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A general method to map a polynomial recursion on a matrix linear one is sug-
gested. The solution of the recursion is represented as a product of a matrix mul-
tiplied by the vector of initial values. This matrix is product tonsfer matrices
whose elements depend only on the polynomial and not on the initial conditions.
The method is valid for systems of polynomial recursions and for polynomial
recursions of arbitrary order. The only restriction on these recurrent relations is that
the highest-order term can be written in explicit form as a function of the lower-
order terms(existence of a normal formA continuous analog of this method is
described as well. €1996 American Institute of Physics.
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I. INTRODUCTION

Recurrent relations take a central place in various fields of science. For example, numerical
solution of differential equations and models of evolution of a system involve, in general, recur-
sions.

By now, only linear recursions could be solv&twhile even the simplest nonlinearity usually
made an analytic solution impossible. A good example for this is a rather simple recursion, the
logistic map,y,+1=AY,(1—Y,). The analysis of its behavior, while based on roundabout ap-
proaches, has revealed many unusual features.

In this paper we propose a new approach to the solution of polynomial recursions. It turns out
that the coefficients of thieth iteration of the polynomial depend linearly on the coefficients of
the (i —1)-th iteration. Using this fact we succeed in writing down the general solution of the
recursion.

To make this paper more readable we include some auxiliary material on linear recursions as
well as an introductory example.

II. INTRODUCTORY EXAMPLE: LOGISTIC MAPPING
To demonstrate our approach we begin with the recursion equation known as the logistic

mapping:
Yn+1=AYn(1—yn) with ye=y. )
Very recently it was shown by Rabinoviet al* that the solution of this recursion is given by
yn=(eT"y), @)

whereT is a transfer matrix with elements
TN
_ k
Tjk_(_l) J(k_j))\]- (3)
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The vectordy) and(g| are correspondingly a set gfs powers and the first ort defined as

ly)={y}2, and (e=[511%;, (4)

where g is the Kronecker symbol.

Equations(2) and (3) were derived in Ref. 4 by consideration of a branching process. How-
ever, knowing the representation of the soluti@n one can obtain the matrix elemer® in a
“one-line” way. Namely, we have to find a matrik that transforms a columfy'} to a column
{[Ny(1—y)]'}. Expanding this last expression

i

Dy(1-y))=3, <—1>i(f

=0

2j . 2j
Nyl ti=3 (—1)kj( kJ_ -))\jyk: > Ty
=y ) k=]

and extending the last summation over all natural numfairs to the vanishing of the binomials
(k_Jj) for k outside the intervalj[,2j]} we immediately recover Eq3) for the elements of the
matrix T.

Ill. GENERAL CASE OF FIRST-ORDER POLYNOMIAL RECURSION

Here we consider a first-order recursion equation in its normal form

Ynr1=P(Yn), 5

whereP(x) is a polynomial of degreen:

m
P(x)= kgo axk, ap#0. (6)
Let y,=y be an initial value for the recursiai®). We denote byy) the column vector of powers
ofy
V) ={y'}-o
and the vectofe| is a row vector
(ef=[31]=0-

It should be emphasized thatuns from 0, since in the general casg~0. In this notation(ely)
is a scalar product that yields

(ely)=y. @

Theorem: For any recursion of the type of E¢p) there exists a matriX ={T;,}{x-o Such
that

Yo=(elT"ly). €S)

Proof: For n=0 the statement of the theorem is vdlake Eq(7)]. We introduce the column
def
vector|y; = {y}};_,, wherey,;=P(y). Let T be a matrix such that

ly)=Tly). 9
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The existence of this matrix will be proven later on. If such a matrix exists, then, analogically to
Eq. (7), we have

y1=(elyy)=(e|Tly).

Therefore, the statement of the theorem is truenferl as well.

Assume that Eq(8) is valid forn=I and any initial valugy. Theny,, ; can be represented as
yi.1=(e[T'ly,), wherey,=P(y) is considered as a new initial value of the recursion. Then, using
Eqg. (9) one gets

Vi1 =Ty =(dT'TIy)=(e T |y).

def
To prove the existence of the matixwe usely,) = {Pi(y)}}“;O. In turn, P!(y) is thejm-th
degree polynomial

m i im
Pi(y)= ( iZEO aiyl) = kzo Ty, (10
and we infer thall ={T};’x-o obeys Eq(9).
Note that forj andk satisfyingk=jm we haveT;,=0. Therefore, each row is finitge., there
is only a finite number of nonzero matrix elements in each)rokiis proves the existence of
powers of T and completes the proof.

The method of this section can be generalized to an arbitrary analytic function in the right-
hand side of Eq(5).°

IV. SPECIAL CASES

A. The binomial case, P(x)=a,x"+ayx‘

As one can see, in the general case elements of the riat@ave a form of rather complicated
sums. However, they are degenerated to a fairly simple expression, when the poly{@rhasd
only two terms. In this case one gets

i

Pi(y)=(apyP+ aqu)j=i=20

J

j=igiyp(i—i)+a
a, 'agy .

Denoting
k=p(j—i)+dqi, i=1(k)=(q—p)~*(k—pj),

we have

J=1K) 51 (k)
ap aq .

. ia i
PJ(Y) = kz_ yk( (k)

=Jp
Thus, the matrix elementE;, are

j
TJk:(uk)

= 1(k) 51 (k)
ap aq .

By substituting hergp=1, =2, a,= —a,=A\, we immediately recover the solution for the logis-
tic map, Eq.(3).
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B. The trinomial case, P(x)=ay+apx’+ayx?, a,#0
Here, the transfer matriX admits the following decomposition:
T=AT,,

whereT, is the matrix corresponding to the polynomRj(x) =ayx"+ax9 andA is an upper-
triangular matrix. Indeed, let us consideg(x) =apxp+ aqxq and the corresponding matrig. It
yields

def
Toly)=1y1) :{PJO(Y)}T:o :

For the matrixT one gets

def

Tly)=lyn)={P()}j=0,

: al '(apyP+agy?)'.

j
Ply)=2,
=0
Denoting in the last lind;=({)ab ' one obtaingy,) = Aly;) = AToly) = Tly), andT =AT,.

V. NONCONSTANT COEFFICIENTS
As shown in Ref4 a generalization of Ed1),
Yn+1=AnYn(1—yn)  with yo=y, 11
can be solved using a similar approach. The solution is
Ya=(&lTn - T2Taly), (12
where the matrix elements @f, are nowi-dependent:
j

(Ti)jk:(_l)kj(k_ )(?\i)j- (13

The same argument is valid for an arbitrary recursign, = P,(n,y,) and therefore solution
Eqg. (8) takes the form of Eq(12) with the obvious change&,,...,a, becomei-dependent
functions in the corresponding matrix elements.

VI. THE RICCATI RECURSION
This name is commonly used for the equation
Yn+1Yn+anYn+1+bryn+c,=0.

However, by a proper change of variabfehis equation can be reduced to a linear one and then
treated by conventional techniques. Here we shall be dealing with the following recursion:

Ynr1=antbpynt Cnyﬁ with yo=Yy.

This is a possiblgasymmetri¢ discrete analog of the Riccati differential equatfoh.is well
known that the latter cannot be solved in quadratures.

J. Math. Phys., Vol. 37, No. 11, November 1996
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The general results of the two previous sections can be employed to write down the solution
of this recursion. Namely, the solution reads

Ya=(€|Tq - ToTaly),
where the matrixT; is a product of two matrices
Ti=AS

with matrix elements

J

(ADjk=|

o R
al =« and(S),—k=<k_j)biZJ kel

VIl. SYSTEM OF LINEAR FIRST-ORDER RECURSIONS

The next three sections deal with linear recursions. They are well khdwnt we include
those sections to help the understanding of subsequent sections, devoted to systems of nonlinear
recursions.

The solution of a system of linear first-order recursions in the most general case is rather
trivial, but for the sake of clarity we shall demonstrate it on>322homogeneous system

Unr1=(ND)nUnt (N 2pvn  With up=u,
_ (14
Un+1=N20)pUnt (N0, With vo=v.

Introducing the vectotx,|=(u,,v,) and the matrix

_((xn)n (xn)n)
B ()\Zl)n ()\22)n ,

n

one rewrites Eq(14) as follows:
[Xn+1) = AnlXn)
and, thus,
[Xn+1)=An .- Aq|Xo),

where(xo|=(u,v) is an initial vector.
Further generalization to a homogeneous systeh liriear equations of first order is straight-
forward.

VIIl. LINEAR EQUATION WITH NONCONSTANT COEFFICIENTS

The result of the previous section allows one to solve linear recursions of an arbitrary order
with nonconstant coefficients. As usual, we start with the simplest case—a second-order equation

Xn+1F NpXpt sn—1Xp-1=0. (15
Denotingy,,= u,_1X,_1 We obtain the system
Xn+1= " AXn = Yn,  Yn+1= MnXn- (16)

The solution of this equation is written as in the previous section but now
J. Math. Phys., Vol. 37, No. 11, November 1996
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Mn 0

and the initial vector isX;,wgXg), wherex, andx, are initial values of the recursiofl5).
The method we used to transform E@.5) to Eq. (16) is well known in the theory of
differential equation$,but it is useful for the simplest case of constant coefficients only.
Again, the generalization fL6) for a linear equation of arbitrary order is quite simple.

IX. SYSTEM OF LINEAR HIGHER-ORDER RECURSIONS

The generalization to higher orders is rather obvious. The simplest example is

Xnt1t M) nXnt (M1 nXn- 1+ (1D nYnt (#12)nYn-1=0,

17
Ynr1T (m20)nYnt (m22)nYn-11 (A2)nXn T (N 22)nXn-1=0.

One proceeds as in the previous section with new variallesx,,_, andv,=Y,_;. Then, the
system(17) takes the form

Xn+1+ (N 1) nXn T (A1) pUn+ (R1)nYnt (412)00n =0,
Yn+1H (20 nYnt (122000t (Nap)nXn+ (N 22)nUn =0,
Unt1=%n=0, vn417Yn=0,
i.e., the vector X, ,Y, .U, ,v,) is transformed by the transfer matrix

—(Nn —(M1dn —(A2dn — (120
—(N2dn —(M2n —(A22dn  —(m22)n
" 1 0 0 0
0 1 0 0

and subject to appropriate initial conditions.

X. SYSTEM OF NONLINEAR FIRST-ORDER RECURSIONS

Actually, very little is known about systems of nonlinear recursfoigée now extend our
method of Sec. Il to deal with systems of nonlinear equations. Let us demonstrate it on the
following example:

Upr1=AU,(1—v,) with uy=u,

(18)
Unr1=pon(l—u,) with vog=v.
Proceeding here as in Sec. IIl, we are checking the transformation of a pro@tict
j k_— i1l r J r k. k S k s
(=) Plav(1=w]*= 2 Nul(= 1) Jo s (- 1) g |u
r,s

=2 uPUQ(—l)@“*(qk)( J )( K .)w. (19)

p.q q—k/\p—j
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We prefer to proceed with the aid of multidimensional matfices being the most natural
way. However, a possibility of using traditional two-dimensional matrices also éxists.
Indeed, introducing here a four-dimensional maffixvith the elements

Tjkpq:(_l)(p*jH(q*k)

o
CIN!
q—k/\p—j)*#

(it can also be viewed as an ordinary matrix on the space of indeX parbasically return to the
familiar transfer-matrix construction but for more complex objects. Namely, we shall operate with
a two-dimensional matrix, defined as a direct product of vectdus and |v):

Xjk:UjUk.

Here the matrixX plays the same role as the veclgrin Sec. lIl. The four-dimensional matrik
is analogous to its two-dimensional relatife The multiplication of such matrices is defined
rather naturally:

x1x2=%(x1)pq(xz>pq, (Tx)jk:;q TikpaXpar <T1T2>,-kpq=§(Tl),-krsm)rqu.

Note that the matrix analog of the scalar product of vectors is just a contratia, in the
tensor algebra nomenclature.
As in Sec. X, one can obtain the solution of the system in the form

Upy=E;T"X, v,=E,T"X,
where, as usual,
(B j=961j60k, (E2)jk= 8j 01k -

Further generalization of this approach is also rather simple. In the general casérsf-
order nonlinear equations

XD =Pi(xoxM™y =1, m, (20)

one has to consider then2dimensional transfer matriX. To construct it we are checking as
before the product

=plii...pim
_Pl Pm’

and them-dimensional matrixX, defined as a direct product @h vectors of initial values

XDy, x(my,
The polynomialP; ; depends om variablesx'?,...x™ and therefore can be repre-
sented as
1 _
Pl XY X ™) =T X,
whereT; ;s a constant multidimensional matrix of coefficients of the polynorfial ; .

This matrixTJ-l ..... in is the (1,...,jn)-th m-section of the transfer matrix.
Then defining the matri¥; by

(EDjy = 0jy- 01, O0j

J. Math. Phys., Vol. 37, No. 11, November 1996
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one can write down the solution of the system in the form
xW=gTX.

Xl. SYSTEM OF NONLINEAR HIGHER-ORDER RECURSIONS

We are not going to write down even the simplest example, but the scheme is quite obvious:
introduction of new variables to bring each equation to the first-order structure and, then, con-
struction of a transfer matrias in the two previous sections

Xll. CONTINUOUS ANALOG OF THE TRANSFER MATRIX

In this section we present a continuous generalization of our transfer matrix technique. We
consider the general case, the multivariable functioR"—R". We do not try to establish the
exact conditions for existence of all the functions involved, but merely describe the algorithm.

Let

Fide(xt)]= (277)_”fRn exp(—i(x,5) e(x,t)dx,

where(x,s) is the scalar product of two real vectaxsands, be the Fourier transform of the
function ¢:R?"—C, sx,teR" andF %, be the corresponding inverse Fourier transfo?riihen,
we define the transfer kernel of the functiod:R"—R" as Fourier transform
T(t,9)=F,_ ¢ exdi(f(x),t)].

Fornlelxample, let us consider the logistic méfx) = Ax(1—x). Then the transfer kernel is the
functio

T(t —F ixs+itAx(1 d—\/? iWJri(t)‘_s)z
(t,s)= wexp[—lxs itAx(1—x)]dx= o Xt .

We define the product of the transfer kern8is,s) and T(t,s) of the functionsg(x) and f(x)
by

def
SOT(t,9)= f S(t,7)T(7,9dr7.
Rn

Theorem: The product,SOT(t,s), of the transfer kernel$(t,s) and T(t,s) is the transfer

kernel of the compositiogef(x), wheregef (x)=g(f(x)).
Indeed, performing the inverse Fourier transform for the func8@nr (t,s) one gets

ngx[sm(t,s)]:f S(t,T)F;jX[T(T,s)]dfzf S(t, ) exdi(f(x),7)]dr
R" R"

=F, ool S(t ) 1= exd i{gef(x),1)].

One can see that the product of the transfer kernels is defined in analogy to the matrix product
and we can obtain the solution of the recursieae Sec. Il in the form

()= _|n{F;jy[T“(t,S)]|t=iej}

— n
Whereej _{5jk}k:1'
J. Math. Phys., Vol. 37, No. 11, November 1996
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Xlll. SUMMARY

In this paper we have presented a new method to obtain the solution of arbitrary polynomial
recursions. The method has been generalized to systems of multivariable recursions and recursions
of arbitrary order, in analogy to the solution of linear recursions, also presented in this paper.

Generally, the solution is obtained in the form of a matrix power, applied to the vectors of
initial values. We have presented a way to construct such a matrix.

Famous and important examples, such as the logistic map and the Riccati recursion, have been
considered and the corresponding matrices have been written down explicitly.

We also generalized the method in another direction. It is shown that instead of transfer matrix
one can use transfer kernel which can be considered as a continuous’fatrix.

While the investigation of the solutions found is beyond the scope of the paper this challeng-
ing task deserves a few words. For example, the logistic map soli@iaan be used to construct
a generating functiohUnfortunately, this latter may have an essential singularity. Therefore, it is
more natural to construct an exponential generating funei@) == (1/n!)y,z"=(elexpzT)|y).

Then, one can try to understand the parametric dependence of the logistic map asymptotics from
a steepest descent of the Cauchy integral

1 ¢(2)

=-— —r7 dz,
yn 2 i Co Zn+1

where the contou€, includes the origin of coordinates.
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