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We study a general method to map a nonlinear analytical recursion onto a linear
one. The solution of the recursion is represented as a product of matrices whose
elements depend only on the form of the recursion and not on initial conditions.
First we consider the method for polynomial recursions of arbitrary degree and
then the method is generalized to analytical recursions. Some properties of these
matrices, such as the existence of an inverse matrix and diagonalization, are also
studied. Q 1998 Academic Press

1. INTRODUCTION

w xIn our recent work 6, 7 we found a correspondence between the logistic
map and an infinite-dimensional linear recursion. This correspondence
was exploited to obtain a rather general method for the mapping of a

Ž .polynomial recursion to a linear but infinite-dimensional one, which was
w xreported in 7 . However, studying the literature, we found that our work is

wa rediscovery of a known approach called Carleman linearization 2, 5, 9,
x10 .
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Some questions of Carleman linearization, such as the applicability of
the method for analytical recursions, are still open. In this paper we
thoroughly study this topic, prove convergence of series used in the
method, and reveal some useful properties of the linearization, which
allows one to understand the correspondence between the original and
linearized recursions.

The basis of the method is the construction of a transfer matrix, T s
� 4̀T . This allows one to represent the solution in the formi j i, js0

y s eT n y,˜n

Ž . � 4Twhere e is the row transpose vector 0, 1, 0, 0, . . . , y is the column vector˜
� 2 3 4 nof initial values 1, y, y , y , . . . , and T is the nth power of the infinite-di-

mensional matrix T.
For introductory purposes we explain the method first for the polyno-

Ž w x.mial recursions see also 7 and then prove its extension to the general
case of analytical recursions.

2. POLYNOMIAL RECURSIONS

Here we consider a first-order recursion equation

y s P y , 1Ž . Ž .nq1 n

Ž .where P x is a polynomial of degree m:
m

kP x s a x , a / 0. 2Ž . Ž .Ý k m
ks0

Ž .Let y ' y be an initial value for the recursion 1 . We denote by y the0
� j4̀column vector of powers of y, y s y , and set the vector e to be the˜js0

T � 4̀row vector e s d . It should be emphasized that j runs from 0, since˜ j1 js0
in the general case a / 0. In this notation ey is a scalar product that˜0
yields

ey s y. 3Ž .˜
Ž .THEOREM 1. For any recursion of type Eq. 1 there exists a matrix

� 4̀T s T , defined byjk j, ks0

j jmm
j i kP y s a y s T y , j s 0, 1, . . . , 4Ž . Ž .Ý Ýi jkž /

is0 ks0

such that
y s eT n y. 5Ž .˜n

The matrix power T n exists for all n and all the operations in the right-hand
Ž .side of Eq. 5 are associatï e.
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Ž Ž ..Proof. For n s 0 the statement of the theorem is valid see Eq. 3 .
def j `� 4 Ž .We introduce the column vector y s y , where y s P y . Equation1 1 js0 1

Ž .4 implies that

y s Ty. 6Ž .1

Ž .Now, by analogy to Eq. 3 , we have y s ey s eTy. Therefore, the˜ ˜1 1
statement of the theorem is true for n s 1 as well.

Ž .Assume that Eq. 5 is valid for n s l for any initial value y. Then ylq1
l Ž .can be represented as y s eT y , where y s P y is considered as a˜lq1 1 1

Ž .new initial value of the recursion. Then, using Eq. 6 , one obtains

y s eT l y s eT l Ty s eT lq1 y.˜ ˜ ˜lq1 1

Note that for j and k satisfying k G jm we have T ' 0. Therefore,jk
Žeach row is finite i.e., there is only a finite number of nonzero matrix

.elements in each row . this proves the existence of powers of T and
Ž .associativity in Eq. 5 . Thus, the proof is complete.

EXAMPLE 1. As one can see, in the general case elements of the matrix
T have a form of rather complicated sums. However, they reduce to a fairly

Ž .simple expression, when the polynomial 2 has only two terms. To demon-
Žstrate this, let us consider the recursion for a good reference on this

w x.subject, see 1

y s l y 1 y y with y ' y. 7Ž . Ž .nq1 n n 0

In this case one has

j
j jj i2 jyi Ž jyi.q2 iP y s l y y l y s l yl y .Ž . Ž .Ž . Ý ž /iis0

Denoting i s k y j, we have

2 j jj kyjj kP y s l y1 yŽ . Ž .Ý ž /k y j
ksj

and the matrix elements T arejk

jky j jT s y1 l . 8Ž . Ž .jk ž /k y j

w xThus, we recover a known result 6, 5 for the logistic mapping. Note that,
w xas in Riordan 8 , we use the definition of binomial coefficients such that

lŽ . s 0 for the integers l and m, whenever m - 0 or m ) l.m



BERKOLAIKO, RABINOVICH, AND HAVLIN84

3. RECURSION SOLUTION FOR ARBITRARY ANALYTIC
FUNCTIONS IN THE RHS

�In this section we consider complex maps analytic in a disk B s z:r
< < 4z - r centered at the origin. Real analytic maps are considered as a
special case of complex maps.

Let the series
`

ka z ' f zŽ .Ý k
ks0

� < < 4converge absolutely in the disk B s z: z - r . We construct the follow-r
w xing series absolutely convergent in the disk B 4 :r

j` j j jk j jy1 jy1 2 jy2 2a z s a q a a z q a j q a a z q ???Ý k 0 1 0 2 0 1 0ž / ž / ž /1 1 2ks0

`
ks T z .Ý jk

ks0

� 4̀DEFINITION 1. The matrix T s T is said to be the transferjk j, ks0
Ž . ` k w Ž .x jmatrix of the analytic function f z if Ý T z s f z .ks0 jk

Ž .THEOREM 2. Let g z be analytic in the disk B , f : B ª B be analyticR r R
in the disk B ; let the matrices T and S be the transfer matrices of ther

Ž . Ž .functions f z and g z . Then the matrix ST is the transfer matrix of the
Ž .composition g ( f z .

Proof. First we prove the existence of the matrix product ST. For
< Ž . < < <arbitrary r, 0 - r - r, one has f z F R y e in the closed disk z F r,

w Ž .x j <w Ž .x j < Ž . jfor some e , 0 - e - R. Thus, the power f z satisfies f z F R y e
and by Cauchy’s inequality for the coefficients of the power series repre-

< < yk Ž . jsentation we have T F r R y e . Therefore, the seriesjk

` `
jykST s S T - r S R y eŽ . Ž .Ý Ýi k i j jk i j

js0 js0

converges absolutely, since, by definition, the series Ý` S z j is absolutelyjs0 i j
convergent in B . Thus, the matrix product ST exists and, furthermore, weR
have

j` ` ` ` R y eŽ .
k kS T z F S zÝ Ý Ý Ýi j jk i j krks0 js0 ks0 js0

` k `< <z js S R y eŽ .Ý Ý i jkrks0 js0
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` Ž . kand the series Ý ST z converges absolutely in the disk B . Changingks0 i k r

w xthe order of summation 4 , one has

` ` ` `
ik kST z s S T z s S f zŽ . Ž .jkÝ Ý Ý Ýji i k ji

ks0 is0 ks0 is0

j jw xs g f z s g ( f z . 9Ž . Ž . Ž .Ž .

Ž .Considering the limit r ª r, we infer that Eq. 9 holds in the disk B .r
This observation completes the proof.

In this way we can write down the solution of the recursion

z s f z with z ' z . 10Ž . Ž .nq1 n 0

THEOREM 3. Let f : B ª B be analytic with transfer matrix T. Then, forr r
any initial point z g B ,r

z s eT nz,˜n

T � 4̀ � i4̀where, e s d and z s z .˜ i, 1 is0 is0

Since real analytic functions can be analytically continued to the com-
plex plane, the above analysis can be employed in the real functions case

Ž .as well. For practical use instead of the condition g z : B ª B theR r
stronger condition,

`
k< < < <b x - r for x - R ,Ý i

is0

can be used, where the b are coefficients of the series decomposition ofi
the function f.

The following example presents a family of functions whose transfer
matrices form is invariant under multiplication.

Ž . Ž .EXAMPLE 2. We consider the function f x s axr b q x . The compo-
nents of the transfer matrix T are

¡ k y 1 j ykd d q a b for 0 - j F k ,j0 k 0~ ž /j y 1T s 11Ž .jk ¢
0 otherwise.
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Ž . Ž . Ž .If g x s cxr d q x and S is the transfer matrix of g x , then the
components of the matrix ST are

` k i y 1 k y 1j yi i ykST s S T s d d q c d a bŽ . jk Ý Ýji i k j0 k 0 ž /ž /j y 1 i y 1
is0 isj

kyj lq jak y 1 k y jj y1s d d q c b Ýj0 k 0 ž /ž / ž /j y 1 ldls0

ykjac bdk y 1s d d q .j0 k 0 ž / ž /ž /j y 1 a q b a q b

Ž .One can see that the matrix elements ST have the same form as in Eq.jk
Ž .11 .

4. OPERATIONS WITH TRANSFER MATRICES

An interesting question to ask now is: What is the inverse of the transfer
Ž .matrix, for example, of matrix 8 ? The answer to this question and a

possible method to calculate a general form of elements of the inverse
matrix gives

Ž .THEOREM 4. Let T be the transfer matrix of the analytic function f x ,
Ž . XŽ . y1f 0 s 0, f 0 / 0. Then T exists and is the transfer matrix of the in¨erse

y1Ž .function f x .
y1Ž .Note that by the inverse function f x we understand the formal

y1 Ž . y1Ž .Taylor series which, under substitution, produces f ( f x s f ( f x s
x. The series converges if and only if the function defined by the implicit

Ž . Ž .function theorem as a solution of f x s y for initial value f 0 s 0 is
analytic at the point y s 0. Thus, only local information about the func-

Ž .tion f x is used in the theorem.

Proof. The statement of the theorem implies that T is an upper
Ž . Ž . Ž .triangular matrix. Indeed, f x can be represented as f x s xf x and

w Ž .x j jw Ž .x jtherefore f x s x f x and T s 0 for k - j. Existence and unique-jk
ness of the inverse matrix, which is also an upper triangular matrix, is

w xproved in 3 . To prove the theorem, we consider a formal Taylor series
`

y1 kg x s T x .Ž . Ý 1k
ks0

Ž . Ž .Now we can form a transfer matrix S of the function g x . Then ST s1 j
d , since the first row of the matrix S is the same as that of the matrix1 j
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y1 Ž . ` Ž . kT . On the other hand, Theorem 4 implies g ( f x s Ý ST xks0 1k

Ž Ž .. j j ` ks x. Therefore, the powers g ( f x are equal to x s Ý d x sks0 jk
` Ž . k Ž .Ý ST x , which implies ST s d . Thus, ST is the unity matrix,ks0 jk jk jk

y1 Ž . y1Ž .S s T and g x s f x . The theorem is proved.

Ž . Ž . y1Ž .EXAMPLE 3. For the logistic mapping f x s l x 1 y x we have f y
Ž . Ž Ž's 1 q 1 y 4 yrl r2 we eliminate the second branch 1

.'y 1 y 4 yrl r 2 of the inverse function because it violates the condition
y1 Ž . . y1f ( f 0 s 0 . To get an explicit form of elements T , one can noticejk

y1Ž . Ž . Ž .y1Žthat f x is simply related to the generating function c x s 2 x 1
j' . w x w Ž .xy 1 y 4 x of Catalan numbers 8 . Respectively, the powers c x are

decomposed with the aid of ballot numbers as follows:

j kc x s a x ,Ž . Ý jqky1, k
k

where

l y m l q ma sly1, m ž /ml q m

are ballot numbers. This relation immediately gives Ty1 s lyka ,jk ky1, kyj
i.e.,

j 2k y jy1 ykT s l .jk ž /k y j2k y j

Writing down the orthogonality relation Ty1 T s E in matrix components,
one finds the combinatorial identity

k jky j 2 l y ky1 s dŽ .Ý j , lž /ž /k y j l y k2 l y kk

Ž w x.see also 8 .
XŽ .The additional condition f 0 / 1 makes possible the diagonalization of

a transfer matrix.

Ž .THEOREM 5. Let T be the transfer matrix of the analytic function f x ,
Ž . XŽ . y1f 0 s 0, f 0 s l / 0, l / 1. Then transfer matrices D and D exist such

that

T s Dy1L D, 12Ž .

where L is a diagonal matrix with elements L s l jd .jk jk
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Ž .Proof. We rewrite Eq. 12 as follows:

DT s L D

and note that the structure of matrices T and L is rather simple and the
equation gives a straightforward algorithm for calculating the matrix D.
Indeed,

ky1
y1jD s l y T T D .Ž . Ýjk k k ik ji

is1

This relation defines off-diagonal elements of the matrix D while the
diagonal ones remain arbitrary. Thus, we have a family of suitable upper
triangular matrices. To prove that the family contains a transfer matrix, we
fix the undetermined element D to be, say, a / 0 and, as before,11
consider a formal series

`
kh x s D x .Ž . Ý 1k

ks1

Ž .This allows one to construct a transfer matrix S for the function h x and,
Ž .since L is also the transfer matrix of the function l x s l x, we can apply

the reasoning from the previous proof to confirm that the equation

ST s LS

holds. Indeed, the first rows of the matrices on the left- and right-hand
sides are equal due to the fact that S s D . The rest of the equation is1k 1k
implied by Theorem 4. The theorem is proved.

COROLLARY 1. Let f : B ª B be an analytic function. Then for anyr r
initial point z g B we ha¨e the following representation:r

z s eDy1LnDz.˜n

Ž . Ž . y1 y1Ž .EXAMPLE 4. The correspondences T ¬ f x , D ¬ h x , D ¬ h x ,
Ž . Ž .and L ¬ l x allow us to rewrite Eq. 12 in the ‘‘functional’’ form

f x s hy1 lh x ,Ž . Ž .Ž .
Ž . ` kwhere h x s Ý D x . The elements D obey the linear recursionis1 1k 1k

ky1
y1kD s l y l T D .Ž . Ý1k ik 1 i

is1

For some special cases this recursion admits an explicit solution for D1k
Ž .which gives us information about h x . For example, using this result, it is
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possible to recover the well-known representation of the logistic map for
l s 4:

2
2 2' ''4 x 1 y x s sin 2 arcsin x s sin 4 arcsin x ,Ž . Ž . Ž .ž /

2'Ž . Ž . Ž . Ž .which corresponds to f x s 4 x 1 y x and h x s arcsin x and im-
plies the easy-to-analyze solution

2n n 'f x s sin 2 arcsin x ,Ž . Ž .
nŽ . Ž .where f x is nth iteration of the function f x .

5. SUMMARY

In this work we prove convergence of the series used in Carleman
linearization of nonlinear analytic recursions. We establish a correspon-
dence between analytic functions and infinite matrices of a certain type.
This correspondence is proven to extend to operations with matrices.
Namely, for an analytic function, satisfying certain conditions, and the
corresponding matrix the following is true: the inverse matrix corresponds
to the formal inverse series of the function. A similar result is obtained for
the diagonalization of the matrix which corresponds to the formal repre-
sentation

f x s hy1 lh xŽ . Ž .Ž .

Ž . XŽ . Ž .of the given function f x , where l s f 0 and the functions h x and
y1Ž .h x are given in the form of series. Convergence of this series is a

possible subject for future research.
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