leads to the

conclusion that if the point x is an image of `only one’ discontinuity point it belongs

to one of the omega-lim it sets. Indeed, for such a point representation (4) holds

and the subsequent proof is completely valid. Thus we conclude that

L isol Ì Fwd( a
2 1)f Fwd( b

2 1)

8 Main theorems

Now we can summarize the consequences of the results of the previous sections.

Theorem 4. If ln c 1/ ln c 0 is irrational and condition (3) is satis® ed then L 5 x (x)

for any x.

Proof. The union of the sets X a and X b , de ® ned in Lemma 6, is the whole space

X h , therefore, for any x (for x equal to a, b, a or b consider f
2(x) instead) we can

® nd intervals

(y1 , x) and (x, y2 ), q (y1 , x)< e q (x, y2)< e

satisfying the Principle of Equivalent Distance, where y1 and y2 are some preimages

of the discontinuity points. Applying the principle to the intervals we obtain that

(at least one of ) the discontinuity points are (is) contained in x (x). Lemmas 5 and

6 now imply that L Ì x (x). The converse, x (x) Ì L , is always true and the

theorem is proved. j

Theorem 5. Let ln c 1/ ln c 0 be irrational. Then the set Fwd({ a
2 1, b

2 1}) is everywhere

dense in L:
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L Ì Fwd({ a
2 1 , b

2 1})

Proof. Proofs of the enclosure y Î x ( a
2 1)e x ( b

2 1), as given in Lemmas 5 and 6,

are still valid for any y Î L which is not an image of a discontinuity point even if

condition (3) is violated. Therefore, in the general case

L 5 x ( a
2 1)e x ( b

2 1)e Fwd({ a
2 1 , b

2 1}) Ì Fwd({ a
2 1 , b

2 1})

j

Theorem 6. Let f be a piecewise linear map with hysteresis. Then the global

attractor L is equal to the non-wandering set X .

Proof. Lemma 2 implies that X Ì L. To prove the inclusion L Ì X we consider

two cases: the ® rst when ln c 1/ ln c 0 is rational, and the second when it is not. In the

former case x Î L if and only if x is periodic, therefore L Ì X .

If ln c 1/ ln c 0 is irrational and condition (3) is satis® ed we employ Theorem 4 to

conclude that L 5 x (x) Ì X .

If condition (3) is not satis® ed we represent L as

L 5 x ( a
2 1)e x ( b

2 1)e L isol

To prove that C Ì X it is now suý cient to show that the set L isol is a subset of the

non-wandering set. According to the remark at the end of the previous section, the

set L isol Ì Fwd( a
2 1)f Fwd( b 2 1 ). For a point x Î L isol take a neighbourhood U ’ x. It

contains preimages of the discontinuity points which are, in turn, preimages of the

point x. Therefore, there exists a number n such that f
n(U )f U is non-empty and

x Î X . j

Theorem 7. Let a family of PLMH depending upon a parameter k be weakly

continuous at a point k 0 , ln c 1/ ln c 0 be irrational and condition (3) be satis® ed.

Then the function L( k ) is lower semicontinuous at the point k 0 .

Proof. First we prove an auxiliary statement: if a
2 1 Ï L( k 0 ) then there is a neigh-

bourhood of k 0 such that for any k from the neighbourhood, a
2 1 Ï L( k ).

Let k be such that

a
2 1 Î f

k 2 1
k 0

(Xh ) and a
2 1 Ï f

k
k 0

(X h )

There there is a r such that

; ( k : ½ k 2 k 0 ½ < r ) [ a
2 1 Ï f

k
k (Xh )]

Indeed, assuming the contrary we obtain that

’ k n ® k 0 ’ zn ® z [ a
2 1 Î f

k
k n

(zn )]

and, by weak upper continuity, a
2 1 Î f

k
k 0

(z). This is a contradiction.

As a corollary, we obtain that at least one of the points a
2 1 and b

2 1 is contained

in the set L. Indeed, if ln c 1/ ln c 0 is irrational, Theorem 3 implies that one of these

points has an in ® nite number of preimages and, therefore, belongs to L. In the

rational case we assume the contrary: both points are not in the set L. Then we

choose c 0 as a parameter and employ our auxiliary statement to deduce that

a
2 1, b

2 1 Ï L( k ) in some neighbourhood of k . But irrational maps are dense in this

neighbourhood and we get a contradiction.
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Now to prove the theorem we consider two cases.

b
2 1 Î L( k 0 ) and a

2 1 Ï L( k 0 ). Then L( k 0 ) 5 x ( b
2 1) (Lemma 5). For any point

x Î L( k 0 ) there is an image of b
2 1 which is close to x:

; e >0 ’ xÄ Î f
n
k 0

( b
2 1) [ q (xÄ , x)< e /2]

Lemma 1 implies that there is r such that

; ( k : ½ k 2 k 0 ½ < r ) ’ x k Î f
n
k ( b

2 1) [ q (x k , xÄ )< e /2]

and, therefore, q (x k , x)< e . Provided that x k Î L( k ) it is proof of the lower

semicontinuity.

To prove that x k Î L( k ) it is suý cient to prove that b
2 1 Î L( k ). But our auxiliary

statement implies that a
2 1 Ï L( k ) for k in some neighbourhood of k 0 and, using the

corollary, we conclude that b
2 1 Î L( k ).

If both a
2 1 and b

2 1 are contained in L( k 0 ) then L( k 0 ) 5 x ( b
2 1) 5 x ( a

2 1). There-

fore, we can perform the same analysis for both a
2 1 and b

2 1 to get

; ( k : ½ k 2 k 0 ½ < r 1 ) ’ x k Î f
n
k ( a

2 1) [ q (x k , x)< e ]

; ( k : ½ k 2 k 0 ½ < r 2 ) ’ y k Î f
n
k ( b

2 1) [ q (y k , x)< e ]

Now, since either a
2 1 or b

2 1 belong to L( k ) we deduce that either x k or y k belong

to L( k ) too. j

Remark 2. The set L* 5 x ( a
2 1)e x ( b

2 1) is `almost’ L for irrational ln c 1/ ln c 0 .

Then the function L*( k ) is lower semicontinuous regardless of condition (3).
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