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We consider the nonlinear stochastic difference equation

Xnþ1 ¼ Xn 2 f ðXnÞ þ snjnþ1; n ¼ 0; 1; . . . ; X0 [ R:

Here, (jn)n[N is a sequence of independent random variables with zero mean and unit
variance and with distribution functions Fn. The function f : R ! R is continuous,
f(0) ¼ 0, xf(x) . 0 for x – 0. We establish a condition on the noise intensity s and the
rate of decay of the tails of the distribution functions Fn, under which the convergence
of solutions to zero occurs with probability zero. If this condition does not hold, and f is
bounded by a linear function with slope 2 2 g, for g [ (0, 2), all solutions tend to zero
a.s. On the other hand, if f grows more quickly than linear function with slope 2 þ g,
for g . 0, the solutions tend to infinity in modulus with arbitrarily high probability,
once the initial condition is chosen sufficiently large. Such equations can still
demonstrate local stability; for a wide class of highly nonlinear f, it is shown that
solutions tend to zero with arbitrarily high probability, once the initial condition is
chosen appropriately. Results which elucidate the relationship between the rate of
decay of the noise intensities and the rate of decay of the tails, and the necessary
condition for stability, are presented. The connection with the asymptotic dynamical
consistency of the system, when viewed as a discretisation of an Itô stochastic
differential equation, is also explored.
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1. Introduction

The main contribution in this paper is to allow us to determine stability and instability of

solutions of stochastic difference equations

Xnþ1 ¼ Xn 2 f ðXnÞ þ snjnþ1; n ¼ 0; 1; . . . ; X0 [ R;

making minimal assumptions on f, sn and the distribution functions Fn of jn. We make the

assumption that xf(x) . 0 for all x – 0, that f(0) ¼ 0 and that infjxj$cj f(x)j . 0. These

assumptions ensure that the solution tends to revert towards the unique equilibrium value
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of the unperturbed deterministic difference equation. In studying stability, we also assume

that sn ! 0 as n ! 1.

These assumptions are suitable for modelling the essential mechanism underlying

dynamic equilibrium in a highly schematised model of a self-regulating economic system

which is subjected to persistent stochastic shocks, whose intensity ultimately fades over

time. The behaviour of the system in the pre-shock epoch is given by the deterministic

equation

Xnþ1 ¼ Xn 2 f ðXnÞ; n , 0:

Our results show that if the system is globally stable before the shock, the system will

return to equilibrium, provided the shock fades sufficiently quickly. However, it transpires

that, no matter how effective the self-regulatory property of the system, if the shock fades

out more slowly than a critical rate, then the system will not be stable. The critical rate

depends on the ‘fatness’ of the tails of the shock distributions. Therefore, as heavy-tailed

shocks abound in financial systems, even a fading shock intensity presents a danger to the

system.

For equations which are only locally stable in the absence of such shocks, the potential

exists for the shock to push the system into an unstable region. It is notable that the type of

instability exhibited by the equations studied in this paper is associated with overshooting

across (oscillation about) the equilibrium. Such overshooting is typical of economic

systems under external stress. Therefore, the conditions we impose provide a test of the

robustness of the equilibrium mechanism under persistent perturbations.

It is important to note that our results are derived with a non-linearisable equilibrium

in mind. Thus, while the analysis holds for linear equations as well, we do not use any

linearisation techniques close to equilibrium. On the other hand, we prove results when

f does not obey a global linear bound. Therefore, we are not bound to linear hypotheses or

methods for large values of the state space either.

In earlier work [1], stability results were proven under the assumption that s is a square

summable sequence. However, as we show here, this condition is unnecessary. Instead, it

is only required that limn!1snjnþ1 ¼ 0 a.s., which can be reduced to a weaker conditions

on s and the distribution functions. The method of proof departs completely from the

semimartingale convergence technique. Instead, we rely upon viewing the stochastic term

as a perturbation of a deterministic equation, where the perturbation has known asymptotic

behaviour. The conditions for global stability that we obtain are likely to be relatively

sharp, as it is shown that they are almost necessary and sufficient in the deterministic case.

Our method of proof also enables us to determine necessary and sufficient conditions on

the noise perturbation for asymptotic stability. Moreover, by variation on standard Borel–

Cantelli arguments, we are able to obtain conditions relating the rate of decay of the noise

intensity to the rate of decay of the tails of the distribution functions. We show how fast

s needs to decay to compensate slowly decaying tails, and vice versa.

The paper is organized as follows. In Section 2, we give necessary definitions from

stochastic analysis, formulate main assumptions and discuss results of the paper. Section 3,

is devoted to the global stability as well as instability for deterministic difference

nonhomogeneous equations. In Section 4, we prove local stability of solution of

deterministic difference nonhomogeneous equations with general nonlinear function. In

Section 5, we prove global and local stability results for stochastic difference equations, and

in Section 6, we deduce stability conditions for stochastic equations with a small parameter,

and show how these results can be used to show that, with a sufficiently small mesh size,
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the stochastic difference equation successfully mimics the asymptotic behaviour of the Itô

equation of which it is a discretisation. In Section 7, we derive necessary and sufficient

conditions on sn and the tails of the distributions Fn which guarantee that snjnþ1 ! 0.

In Section 8, we give several technical proofs postponed from the main part of the paper.

2. Definitions, assumptions and discussion of the results

Let (V, F, {Fn}n[N, P) be a complete filtered probability space. We suppose that

Assumption 2.1. (jn)n[N is a sequence of independent, continuously distributed random

variables with distribution functions Fn, supp Fn ¼ ( 2 1,1), and with Ejn ¼ 0, Ej2n ¼ 1.

We suppose that filtration {Fn}n[N is naturally generated, namely that Fn ¼ s{j0, j1,

. . . jn}. Among all sequences (Xn)n[N of random variables we distinguish those for which

Xn are Fn-measurable for all n [ N. We use the standard abbreviation ‘a.s.’ for the

wordings ‘almost sure’ or ‘almost surely’ with respect to the fixed probability measure

P throughout the text. For more details on stochastic concepts and notations, consult

Ref. [11].

Let z [ R be arbitrary. We consider the nonlinear stochastic difference equation

Xnþ1 ¼ Xn 2 f ðXnÞ þ snjnþ1; n ¼ 0; 1; . . . ; X0 ¼ z: ð1Þ

We assume that f : R ! R is a continuous function, obeying the following properties:

uf ðuÞ . 0; u – 0; for all u [ R; f ð0Þ ¼ 0; ð2Þ

inf
u.c

j f ðuÞj . 0 for all c . 0; ð3Þ

j f ðuÞj # ð22 gÞjuj; g [ ð0; 2Þ: ð4Þ

In this paper, we focus on the following questions.

(i) What are the conditions on f and sn which ensure that for all initial values X0 [ R

lim
n!1

Xn ¼ 0; a:s:? ð5Þ

(ii) Can we relax the condition (4), but still have (5) fulfilled for some initial values?

(iii) What are the least restrictive conditions on sn which ensure

lim
n!1

snjnþ1 ¼ 0; a:s:? ð6Þ

First, we show in Theorem 5.2 that (1) is almost surely not asymptotically stable if (6) does

not hold. Therefore, if we are interested in asymptotic stability, we must have (6).

The independence of the random variables j ensures that (6) is equivalent to

X1
n¼1

12 Fnþ1

1

jsnj

� �
þ Fnþ1 2

1

jsnj

� �� �
, 1 for all 1 [ Rþ; ð7Þ

as proven in Lemma 5.1.

To answer question (i) we show in Theorem 5.3 that when f obeys conditions (2)–(4)

and (Xn)n[N is a solution to equation (1) with arbitrary initial condition X0 ¼ z, then (5) is
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equivalent to (6) which is in turn equivalent to (7). The proof of this fact is based on the

similar result for deterministic difference equation

xnþ1 ¼ xn 2 f ðxnÞ þ Sn; n ¼ 1; 2; . . . : ð8Þ

Namely, if f obeys (2)–(4), (xn)n[N is a solution of (14) with arbitrary initial condition

x0 [ R and

lim
n!1

Sn ¼ 0; ð9Þ

it is shown in Lemma 3.1 that xn ! 0 as n ! 1. In fact, it is shown in Lemma 3.2 that

the assumptions (2)–(4) as well as (9) are close to necessary for the global stability of

solutions of (8).

With regard to question (ii), we first obtain results on local stability for solutions of

deterministic difference equation with small parameter

xnþ1 ¼ xn 2 hf ðxnÞ þ
ffiffiffi
h

p
Sn; n ¼ 0; 1; . . . ; ð10Þ

and a general nonlinear function f, which can grow polynomially, exponentially, or

super-exponentially in such a way that lim supjxj!1 f ðxÞ=x ¼ 1: Then, under the same

conditions on f, we prove in Theorem 6.1 a local stability result for the stochastic

difference equation with small parameter

Xnþ1 ¼ Xn 2 hf ðXnÞ þ
ffiffiffi
h

p
snjnþ1; n ¼ 0; 1; . . . ;X0 ¼ z: ð11Þ

In Theorem 5.5, it is shown that whenever lim infjxj!1 f ðxÞ=x . 2; solutions of (1) are
unstable with arbitrarily high probability, once jz j is sufficiently large. Taken together

Theorems 5.5 and 6.1 show that solutions of a large class of highly nonlinear stochastic

difference equations of the form (11) are unstable with arbitrarily large probability if the

initial condition is sufficiently large, and asymptotically stable with arbitrarily large

probability if the initial conditions are chosen from some zero-neighborhood.

To the best of our knowledge this is a first local stability result for stochastic difference

equation in the literature, at least in the case when f is such a general nonlinear function as

stipulated in Lemma 4.6 below. However, the question of (global) stability of stochastic

difference equations has been actively studied in recent years. Some representative papers

are [1–3,5–10].

To answer question (iii), we establish the connection between the rate of decay of sn

and asymptotic behaviour of the tails of probability distribution functions Fn of the random

variables jn.

In Proposition 7.2, we give a prescription that for a sequence (jn)n[N of random

variables satisfying Assumption 2.1 constructs a deterministic positive sequence (rn)n[N

such that (6) is true whenever

lim sup
n!1

logjsnj

log rn
, 21: ð12Þ

The condition (12) is close to being necessary to ensure (6): we prove that (6) implies that

lim inf
n!1

logjsnj

log rn
# 21:
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When 1 2 Fn decays exponentially and super-exponentially with the exponent 2p(x),

we show in Proposition 7.6 that (6) holds provided sn p
21(log n) ! 0 as n ! 1.

Moreover, if n 7! jsnj is non-decreasing, we have that (6) implies sn p
21(log n) ! 0 as

n ! 1. This result enables us to prove that when j is a sequence of independent

and identically distributed (iid) standard normal random variables then s2
nlog n! 0 is a

necessary and sufficient condition to guarantee the global stability of solutions of (1) under

the conditions (2)–(4) for example. We also employ this result and Theorem 5.3 in

Theorem 6.2 to show that an Euler–Maruyama discretisation of the asymptotically stable

stochastic differential equation

dXðtÞ ¼ 2f ðXðtÞÞdt þ sðtÞ dBðtÞ ð13Þ

tends to zero almost surely if the mesh size h , h0, where h0 can be determined a priori.

Interestingly, the condition s 2(t) log t ! 0 is also necessary and sufficient for the stability

of equation (13), as was shown in Chan and Williams [4].

We also prove that when 1 2 Fn(y) decays more quickly then y22; there exists sn such

that
P1

i¼1 s
2
i ¼ 1, but limn!1 Xn ¼ 0; a.s., where Xn is a solution of equation (1) with this

particular sn. Thus, we improve a result of Ref. [1], where limn!1 Xn ¼ 0; a.s., was proved
under assumption that

P1
i¼1 s

2
i , 1.

In the course of the paper we discuss four types of tails of distribution of jn:

(i) polynomial; (ii) sub-exponential but super-polynomial; (iii) exponential and (iv) super-

exponential. To illustrate our results, examples from these types of distributions are given

at the end of subsections 7.1, 7.2 and 7.4.

3. Global stability and instability for perturbed deterministic difference equations

In this section, we present necessary and sufficient conditions for the asymptotic stability

and instability of the zero equilibrium of

xnþ1 ¼ xn 2 f ðxnÞ þ Sn; n ¼ 1; 2; . . . ; x0 [ R: ð14Þ

The hallmark of results in this section is that it is either explicitly or tacitly assumed that

the nonlinear function f obeys a global linear bound. This assumption is removed in the

next section.

We first prove a result on the global stability of solutions of (14) when all we require of

the perturbation Sn is that it tends to zero as n ! 1.

Lemma 3.1. Suppose that f obeys (2)– (4) and Sn ! 0, n ! 1. Let (xn)n[N be a solution of

(14) with arbitrary initial condition x0 [ R. Then xn ! 0.

Proof. We let g(x) ¼ x 2 f(x) and prove the following two properties of g

jgðxÞj # jxj for all x [ R; ð15Þ

for all M . 0 there exists dðMÞ such that jxj $ M ) jgðxÞj # jxj2 dðMÞ: ð16Þ

To prove (15), we note that by (4) for x . 0

2ð12 gÞjxj ¼ 2ð12 gÞx # gðxÞ ¼ x2 f ðxÞ , x ¼ jxj;
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while for x , 0

2jxj ¼ x , gðxÞ ¼ x2 f ðxÞ # 2ð12 gÞx ¼ ð12 gÞjxj:

To prove (16), we fix some M . 0 and define k(M) ¼ infjuj.Mj f(u)j. Then for x $ M

2jxj þ gM # 2jxj þ gjxj # gðxÞ ¼ x2 f ðxÞ # x2 kðMÞ ¼ jxj2 kðMÞ;

while for x # 2M

jxj2 gM $ jxj2 gjxj $ gðxÞ ¼ x2 f ðxÞ $ 2jxj þ kðMÞ:

Thus the property (16) holds true for

dðMÞ ¼ min{kðMÞ; gM}: ð17Þ

We fix some M . 0 and define d(M), satisfying (17). We find NM [ N such that

supn$NM
jSnj , d(M). We put

1 ¼ sup
n$NM

jSnj:

Properties (15) and (16) imply the following:

. if jxnj , M for some n $ NM, then jxnþ1j , M þ 1;

. if jxnj $ M for some n $ NM, then jxnþ1j , jxnj 2 (d(M) 2 1).

From the above we obtain that

. if jxnj , M þ 1 for n $ NM, then jxnþ1j , M þ 1;

. if jxnj . M for some n $ NM, then there exists k . n such that jxkj , M þ 1.

Thus for any initial value x0, sequence (xn)n[N eventually gets into the interval ½2M 2 1;
M þ 1� and stays there. Since M and 1 can be chosen arbitrary small, this means that

limn!1xn ¼ 0. A

It transpires that the assumptions of Lemma 3.1 are close to necessary for the global

stability of solution to equation (14).

Lemma 3.2. Let (xn)n[N be a solution to (14) where f : R1 ! R1 is continuous function,

f(0) ¼ 0.

(i) If xn ! 0 for some initial condition x0 [ R, then Sn ! 0.

(ii) If Sn ; 0 and xn ! 0 for any initial condition x0 [ R then uf(u) . 0 for all u – 0.

(iii) If xn ! 0 for any initial condition x0 [ R and f ð2uÞ ¼ 2f ðuÞ; then j f(u)j , 2juj

for all u – 0.

(iv) For any Sn # 0 with
P1

i¼1Si ¼ 1, we can construct a function f : R ! R, xf(x) . 0

for x – 0, f(0) ¼ 0 and f(u) ! 0 when u ! 0, such that corresponding equation (14)

has a solution (xn)n[N, which tends to infinity for some initial value x0 . 0.
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Example 3.3. Part (iii) of Lemma 3.2 does not hold without the assumption that f ð2uÞ ¼

f ðuÞ: Indeed, let Sn $ 0, Sn ! 0, and

f ðxÞ ¼
x=2 x . 0;

2x x # 0:

(

Then limn!1xn ¼ 0, where (xn)n[N is a solution to (14) with arbitrary initial value x0 [ R

and function f, defined above. To prove this we note that if x0 . 0, then

xnþ1 ¼ ð1=2ÞxnþSn . 0 for all n ¼ 0; 1; 2; . . . ; while when x0 , 0, then

x1 ¼ 2x0 þ S1 . 0.

We now show that when the condition (4) on f is dropped and instead we assume that

lim inf
juj!1

f ðuÞ

u
. 2; ð18Þ

then the solution of equation (14) with sufficiently large initial value does not tend to zero.

Lemma 3.4. Let condition (18) hold. Suppose also that for some �S . 0 and for all n [ N

jSnj # �S: ð19Þ

Let (xn)n[N be a solution of (14) with initial condition x0 [ R. Then there is a d . 0

such that limn!1jxnj ¼ 1 when jx0j . d. Moreover, lim supn!1xn ¼ 1 and

lim infn!1xn ¼ 21.

Proof. Condition (18) implies that there exist g . 0 and d1 . 0 such that for juj . d1

j f ðuÞj $ 2þ
g

2

� �
juj:

We define d ¼ max{d1; 4�S=g}. For all xn . d we have

xnþ1 , xn 2 2þ
g

2

� �
xn þ Sn ¼ 2 1þ

g

4

� �
xn 2

g

4
xn þ Sn

# 2 1þ
g

4

� �
xn 2

gd

4
þ �S # 2 1þ

g

4

� �
xn;

while for xn , 2d we can similarly show that xnþ1 . 2 (1 þ (g/4))xn. Thus in both cases

jxnþ1j $ (1 þ (g/4))jxnj, which easily implies that limn!1jxnj ¼ 1. From the above

estimates we also conclude that xn changes sign at each step. A

4. Local stability for deterministic difference equations

In this section, we obtain a local stability result for difference equation with small

parameter h

xnþ1 ¼ xn 2 hf ðxnÞ þ
ffiffiffi
h

p
Sn; n ¼ 0; 1; 2; . . . ; x0 [ R: ð20Þ

Herein, it is implicitly assumed that due to the presence of a small parameter hmultiplying

f, it is only worthwhile to consider the case in which no global linear growth condition is
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imposed on f, i.e. the case in which

lim sup
juj!1

f ðuÞ

u
¼ 1: ð21Þ

This is the crucial distinction between the assumptions used in stability proofs in this in

section, and those employed in the last section.

In the following subsection 4.1, sufficient conditions which guarantee local stability

are stated and discussed, and the main result on local stability stated explicitly. We show

also that the presence of a small parameter in highly nonlinear nonhomogeneous equation

(20) is essential in order to guarantee that xn ! 0 as n ! 1 for all initial values x0 from

some neighbourhood of zero. The proofs of a supporting lemma and the main result are

given in subsection 4.3.

4.1 Discussion of hypotheses and statement of main result

Despite the fact that (21) is implicitly in force throughout this section, we still demand that

f obeys a local linear growth condition: that is, we assume that there exist 6 . 0 and K . 0

such that

j f ðxÞj # Kjxj; for all x [ ð26; 6Þ: ð22Þ

We also assume that for every a . 0

lim
u!1

ffiffiffiffiffiffiffiffi
u

f ðuÞ

r
inf

s[ 0;a
ffiffiffiffiffiffiffiffiffi
u=f ðuÞ

p� 	j f ðu2 sÞj ¼ 1;

lim
u!21

ffiffiffiffiffiffiffiffi
u

f ðuÞ

r
inf

s[ 0;a
ffiffiffiffiffiffiffiffiffi
u=f ðuÞ

p� 	j f ðuþ sÞj ¼ 1:

ð23Þ

Condition (23) can be considered a generalization of condition (3). As shown in examples

in this section, it is fulfilled for many important types of function f, including polynomial,

exponential, and super-exponential growing functions. Moreover, (23) holds for functions

f with positive derivatives, which increase when jxj ! 1, and which have the property

that f 0ðxÞ=j f ðxÞj
1þ 1

has a limit as jxj ! 1; indeed this limit value can only be zero.

The main result of this section is the following.

Theorem 4.1. Suppose that f :R ! R obeys (2), (22), (23) and Sn ! 0, n ! 1. Then there

is an h0 . 0 such that for every h # h0 there exist L(h), R(h) . 0 such when x0 [ ½2LðhÞ;
RðhÞ�; the solution (xn)n[N of (14) obeys the property: limn!1xn ¼ 0.

In advance of proving Theorem 4.1, we discuss the conditions (22) and (23).

Firstly, we show that local stability will not necessary hold without the condition (22).

To see this, consider the equation

xnþ1 ¼ xn 2 h
ffiffiffiffiffiffiffi
jxnj

p
sgn ðxnÞ: ð24Þ

In this case, f ðxÞ ¼ sgn ðxÞ
ffiffiffiffiffi
jxj

p
does not obey (22). Now, if x0 [ (2h 2/4, h 2/4), it can be

verified that jxnþ1j . jxnj, and that jxnj , h2=4 for all n [ N. From this it can be concluded

that jxnj! h2=4 as n!1; with the solution converging to the 2-cycle {2 h2=4; h2=4}:
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Therefore, for any arbitrarily small initial condition, the solution does not converge to zero

as n ! 1.

Next, by imposing some monotonicity on f, we can deduce sufficient conditions on f

which are moreover readily verified than (23), but which nonetheless imply (23).

Lemma 4.2. If f obeys

j f 0ðxÞj increases as jxj!1; ð25Þ

and for some 1 , 1=2

lim
jxj!1

f 0ðxÞ

j f ðxÞj
1þ1

¼ k [ ½0;1�; ð26Þ

then (23) holds true.

If f obeys (26), then the limit k in (26) can be only zero, and therefore, for some H,

K . 0

f 0ðxÞ

j f ðxÞj
1þ1

, K; for all jxj . H: ð27Þ

This can be established by writing (26) as a differential inequality, and by then showing

that this differential inequality must have an exploding solution, so that f is not defined on

all of R, contradicting the existence of f on R.

The example below shows that the condition (23) holds true for many important highly

non-linear functions.

Example 4.3. Let a, b, c, m . 0. Then Lemma 4.2 implies that any of the following

functions f j : R! R satisfies (23), where

f 1ðxÞ ¼ a sgn ðxÞjxj
m
; f 2ðxÞ ¼ sgn ðxÞ eajxj

m

; f 3ðxÞ ¼ sgn ðxÞ ece
beajxj

; . . . ;

and by the same token f(x) ¼ sgn (x) exp {exp{ . . . {exp ajxj}}} where there can be any

finite number of compositions of the exponents.

In the following examples, where no monotonicity is imposed, we can establish

condition (23) by direct estimation. The calculations are tedious and hence omitted.

Example 4.4. Let f :R ! R be continuous, K . k and one of the following conditions hold

true.

(i) There exist 1 , m , n , 2m þ 1, such that

kum # f ðuÞ # Kun; for all u $ 0;

2 Kun # f ðuÞ # 2kum; for all u , 0:

Journal of Difference Equations and Applications 9



(ii) There exist n . 0, 0 , b # c , 2b, such that

kuebu
n

# f ðuÞ # Kuecu
n

; for all u $ 0;

2 kuebu
n

$ f ðuÞ $ 2Kuecu
n

; for all u , 0:

(iii) There exist 0 , b # c , 2b, such that

kuebe
u

# f ðuÞ # Kuece
u

; for all u $ 0;

2 kuebe
u

$ f ðuÞ $ 2Kuece
u

; for all u , 0:
ð28Þ

Then condition (23) holds.

To prove local stability we establish in Lemma 4.6 the existence of an interval

containing zero and the initial condition such that the solution (xn)n[N remains in the

interval. Afterwards, in Theorem 4.1, we prove that xn ! 0 as n ! 1.

4.2 Discussion of the presence of a small parameter

First of all it is necessary to note that the form of the equation (20), where we have small

parameter h by f and
ffiffiffi
h

p
by Sn, is imposed by the Euler–Maruyama discretization of Itô

stochastic differential equation with mesh size h. However, apart of this, in order to

guarantee local stability for difference equation, the presence of small parameter by Sn is

essential. The following example gives reason for that.

Example 4.5. Let S0 ¼ 2 and Sn [ (0, 0.3) for all n . 0. Let (xn)n[N be a solution to

equation

xnþ1 ¼ xn 2 x3n þ Sn; n ¼ 1; 2; . . . ;

with initial value x0 [ ð20:5; 0:5Þ: Indeed, x1 $ S0 2 jx0 2 x30j $ 22 0:5 ¼ 1:5 and

jxnþ1j $ jxn 2 x3nj2 Sn $ 1:8752 0:3 . 1:5 for all n $ 1.

4.3 Proof of Theorem 4.1

In order to prove Theorem 4.1, we first establish the boundedness of solutions under the

condition (23).

Lemma 4.6. Suppose that f : R! R obeys (2), (22), (23) and jSnj # �S for all n [ N. Then

there is an h0 . 0 such that for every h # h0 there exist L(h), R(h) . 0 such that solution

(xn)n[N of (20) obeys the property: xn [ ½2LðhÞ; R(h)] for all n [ N and when initial

value x0 [ ½2LðhÞ;RðhÞ�:

Proof. As it was mentioned in the beginning of this section, we can assume that (21) holds.

We let a ¼ �S in condition (23) and find L* . 0 such that for all u $ L* we have

ffiffiffiffiffiffiffiffi
u

f ðuÞ

r
inf

s[ð0;a
ffiffiffiffiffiffiffiffiffi
u=f ðuÞ

p
Þ

j f ðu2 sÞj . �S and
ffiffiffiffiffiffiffiffiffiffiffi
uf ðuÞ

p
. 2�S; ð29Þ
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and for all u # 2L* we have

ffiffiffiffiffiffiffiffi
u

f ðuÞ

r
inf

s[ð0;a
ffiffiffiffiffiffiffiffiffi
u=f ðuÞ

p
Þ

j f ðuþ sÞj . �S and
ffiffiffiffiffiffiffiffiffiffiffi
uf ðuÞ

p
. 2�S: ð30Þ

Let L0 [ R be such that jL0j $ L* and

f ðL0Þ

L0
¼ sup

jLj#jL0j

f ðLÞ

L
: ð31Þ

Assume for simplicity that L0 . 0. We define

h0 ¼
L0

f ðL0Þ
: ð32Þ

We fix some h , h0 and define

R ¼ RðhÞ ¼ inf u . L0 : h
f ðuÞ

u
¼ 1


 �
; ð33Þ

L ¼ LðhÞ ¼ 2inf u , 2L0 : h
f ðuÞ

u
¼ 1


 �
; ð34Þ

1r ¼ 1rðhÞ ¼ �S

ffiffiffiffiffiffiffiffiffi
R

f ðRÞ

s
; 1l ¼ 1lðhÞ ¼ �S

ffiffiffiffiffiffiffiffiffiffiffiffi
2L

f ð2LÞ

s
: ð35Þ

The second relations in (29)–(30) and also (35), imply that

1l , LðhÞ2 1l; 1r , RðhÞ2 1r:

Relations (31)–(35) imply that for all n [ N, h # h0 and u [ ½2LðhÞ; RðhÞ�

ffiffiffi
h

p
Sn , max{1l; 1r} and h

f ðuÞ

u
, 1: ð36Þ

Then for x [ ½2LðhÞ; RðhÞ�

jx2 hf ðxÞj ¼ x 12 h
f ðxÞ

x

� �����
���� # jxj: ð37Þ

Applying (29) and (35) we get for x [ (R 2 1r, R)

j f ðxÞj $ inf
s[ð0;1rÞ

j f ðR2 sÞj $ �S

ffiffiffiffiffiffiffiffiffi
f ðRÞ

R

r
;

and therefore,

hj f ðxÞj ¼
R

f ðRÞ
j f ðxÞj $

R

f ðRÞ
�S

ffiffiffiffiffiffiffiffiffi
f ðRÞ

R

r
¼ �S

ffiffiffiffiffiffiffiffiffi
R

f ðRÞ

s
¼ 1r: ð38Þ
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Applying (30) and (35) we get for x [ ð2L; 2Lþ 1lÞ

j f ðxÞj $ inf
s[ð0;1lÞ

j f ð2Lþ sÞj $ �S

ffiffiffiffiffiffiffiffiffiffiffiffi
f ð2LÞ

2L

r
;

and therefore,

hj f ðxÞj ¼
2L

f ð2LÞ
j f ðxÞj $

2L

f ð2LÞ
�S

ffiffiffiffiffiffiffiffiffiffiffiffi
f ð2LÞ

2L

r
¼ �S

ffiffiffiffiffiffiffiffiffiffiffiffi
2L

f ð2LÞ

s
¼ 1l: ð39Þ

All the above imply that for all n $ N and h # h0

jxnþ1j , jxnj þ 1r; if xn [ ½0;RðhÞ2 1r�;

jxnþ1j , jxnj þ 1l; if xn [ ½2LðhÞ þ 1l; 0�;

jxnþ1j # jxnj; if xn [ ½2LðhÞ;2LðhÞ þ 1l�> ½RðhÞ2 1r;RðhÞ�:

ð40Þ

Indeed, the first two lines in (40) obviously follow from (35) and (37). To show the third

line we estimate for xn [ [R 2 1r, R]: when xnþ1 . 0, we get from (38)

jxnþ1j # jxnj2 hj f ðxnÞj þ 1r # jxnj2 1r þ 1r # jxnj;

while when xnþ1 , 0, we get from (36)

jxnþ1j # 2jxnj þ hjxnj
f ðxnÞ

xn
þ 1r # jxnj2 jxnj þ 1r ¼ 1r , RðhÞ2 1r # jxnj:

Now we make an estimate in the case xn [ ½2LðhÞ; LðhÞ þ 1l� : when xnþ1 . 0 we get

from (36)

jxnþ1j # 2jxnj þ hj f ðxnÞj þ 1l # jxnj2 jxnj þ 1l ¼ 1l , LðhÞ2 1l # jxnj;

while when xnþ1 , 0, we get from (39)

jxnþ1j # jxnj2 hjxnj
f ðxnÞ

xn
þ 1l # jxnj2 1l þ 1l # jxnj:

The relations (40) mean that if x0 [ ½2LðhÞ; RðhÞ� for all n [ N, we have xn [ [ 2 L(h),

R(h)]. A

The proof of Theorem 4.1 now follows rapidly from the results of Lemmas 4.6 and 3.1.

Proof of Theorem 4.1. We fix h # h0 and define L(h) and R(h). We put fh(u) ¼ hf(u) and

show that assumptions of Lemma 3.1 are fulfilled for fh(u) when u [ [ 2 L(h), R(h)].

Indeed, (3) reduces to

inf
{u:2LðhÞ,u,2c; c,u,RðhÞ}

j f ðuÞj . 0

and follows from (2), condition (36) implies (4) with g ¼ 1. Since Lemma 4.6 guarantees

that xn [ ½2LðhÞ; RðhÞ� for all n [ N, when x0 [ ½2LðhÞ; RðhÞ�; our result follows from
Lemma 3.1. A
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5. Stability for stochastic difference equations

In this section and the next section, we list and prove the main results of the paper. These

concern the stability (both local and global, and both almost sure and with positive

probability less than unity) and the instability of solutions of stochastic difference

equations (again both local and global and either almost sure or with positive probability

less than unity). In this section, we concentrate on the equation (1) which does not contain

a parameter h . 0 whose value can be made arbitrarily small. In the next section, our

analysis tackles the equation (11) with a small parameter, and results which are peculiar to

that equation are presented there. In this section, our first subsection deals with results on

global stability and instability with probability one. In the second subsection, we show that

instability can occur with arbitrary probability, when the initial condition is sufficiently far

from the equilibrium.

5.1 Global stability and instability

We notice that snjnþ1 ! 0 a.s. as n ! 1 is a necessary condition for asymptotic stability,

and that in turn it can be expressed in terms of a condition on a summation of probabilities.

Lemma 5.1. Let Assumption 2.1 hold.

(a) If

X1
n¼1

12 Fnþ1

1

jsnj

� �
þ Fnþ1

21

jsnj

� �� �
, 1; for all 1 [ Rþ; ð41Þ

then limn!1snjnþ1 ¼ 0; a.s.
(b) If

X1
n¼1

12 Fnþ1

1

jsnj

� �
þ Fnþ1

21

jsnj

� �� �
¼ 1; for some 1 [ Rþ; ð42Þ

then lim supn!1jsnjnþ1j $ 1; a.s.

The proof is an easy consequence of the Borel–Cantelli lemma, and is not given.

Theorem 5.2. Let Assumption 2.1 hold. Suppose f is continuous. Let (Xn)n[N be a solution

to equation (1) with arbitrary initial condition X0 [ R.

(a) If the distribution functions Fn, n ¼ 1, 2, . . . obey (42) then

P lim
n!1

Xn ¼ 0
h i

¼ 0:

(b) If the distribution functions Fn, n ¼ 1, 2, . . . , obey

X1
n¼1

12 Fnþ1

1

jsnj

� �
þ Fnþ1

21

jsnj

� �� �
¼ 1; for all 1 [ Rþ; ð43Þ

then lim supn!1jXnj ¼ 1; a.s.
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Proof. To prove part (a), by Lemma 5.1, (42) implies that lim supn!1jsnjnþ1j . 1, a.s.

Therefore, if Xn ! 0 with positive probability, then snjnþ1 ! 0 with positive

probability, a contradiction. To establish (b), by the Borel–Cantelli lemma and (43), lim

supn!1jsnjnþ1j ¼ 1 a.s. Suppose there is an event A ¼ {v: lim supn!1jXn(v)j , 1}.

Now snjnþ1 ¼ Xnþ1 2 Xn 2 f(Xn), so as f is continuous, a.s. on A, it must hold that lim

supn!1jsnjnþ1j , 1. But, this contradicts an inference of the assumption. Hence, lim

supn!1jXnj ¼ 1, a.s. A

We comment on some consequences of Theorem 5.2. It is interesting to note that we

can have instability if the noise intensity fades to zero as time tends to infinity, once the

tails of the distributions of j are not compactly supported. Therefore, we see that it is an

important problem to determine a critical rate at which the noise intensity fades, so that

stability arises for a given type of tail behaviour of the distributions. Later in the paper, we

will be able to determine easily verifiable conditions on the rate of decay of sn in the case

when jn are asymptotically identically distributed as n ! 1.

Moreover, Theorem 5.2 tells us that if the noise has too great an effect (in the sense that

(42) or (43) hold), then it does not matter how strong the restoring force f might be, either

close to, or far from equilibrium. If too strong a noise perturbation is present, solutions of

(1) cannot be stabilised for any choice of f. The principal reason for this is due to the noise

perturbation being independent of the state of the system.

Armed with this result, we can determine necessary and sufficient conditions for the

almost sure asymptotic stability of solutions of (1) under the assumptions (2)–(4) on f.

Theorem 5.3. Let Assumption 2.1 hold. Let f :R ! R be continuous and obey (2)– (4).

Let (Xn)n[N be a solution to equation (1) with arbitrary initial condition X0 [ R. Then the

following are equivalent:

(a) the distributions Fn, and the numbers sn, for n ¼ 1, 2, . . . , obey (41);

(b) limn!0snjnþ1 ¼ 0; a.s.;
(c) limn!1Xn ¼ 0 with positive probability;

(d) limn!1Xn ¼ 0; a.s.

Before giving the proof, we note once again that the conditions for stability for f and

the noise are in some sense independent: given the conditions (2)–(4) on f (which do not

involve Fn or sn), the necessary and sufficient conditions on Fn and sn which guarantee

stability do not depend on f. Therefore, it does not matter how strong or weak the mean-

reverting force of the underlying unperturbed deterministic system may be, the same

conditions are required on the noise (viz., on s and the tails of j) to produce stability.

Of course, we may expect that the solution may tend to zero more slowly if the noise

intensity fades away more slowly, or if the tails of the Fn’s are fatter; moreover, the

solution may overshoot the equilibrium due to a noise-induced oscillation. See for

example Ref. [1] for results on the rate of decay. However, consideration of convergence

rates or the presence of oscillation are not our concern in this paper.

We also notice that the conditions in this theorem allow for a wide variety of behaviour

of f close to the equilibrium (which must of course be consistent with stability).

In particular, there is no requirement that f(x) must have leading order linear term as

x ! 0; Theorem 5.3 applies equally well to a non-hyperbolic equilibrium as it does to a

hyperbolic equilibrium.
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Proof of Theorem 5.3. To prove the equivalence, we show that

(c) ) (b) ) (a) ) (d) ) (c).

On any event A0 of positive probability on which Xn ! 0, due to continuity of f, as

n ! 1,

snjnþ1 ¼ Xnþ1 2 ðXn 2 f ðXnÞÞ! 0; a:s: on A0:

Therefore,P[limn!1snjnþ1 ¼ 0] . 0. Thus, as the j’s are independent, by Kolmogorov’s

zero-one law, it follows that limn!1snjnþ1 ¼ 0 a.s. Thus, (c) implies (b). (b) implies (a) by

Lemma 5.1. To prove (a) implies (d), we note that for almost all v [ V equation (1) can be

considered as a deterministic equation of type (14) with Sn ¼ snjnþ1(v). Since (a) implies

snjnþ1(v) ! 0 for almost allv [ V and the function f obeys the conditions (2)–(4), we can

apply Lemma 3.1. As a result we find for almost allv [ V that Xn(v) ¼ xn ! 0, as n ! 1,

proving (d). Since (d) evidently implies (c) the proof is complete. A

To prove our instability result, we must show that on an event of arbitrary probability

less than unity, a uniform bound can be placed on snjnþ1 which, on that event, depends

only on the probability of the event.

Lemma 5.4. Let (41) hold. Then for all g [ (0, 1) there exist Vg # V and j(g) . 0 such

that

max
n[N

jsnjnþ1ðvÞj , jðgÞ; v [ Vg; P½Vg� . 12 g: ð44Þ

Lemma 5.4 holds true if snjnþ1 is only bounded, i.e. there is a non random C . 0 and

N(C, v) such that jsnjnþ1j # C for all n $ N(C, v) a.s.

Before stating the instability result, we pause to note that Lemma 5.4 is existential

in character; it does not give a constructive estimate of the size of the bound j(g).

An interesting and practical question, which is not addressed here is the following: can we

construct such a uniform bound on snjnþ1 on a set of arbitrary probability which depends

on properties of the distributions Fn and the sequence (sn)n[N? A satisfactory resolution

of this question would give an a priori estimate of the stability basin of zero; in control

engineering or in economics, the determination of such an explicit stability basin is of the

first order of importance.

Theorem 5.5. Let conditions (18) hold. Let (41) hold. Let (Xn)n[N be a solution of (1) with

initial condition X0 [ R. Then for all g [ (0, 1) there existVg # V, P(Vg) . 1 2 g, and

d(g) . 0, such that for all 6, j6j . d(g), we have for v [ Vg , a.s,

lim inf
n!1

XnðvÞ ¼ 21; lim sup
n!1

XnðvÞ ¼ 1:

For the proof, we apply Lemmas 5.4 and 3.4.

Theorem 5.5 does not tell us whether it is possible to have stability with positive

probability (or even with probability one) with sufficiently small initial condition. In the

next section, however, local stability results are presented.
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6. Stability of stochastic difference equations with a small parameter

In this section, we state and prove results which hold for the local stability of the solution

of a stochastic difference equation with small parameter h . 0, namely:

Xnþ1 ¼ Xn 2 hf ðXnÞ þ
ffiffiffi
h

p
snjnþ1; n ¼ 1; 2; . . . ; X0 [ R: ð45Þ

We also comment on the connection between the stability of solutions of (45) and the

stability of a related Itô stochastic differential equation, and show under appropriate

conditions that the almost sure asymptotic behaviour of the discretised equation is

consistent with that of the original Itô equation.

6.1 General stability and instability results

Theorems 5.2, 5.3 and 5.5 can be applied to (45) directly; we leave the formulation of such

results for equation (45) to the reader. However, there is an additional result which can be

stated for the local stability of solutions of (45) in which the presence of a small parameter

is necessary.

Theorem 6.1. Suppose the continuous function f : R ! R obeys (2), (22), (23) and let s

obey (41). Then for any g [ (0, 1) there is a number h(g) . 0 and an event Vg # V with

P[Vg] . 1 2 g, such that for every h # h(g) there exist L(g, h), R(g, h) . 0 such that

when X0 [ ½2Lðg; hÞ; Rðg; hÞ�; the solution (Xn)n[N of (14) obeys the property:

limn!1XnðvÞ ¼ 0 for v [ Vg a.s.

Proof. By Lemma 5.4, we find Vg and j(g). Proceeding as in Lemma 4.6, for �S ¼ jðgÞ we

find L* ¼ L* ðgÞ; L0 ¼ L0ðgÞ and h0 ¼ h0(g) (by (32)). We fix some h , h0(g) and define

R(g, h) and L(g, h) by the formulae (33) and (34), respectively. Then Lemma 4.6 implies

that XnðvÞ [ ½2Lðg; hÞ; Lðg; hÞ� when X0 [ ½2Lðg; hÞ; Lðg; hÞ� and v [ Vg. We

complete the proof by applying Theorem 4.1. A

Before proceeding further, we pause to examine one aspect of this result and its proof.

The proof constracts the interval [2L, R ] from the properties of f, the size of h, and the

uniform bound j(g) on jsnjnþ1j which holds on Vg. In fact, the length of the interval

increases with decreasing h and decreases with increasing g. From the perspective of

numerical simulation it is apparent that the basin of attraction increases in extent if the

mesh size h decreases, suggesting that it might be possible to show, under the conditions

(2), (22), and (23), that there is an arbitrarily high probability of convergence on an

arbitrarily large interval, provided that there was a priori control on the size of jsnjnþ1j on

a set of appropriately large probability. An investigation of this type is not conducted here.

If this result is taken in conjunction with Theorem 5.2 applied to (45), we see that for

highly nonlinear f, solutions with sufficiently large initial condition are unstable with

arbitrary probability, while solutions with relatively small initial conditions are stable with

arbitrary probability. Therefore, the result of Theorem 5.3, which shows that convergence

for all initial conditions is almost sure, is not universal among all stochastic equations of

the form (10). In Theorem 5.3, it is the restriction on the linear growth bound on f in (4)

which is decisive in yielding a.s. global stability.
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6.2 Connection with stochastic differential equations

Consider now the stochastic differential equation

XðtÞ ¼ 62

ðt
0

f ðXðsÞÞdsþ

ðt
0

sðsÞdBðsÞ; t $ 0: ð46Þ

Here, B is a standard Brownian motion, f is locally Lipschitz continuous, and s is

continuous. Under the condition (2) on f, it is well-known that there is a unique continuous

solution of (46) on [0, 1). Defining sn(h) ¼ s(nh), the Euler–Maruyama approximation

of (46) on a mesh of uniform length h . 0 is given by

X̂ððnþ 1ÞhÞ ¼ X̂ðnhÞ2 hf ðX̂ðnhÞÞ þ
ffiffiffi
h

p
snjnþ1; n $ 0; X̂ð0Þ ¼ 6:

If we seek a strong approximation of (46), the random variables (jn)n[N are independently

and identically normally distributed random variables with zero mean and unit variance.

Therefore, putting Xn ¼ X̂ðnhÞ, we get the stochastic difference equation

Xnþ1ðhÞ ¼ XnðhÞ2 hf ðXnðhÞÞ þ
ffiffiffi
h

p
snðhÞjnþ1; n $ 0; X0ðhÞ ¼ 6; ð47Þ

which is in the form (45).

For simplicity, we consider only a result on the dynamic consistency of equations (46)

and (47) when f is globally linearly bounded. This is partly because under the conditions

(2) and (3) alone the asymptotic behaviour of X obeying (46) is unknown.

In Theorem 6.1, we obtain asymptotic stability of the solution to the stochastic

difference equation where f is not globally linearly bounded. However, for the purpose of

practical numerical analysis it is advantageous to obtain a constructive a priori estimate on

the fluctuations of the noise term. The results in this paper do not provide such an estimate.

Therefore, an analysis of this type seems to be a fruitful avenue for future research.

Theorem 6.2. Suppose that f is locally Lipschitz function which obeys (2) and (3). Suppose

also that there is a K . 0 such that j f(x)j # Kjxj for all x $ 0. Let h . 0 and (Xn(h))n[N

be the solution of (47). Consider the statements

lim
t!1

s2ðt Þ log t ¼ 0; ð48Þ

and

’h0 . 0 such that ;h , h0; limn!1XnðhÞ ¼ 0; a:s: ð49Þ

Then the following assertions are true:

(a) If (48) holds, then (49) is true.

(b) If t 7! js(t)j is a non-decreasing function and (49) holds, then (48) is true.

Therefore, if t 7! js(t)j is a non-decreasing function, (48) and (49) are equivalent.

This result shows that, for sufficiently small discretisation mesh which can be chosen a

priori, the asymptotic stability of the discrete problem occurs under appropriate and

general conditions on f and s which also ensure the stability of the continuous equation

(46). To justify this assertion, we restate a result of Chan and Williams [4].
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Theorem 6.3. Suppose that f is an increasing and locally Lipschitz function which obeys

(2) and satisfies

lim
x!1

f ðxÞ ¼ 1; lim
x!21

f ðxÞ ¼ 21:

Let X be the unique continuous and FB-adapted process which obeys (46). Then the

following assertions are true:

(a) If (48) holds, then

lim
t!1

XðtÞ ¼ 0; a:s: ð50Þ

(b) If t 7! js(t)j is a non-decreasing function and (50) holds, then (48) is true.

Therefore, if t 7! js(t)j is a non-decreasing function, (48) and (50) are equivalent.

Toconsider the connectionbetween the theorems, it is necessary that fobeys all conditions

in both Theorems. It is an open problem to remove the monotonicity on f in Theorem 6.3.

Proof of Theorem 6.2. Let g be any number in (0, 2) and fix h0 ¼ (2 2 g)/K . 0. Then

for h , h0, the function fh(x) ¼ hf(x) obeys j fh(x)j # Khjxj , Kh0jxj ¼ (2 2 g)jxj for all

x [ R. Therefore, by Theorem 5.3, we have for any fixed h , h0 that Xn(h) ! 0 as n ! 1

a.s., provided that for that same value of h we have limn!1sn(h)jnþ1 ¼ 0 a.s. By (48),

we have that limn!1sn(h)
2log n ¼ 0. In the case when j are identically and independently

distributed normal random variables, it is seen from Proposition 7.6 and part (iii) of

Example 7.9 that this suffices to prove limn!1sn(h)jnþ1 ¼ 0 a.s. This proves part (a).

To prove part (b), we see from Theorem 5.3 that Xn(h) ! 0 a.s. as n ! 1 implies

sn(h)jnþ1 ! 0 a.s. as n ! 1. Since t 7! js(t)j is non-increasing, it follows that

n 7! jsn(h)j is non-increasing. Therefore, by part (b) of Proposition 7.6 and part (iii) of

Example 7.9, we see that sn(h)
2 log(n) ! 0 as n ! 1. Therefore, for any h . 0 we have

limn!1s
2(nh) log (nh) ¼ 0. Now fix h . 0. Then, for every 1 . 0 there is N(1) [ N

with N(1) . 1 such that for all n . N(1), we have s 2(nh) log(nh) , 1. Now, let

T(1) ¼ (N(1) þ 1)h. Then for t . T(1), there exists n . N(1) such that nh # t , (n þ 1)h,

and as jsj is non-increasing, we have

s2ðtÞ log t # s2ðnhÞ log ððnþ 1ÞhÞ , 1
log ððnþ 1ÞhÞ

log ðnhÞ
:

Now, as n $ 1, we have log ðnhÞ $ log h; and so 2 log(nh) $ log((n þ 1)h). Thus for

every 1 . 0 there exists T(1) . 0 such that s 2(t) log t , 21, which proves (48), and with

it, part (b). A

7. Asymptotic behaviour of jn and noise term snjn11

In this section, in order to find the least restrictive conditions on sn, which guarantee that

snjnþ1 ! 0, we establish connection between rate of decay of sn and asymptotical

behaviour of tails of probability distribution functions Fn of random variables jn:

1 2 Fn(y), as y ! 1 and Fn(y), as y!21:
For the sake of simplicity we assume that distributions of jn are symmetrical, then we

can impose restrictions only on the limiting behavior of 1 2 Fn(y), as y ! 1. We note that
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this restriction can be significantly relaxed, however, the purpose of this paper is not to

consider general tails distribution rather then to show that our results hold for the most

important cases of distributions of jn.

Assumption 7.1. Suppose that (jn)n[N are independent, continuously distributed random

variables with asymptotically symmetrical distribution functions Fn, i.e. 12 FnðyÞ ¼

Fnð2yÞ for all sufficiently large y . 0, and with Ejn ¼ 0;Ej2n ¼ 1. Suppose also that

supp Fn ¼ ð21;1Þ: Let p : ½0;1Þ! ½0;1Þ be an increasing continuous function and

½12 FnðyÞ�e
pðyÞ ! constant – 0; as y!1; uniformly in n [ N: ð51Þ

Since p is strictly increasing, it has an inverse function, p21ðyÞ: We define

qn ¼ p21ðlog ðn2 1ÞÞ: ð52Þ

Define r and rn by

rðxÞ ¼ p21ðlog xÞ; ð53Þ

rn ¼ rðnÞ; ð54Þ

and note that rn " 1 as n ! 1.

In this section, by proving an intermediate result about the rate of growth of the almost

sure partial maxima of the sequence jn, we derive conditions on sn which ensue that

snjnþ1 ! 0 a.s. As is seen in the following subsection, these conditions are also close to

being necessary. Necessary and sufficient results for the convergence of snjnþ1 ! 0 are

stated later in this section under specific stronger conditions on the tails of j and the noise

intensity s.

7.1 Conditions with general tails

Proposition 7.2. Suppose Assumption 7.1 holds. Let rn be defined in (54).

(a) If

lim sup
n!1

logjsnj

log rn
, 21 ð55Þ

then

lim
n!1

snjnþ1 ¼ 0; a:s: ð56Þ

(b) If (56) holds, then

lim inf
n!1

logjsnj

log rn
# 21: ð57Þ

(c) If limn!1ðlogjsnj=log rnÞ exists, then (55) implies (56), and (56) implies (57).
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A key intermediate result in the proof of Proposition 7.2 is to show that

lim sup
n!1

logjjnþ1j

log rn
¼ 1: ð58Þ

The first step to proving this is to establish the following result.

Lemma 7.3. Suppose Assumption 7.1 holds. Let 1 [ (0, 1). Define

qð1Þn ¼ p21ðð1þ 1Þ log ðn2 1ÞÞ; ð59Þ

qð21Þ
n ¼ p21ðð12 1Þ logðn2 1ÞÞ: ð60Þ

Then for every 1 [ (0, 1) there exist a.s. events Vþ
1 and V2

1 such that

lim sup
n!1

jjnj

qð1Þn

# 1; a:s: on Vþ
1 ; ð61Þ

lim sup
n!1

jjnj

qð21Þ
n

$ 1; a:s: on V2
1 : ð62Þ

We assume

lim sup
x!1

log rðx 1þ1Þ

log rðxÞ
# C1; ð63Þ

where

lim
1!0

C1 ¼ 1: ð64Þ

Lemma 7.4. Let Assumption 7.1 hold. Suppose that r defined by (53) obeys (63) and (64).

Then (58) holds holds true for rn, defined by (54).

Example 7.5. Let jn be identically distributed. The following examples consider slower

than exponential decay in the tails of the distribution. We give the formula for the

corresponding qn (constructed by formula (52)), and the condition on the rate of decay of

s which ensures that (56) holds.

(i) If there exists m . 2 such that 1 2 F(y) , y 2m as y ! 1, then rn ¼ n 1/m, and

lim sup
n!1

logjsnj

log n
, 2

1

m
;

then (56) holds.

(ii) If there exists a . 0 such that 1 2 F(y) , e2log1þay as y ! 1, then rn ¼ elog
1/(1þa)n,
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and

lim sup
n!1

logjsnj

log1=ð1þaÞn
, 21;

then (56) holds.

We note that the first example describes the case of polynomial tails.

7.2 Exponential and super-exponential tails

In this subsection, we give necessary and sufficient conditions for the convergence of

snjnþ1 ! 0 when the tails of F are super-exponential. The superexponential property is

embodied in the following condition: for every 1 [ (0, 1) there exists a finite Cþ
1 such that

lim sup
x!1

rðx1þ1Þ

rðxÞ
# Cþ

1 ; ð65Þ

where

lim
1!0

Cþ
1 ¼ 1: ð66Þ

Proposition 7.6. Suppose Assumption 7.1 hold. Define rn by (54), and suppose that r

defined by (53) obeys (65) and (66).

(a) If

lim
n!1

snrn ¼ 0; ð67Þ

then (56) holds.

(b) If n 7! jsnj is non-increasing, and (56) holds, then (67) holds.

Therefore, in the case that n 7! jsnj is non-increasing, we have that (67) and (56) are

equivalent.

To prove part (b) of Proposition 7.6, the following auxiliary results are needed.

Lemma 7.7. Suppose Assumption 7.1 holds. Then (56) implies that limn!1sn ¼ 0.

Lemma 7.8. Suppose that (a(n))n$0 is a non-negative and non-increasing sequence such

that
P1

n¼0aðnÞ , 1. Then na(n) ! 0 as n ! 1.

The results are elementary, but were proven in a similar context in Appleby, Riedle

and Rodkina [3].

Example 7.9. Let jn be identically distributed. The following distributions obey the

property (65), and therefore we can determine the critical rate of decay of s so that

snjnþ1 ! 0 a.s.

(i) There exists a . 0 such that 12 FðyÞ þ Fð2yÞ , e2y a

, then rn ¼ log1/an, and so

snlog
1/an ! 0 as n ! 1 is the critical rate of decay;
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(ii) 12 FðyÞ þ Fð2yÞ , e2ey ; then rn ¼ log log n, and so sn log log n ! 0 as n ! 1 is

the critical rate of decay;

(iii) There is l . 0 and k . 0 such that 12 FðyÞ þ Fð2yÞ , ðc=yÞ e2ð1=kÞy 2

; then

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k log n

p
, and so sn

ffiffiffiffiffiffiffiffiffiffi
log n

p
! 0 as n ! 1 is the critical rate of decay.

A standardised normal distribution is covered by case (iii) with l ¼ 1, k ¼ 2.

7.3 Polynomial tails

We finally show for polynomially decaying tails that a simple summability condition,

which does not involve monotonicity, is necessary and sufficient for (56) to hold.

Theorem 7.10. Let Assumption 201 hold. Suppose that for some M $ 2

½12 FnðyÞ�y
M ! constant – 0; as y!1; uniformly in n [ N:

Then (56) holds if and only if
P1

i¼1s
M
i , 1.

Proof. Applying Borel–Cantelli arguments we can show that snjnþ1 ! 0, a.s., is

equivalent to the following:

X1
i¼1

12 Fiþ1

1

si

� �� �
, 1 for all 1 . 0;

which in turn, is equivalent to
P1

i¼1s
2M
i , 1. A

7.4 Stability without square-summable s

We now improve a result of Ref. [1], where Xn ! 0 a.s. was proved in case whenP1
nþ1s

2
n , 1.

Lemma 7.11. Let Assumption 7.1 hold and let jn be identically distributed. Suppose there

exists 1 . 0 such that

ð12 FðxÞ þ Fð2xÞÞx2þ1 is bounded:

Then there exists sn such that
P1

n¼1s
2
n ¼ 1, but solution (Xn)n[N of equation (1) with this

particular sn obeys limn!1Xn ¼ 0 a.s.

Proof. Since p(y) . 2(1 þ 1)log y for some y0 . 0 and all y $ y0, we have for all y $ y0
p 21(y) , ey/(2(1þ1)). Then, for all n $ ey0

rn ¼ p21ðlog nÞ , elog n=ð2ð1þ1ÞÞ ¼ n1=ð2ð1þ1ÞÞ:

Let d [ ð0; 1Þ and let sn ¼ n 2((1 þ d)/2(1 þ 1)). Then for all n $ ey0

logsn

log rn
¼ 2ð1þ dÞ , 21;
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i.e. lim supn!1 logsn=log rn , 21: Then, by Lemmas 7.2 and 5.3, Xn ! 0, as n ! 1.

However,

X1
n¼1

s2
n ¼

X1
n¼1

n2ð1þd=1þ1Þ ¼ 1:

A

Example 7.12. Using Example 7.5, we can conclude the following.

(1) Let p(y) ¼ 3 log n. Then rn ¼ n 1/3. For sn ¼ n 22/5 both conditions (55) andP1
nþ1s

2
n ¼ 1 hold.

(2) Let pðyÞ ¼ log1þan: Then rn ¼ elog
1=1þan: For sn ¼ e2ð1þ1Þlog1=1þan; for all 1 . 0,

both conditions (55) and
P1

nþ1s
2
n ¼ 1 hold.

8. Proofs

8.1 Proof of Lemma 3.2

(i) From (14) we have for all n [ N

xnþ1 2 xn þ f ðxnÞ ¼ Sn: ð68Þ

Since f(0) ¼ 0 and f is continuous, left hand side of (68) tends to 0, as n ! 1. Then

Sn has also tend to zero.

(ii) We suppose that xn ! 0 but there is x*0 . 0 such that f ðx*0Þ ¼ 0. Then we take x*0 as an

initial value and obtain that

x1 ¼ x*0 þ f x*0
� 	

¼ x*0 ) xn ¼ x*0; for all n ¼ 1; 2; . . . ;

which contradicts to the fact that xn ! 0.

(iii) Suppose that f ð�uÞ ¼ 2�u for some �u . 0. Then by symmetry, f ð2�uÞ ¼ 22�u. We take

�u as an initial value and obtain that

x1 ¼ �u2 2�u ¼ 2�u; x2 ¼ 2�uþ 2�u ¼ �u;

which contradicts to the fact that xn ! 0.

(iv) Let

xn ¼
Xn
i¼1

Si;

then xnþ1 2 xn ¼ Snþ1. Then xn ! 1, since
P1

i¼1Si ¼ 1, and xnþ1 2 xn ! 0.

For any n [ N we define

f ðxnÞ ¼ xn 2 xnþ1 þ Sn; f ð0Þ ¼ 0;

and note that f(xn) ¼ Sn 2 Snþ1 . 0 and f(xn) ! 0. We define f(u) for u [ ðxn; xnþ1Þ

as a linear segment, connecting points f(xn) and f(xnþ1). In the same manner we
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define f(u) on the interval (0, x1): as a linear segment, connecting points 0 and f(x1).

We define f(u) for u , 0 by f(u) ¼ 2 f(2u). Then f(u) ! 0, if u ! 1.

8.2 Proof of Lemma 4.2

Suppose that u $ 0 and u2 a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u=f ðuÞ

p
. 0. For s [ ð0; a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u=f ðuÞ

p
Þ we have

f ðu2 sÞ ¼ f ðuÞ2 f 0ðuÞs

with some u: u 2 s # u # u. By monotonicity of f 0 we have

f ðu2 sÞ ¼ f ðuÞ2 f 0ðuÞs $ f ðuÞ2 f 0ðuÞa

ffiffiffiffiffiffiffiffi
u

f ðuÞ

r
:

We estimate

ffiffiffiffiffiffiffiffi
u

f ðuÞ

r
inf

s[ð0;a
ffiffiffiffiffiffiffiffiffi
u=f ðuÞ

p
Þ

f ðu2 sÞ $

ffiffiffiffiffiffiffiffi
u

f ðuÞ

r
f ðuÞ2 f 0ðuÞa

u

f ðuÞ
¼

ffiffiffiffiffiffiffiffiffiffiffi
uf ðuÞ

p
2 af 0ðuÞ

u

f ðuÞ
: ð69Þ

Substituting condition (27) in (69) we obtain:

ffiffiffiffiffiffiffiffi
u

f ðuÞ

r
inf

s[ð0;a
ffiffiffiffiffiffiffiffiffi
u=f ðuÞ

p
Þ

f ðu2 sÞ $
ffiffiffiffiffiffiffiffiffiffiffi
uf ðuÞ

p
2 aKf 1þ1ðuÞ

u

f ðuÞ

¼
ffiffiffiffiffiffiffiffiffiffiffi
uf ðuÞ

p
12 aK

u1=2

f 1=221ðuÞ

� �
!1;

since, by the fact that

lim
x!1

f 0ðxÞ

f ðxÞ1þ1
¼ 0;

we have u 1/2/f 1/221(u) ! 0 and also
ffiffiffiffiffiffiffiffiffiffiffi
uf ðuÞ

p
!1; u!1.

Suppose that u , 0 and u2 a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u=f ðuÞ

p
, 0. For s [ ð0; a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u=f ðuÞ

p
Þ we have

f ðuþ sÞ ¼ f ðuÞ þ f 0ðuÞs

with some u: u # u # u þ s. By monotonicity of f 0 we have

j f ðuþ sÞj $ j f ðuÞj2 f 0ðuÞs $ j f ðuÞj2 f 0ðuÞa

ffiffiffiffiffiffiffiffi
u

f ðuÞ

r
:

We estimate

ffiffiffiffiffiffiffiffi
u

f ðuÞ

r
inf

s[ð0;a
ffiffiffiffiffiffiffiffiffi
u=f ðuÞ

p
Þ

j f ðuþ sÞj $

ffiffiffiffiffiffiffiffi
u

f ðuÞ

r
j f ðuÞj2 f 0ðuÞa

u

f ðuÞ

¼
ffiffiffiffiffiffiffiffiffiffiffi
uf ðuÞ

p
2 af 0ðuÞ

u

f ðuÞ
: ð70Þ
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Substituting condition (27) in (70) we obtain:

ffiffiffiffiffiffiffiffi
u

f ðuÞ

r
inf

s[ð0;a
ffiffiffiffiffiffiffiffiffi
u=f ðuÞ

p
Þ

j f ðuþ sÞj $
ffiffiffiffiffiffiffiffiffiffiffi
uf ðuÞ

p
2 aKj f ðuÞj

1þ1 u

f ðuÞ

¼
ffiffiffiffiffiffiffiffiffiffiffi
uf ðuÞ

p
12 aK

juj
1=2

j f ðuÞj
1=221

" #
!1;

since juj
1=2

=j f ðuÞj
1=221

! 0;
ffiffiffiffiffiffiffiffiffiffiffi
uf ðuÞ

p
!1; u!21:

8.3 Proof of Lemma 5.4

Let Un ¼ snjnþ1. We fix some d0 [ (0, 1) then for all v [ V there is N(d0, v) such that

jUn(v)j # d0, n $ N(d0, v). For for all v [ V we set

uðvÞ ¼ max
i¼1; ... ;Nðd0;vÞ

{jUiðvÞj};

Vj ¼ {v : j2 1 # uðvÞ , j}; Vj ¼ {v : uðvÞ , j} ¼ <
j

i¼1
V:

Then Vj >Vi ¼ Y, when j – i, and V ¼ <1
j¼1Vj. Therefore, 1 ¼ PðVÞ ¼

P1
i¼1PðViÞ;

and for every g [ (0, 1) we can find j(g) such that for all j . j(g)

PðVjÞ ¼
Xj

i¼1

PðViÞ . 12 g:

We let Vg ¼ Vj(g) and observe that P(Vg) . 1 2 g and u(v) , j(g) when v [ Vg. Since

d0 , 1, we also have maxn[Njsnjnþ1(v)j , j(g) a.s. for v [ Vg.

8.4 Proof of Lemma 7.2

First, we note that snjnþ1 ! 0 a.s. is equivalent to

logjsnj þ logjjnþ1j!21: ð71Þ

Suppose lim supn!1logjsnj=log rn , 21: Then there exists 1 . 0 and N(1) such that for

all n $ N(1) we have logjsnj , 2ð1 þ 1Þlog rn: By condition (58), there exists

N1(1) . N(1), such that for all n $ N(1) we have logjjnþ1j , ð1 þ 1=2Þlog rn: Then

logjsnj þ logjjnþ1j # 2ð1þ 1Þlog rn þ 1þ
1

2

� �
log rn ¼ 2

1

2
log rn !21:

Thus (71) and therefore, (6) holds.

Suppose (71) holds, but

lim inf
n!1

logjsnj

log rn
. 21:

Then there exists sufficiently small 1 . 0 and N2(1) such that for all n $ N2(1) we have

logjsnj/log rn . 21 þ 1. By (58) there exists {nk} such that for all k [ N we get
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logjjnk þ 1j/log rnk . 1 2 1/2. Then

logjsnk j þ logjjnkþ1j $ ð21þ 1Þlog rnk þ 12
1

2

� �
log rnk ¼

1

2
log rnk !1:

The contradiction we have thus obtained completes the proof.

8.5 Proof of Lemma 7.3

Since qð1Þn !1 as n ! 1, and epðq
ð1Þ
n Þ ¼ ðn2 1Þ1þ 1, by Assumption 7.1, we have that

limn!1½12 Fnþ1ðq
ð1Þ
n Þ�ðn2 1Þ1þ 1 exists. By the symmetry of Fnþ1, we get

limn!1Fnþ1ð2qð1Þn Þðn2 1Þ1þ 1 exists. Hence,

X1
n¼1

½12 Fnþ1ðq
ð1Þ
n Þ þ Fnþ1ð2qð1Þn Þ� , 1:

By the Borel–Cantelli Lemma, (61) holds. The proof of (62) follows similarly, using

epðq
ð21Þ
n Þ ¼ ðn2 1Þ121 and in addition employing the independence of (jn)n[N and the

Borel–Cantelli lemma.

8.6 Proof of Lemma 7.4

Let 1 [ (0, 1) and let qð1Þn and qð21Þ
n be as in Lemma 7.3. By Lemma 7.3, we have

lim sup
n!1

logjjnj

log qn
¼ lim sup

n!1

logjjnj

log qð1Þn

·
log qð1Þn

log qn
# lim sup

n!1

log qð1Þn

log qn
:

By (63) and the definition of qð1Þn and qn we have

lim sup
n!1

log qð1Þn

log qn
¼ lim sup

n!1

log rððn2 1Þ1þ1Þ

log rðn2 1Þ
# C1;

and so

lim sup
n!1

logjjnj

log qn
# C1; a:s: on Vþ

1 :

Now consider Vþ
*
¼ >1[Q>ð0;1ÞV

þ
1 . Then as C1 ! 1 as 1 ! 0þ, we get

lim sup
n!1

logjjnj

log qn
# 1; a:s: on Vþ

*
: ð72Þ

Furthermore, P½Vþ
*
� ¼ 1.

By a similar argument we arrive at

lim sup
n!1

logjjnj

log qn
$ lim inf

n!1

log qð21Þ
n

log qn
¼ lim sup

n!1

log qn

log qð21Þ
n

� �21

:
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However, by the definition of qð21Þ
n and qn we have

lim sup
n!1

log qn

log qð21Þ
n

¼ lim sup
n!1

log rðn2 1Þ

log rððn2 1Þ121Þ
# lim sup

x!1

log rðxÞ

log rðx121Þ
;

where the second lim sup is taken through the reals. Next, there is 10 . 0 such that

1 þ 10 ¼ (1 2 1)21. Thus (57) gives

lim sup
x!1

log rðxÞ

log rðx121Þ
¼ lim sup

y!1

log rðy1þ10 Þ

log rðyÞ
# C10 ¼ C1ð121Þ21 :

Inserting this estimate into the previous two inequalities gives

lim sup
n!1

logjjnj

log qn
$ 1=C1ð121Þ21 ; a:s: on V2

1 :

Since C1 ! 1 as 1 ! 0þ, we obtain

lim sup
n!1

logjjnj

log qn
$ 1; a:s: on V2

*
; ð73Þ

where V2

*
¼ >1[Q>ð0;1ÞV

2
1 , and V2

*
has the property that P½V2

*
� ¼ 1. Combining (72)

and (73), on the almost sure event V* ¼ Vþ

*
>V2

*
we have

lim sup
n!1

logjjnj

log qn
¼ 1; a:s:;

as required, as qnþ1 ¼ rn.

8.7 Proof of Proposition 7.6, part (a)

Let 1 [ (0, 1) and let qð1Þn and qð21Þ
n be as in Lemma 7.3. By Lemma 7.3, we have

lim sup
n!1

jjnj

qn
¼ lim sup

n!1

jjnj

qð1Þn

·
qð1Þn

qn
# lim sup

n!1

qð1Þn

qn
:

By (65) and the definition of qð1Þn and qn we have

lim sup
n!1

qð1Þn

qn
¼ lim sup

n!1

p21ðð1þ 1Þ logðn2 1ÞÞ

p21ðlogðn2 1ÞÞ
# Cþ

1 ;

and so

lim sup
n!1

jjnj

qn
# Cþ

1 ; a:s: on Vþ
1 :

Now consider Vþ
*
¼ >1[Q>ð0;1ÞV

þ
1 . Then as Cþ

1 ! 1 as 1 ! 0þ, we get

lim sup
n!1

jjnj

qn
# 1; a:s: on Vþ

*
: ð74Þ

Furthermore, P½Vþ

*
� ¼ 1.
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By a similar argument we arrive at

lim sup
n!1

jjnj

qn
$ lim inf

n!1

qð21Þ
n

qn
¼ lim sup

n!1

qn

qð21Þ
n

� �21

:

However, by the definition of qð21Þ
n and qn we have

lim sup
n!1

qn

qð21Þ
n

¼ lim sup
n!1

p21ðlog ðn2 1ÞÞ

p21ðð12 1Þlog ðn2 1ÞÞ
# lim sup

x!1

p21ðlog xÞ

p21ðð12 1Þlog xÞ
;

where the second lim sup is taken through the reals. Next, there is 10 . 0 such that

1 þ 10 ¼ (1 2 1)21. Thus (65) gives

lim sup
x!1

p21ðlog xÞ

p21ðð12 1Þlog xÞ
¼ lim sup

y!1

p21ðð1þ 10Þlog yÞ

p21ðlog yÞ
# Cþ

10 ¼ Cþ

1ð121Þ21 :

Inserting this estimate into the previous two inequalities gives

lim sup
n!1

jjnj

qn
$ 1=Cþ

1ð121Þ21 ; a:s: on V2
1 :

Since Cþ
1 ! 1 as 1 ! 0þ, we obtain

lim sup
n!1

jjnj

qn
$ 1; a:s: on V2

*
; ð75Þ

whereV2

*
¼ >1[Q>ð0;1ÞV

2
1 , andV

2

*
has the property that P½V2

*
� ¼ 1. Thus on the almost

sure event V* ¼ Vþ

*
>V2

*
we have

lim sup
n!1

jjnj

qn
¼ 1; a:s:

Now, snrn ¼ snqnþ1, so snqnþ1 ! 0 as n ! 1. Hence,

lim
n!1

jsnjnþ1j ¼ lim
n!1

snqnþ1

jjnþ1j

qnþ1

¼ 0; a:s:;

completing the proof.

8.8 Proof of Proposition 7.6, part (b)

By Assumption 7.1 we have, uniformly in n [ N,

lim
x!21

FnðxÞe
pðjxjÞ ¼ L; lim

x!1
½12 FnðxÞ�e

pðxÞ ¼ L . 0:

Since (56), by Lemma 7.7 that we must have sn ! 0 as n ! 1. Now, let 1 be a fixed

positive rational number. Therefore, the limits

lim
n!21

Fnþ1

21

jsnj

� �
epð1=snÞ ¼ L; lim

n!1
12 Fnþ1

1

jsnj

� �� �
epð1=snÞ ¼ L;
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hold and so

lim
n!1

12 Fnþ1

1

jsnj

� �
þ Fnþ1

21

jsn

� �� �
epð1=snÞ ¼ 2L: ð76Þ

Now, because snjnþ1 ! 0 a.s. is equivalent to (41), it follows that

X1
n¼1

e2pð1=snÞ , 1; for all 1 [ Rþ: ð77Þ

Now, fix 1 [ Rþ. Since n 7! jsnj is non-increasing, the sequence (a1(n))n$0 defined by

a1ðnÞ ¼ expð2pð1=jsnjÞÞ for n . N1(1) is non-increasing. By Lemma 7.8, limn!1 na1
ðnÞ ¼ 0, or limn!1n exp ð2pð1=jsnjÞÞ ¼ 0. Thus

lim
n!1

½log n2 pð1=jsnjÞ� ¼ 21:

By (54), we have rn ¼ p 21(log n), so p(rn) ¼ log n, hence, limn!1½pðrnÞ2 p

ð1=jsnjÞ� ¼ 21. Thus, there exists N2(1) [ N such that for all n . N2(1) we have pðrnÞ2

pð1=jsnjÞ , 0: Since p is non-decreasing, it follows that jsnjrn , 1 for all n . N2(1).

However, this inequality holds for every 1 [ Rþ, and so it follows that limn!1snrn ¼ 0,

as required.
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