
Solving nonlinear recursions
S. Rabinovich
Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat-Gan,
Israel

G. Berkolaiko
Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat-Gan, Israel
and Department of Mathematics, Voronezh University, 394693 Voronezh, Russia

S. Havlin
Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat-Gan,
Israel

~Received 19 March 1996; accepted for publication 21 June 1996!

A general method to map a polynomial recursion on a matrix linear one is sug-
gested. The solution of the recursion is represented as a product of a matrix mul-
tiplied by the vector of initial values. This matrix is product oftransfermatrices
whose elements depend only on the polynomial and not on the initial conditions.
The method is valid for systems of polynomial recursions and for polynomial
recursions of arbitrary order. The only restriction on these recurrent relations is that
the highest-order term can be written in explicit form as a function of the lower-
order terms~existence of a normal form!. A continuous analog of this method is
described as well. ©1996 American Institute of Physics.
@S0022-2488~96!00111-9#

I. INTRODUCTION

Recurrent relations take a central place in various fields of science. For example, numerical
solution of differential equations and models of evolution of a system involve, in general, recur-
sions.

By now, only linear recursions could be solved1–3while even the simplest nonlinearity usually
made an analytic solution impossible. A good example for this is a rather simple recursion, the
logistic map,yn115lyn(12yn). The analysis of its behavior, while based on roundabout ap-
proaches, has revealed many unusual features.

In this paper we propose a new approach to the solution of polynomial recursions. It turns out
that the coefficients of thei -th iteration of the polynomial depend linearly on the coefficients of
the ~i21!-th iteration. Using this fact we succeed in writing down the general solution of the
recursion.

To make this paper more readable we include some auxiliary material on linear recursions as
well as an introductory example.

II. INTRODUCTORY EXAMPLE: LOGISTIC MAPPING

To demonstrate our approach we begin with the recursion equation known as the logistic
mapping:

yn115lyn~12yn! with y0[y. ~1!

Very recently it was shown by Rabinovichet al.4 that the solution of this recursion is given by

yn5^euTnuy&, ~2!

whereT is a transfer matrix with elements

Tjk5~21!k2 j S j
k2 j Dl j . ~3!
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The vectorsuy& and ^eu are correspondingly a set ofy’s powers and the first ort defined as

uy&5$yj% j51
2n and ^eu5@d j1# j51

2n , ~4!

wheredjk is the Kronecker symbol.
Equations~2! and ~3! were derived in Ref. 4 by consideration of a branching process. How-

ever, knowing the representation of the solution~2! one can obtain the matrix elements~3! in a
‘‘one-line’’ way. Namely, we have to find a matrixT that transforms a column$yj% to a column
$[ly(12y)] j%. Expanding this last expression

@ly~12y!# j5(
i50

j

~21! i S ji Dl j y j1 i5(
k5 j

2 j

~21!k2 j S j
k2 j Dl j yk5(

k5 j

2 j

Tjky
k

and extending the last summation over all natural numbers$due to the vanishing of the binomials
(k2 j

j ) for k outside the interval [j ,2j ] % we immediately recover Eq.~3! for the elements of the
matrix T.

III. GENERAL CASE OF FIRST-ORDER POLYNOMIAL RECURSION

Here we consider a first-order recursion equation in its normal form

yn115P~yn!, ~5!

whereP(x) is a polynomial of degreem:

P~x!5 (
k50

m

akx
k, amÞ0. ~6!

Let y0[y be an initial value for the recursion~5!. We denote byuy& the column vector of powers
of y

uy&5$yj% j50
`

and the vector̂eu is a row vector

^eu5@d j1# j50
` .

It should be emphasized thatj runs from 0, since in the general casea0Þ0. In this notation̂ euy&
is a scalar product that yields

^euy&5y. ~7!

Theorem: For any recursion of the type of Eq.~5! there exists a matrixT5$Tjk% j ,k50
` such

that

yn5^euTnuy&. ~8!

Proof: For n50 the statement of the theorem is valid@see Eq.~7!#. We introduce the column

vectoruy1 5
def

$y1
j % j50

` , wherey15P(y). Let T be a matrix such that

uy1&5Tuy&. ~9!
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The existence of this matrix will be proven later on. If such a matrix exists, then, analogically to
Eq. ~7!, we have

y15^euy1&5^euTuy&.

Therefore, the statement of the theorem is true forn51 as well.
Assume that Eq.~8! is valid for n5 l and any initial valuey. Thenyl11 can be represented as

yl115^euT l uy1&, wherey15P(y) is considered as a new initial value of the recursion. Then, using
Eq. ~9! one gets

yl115^euT l uy1&5^euT lTuy&5^euT l11uy&.

To prove the existence of the matrixT we useuy1& 5
def

$Pj (y)% j50
` . In turn,Pj (y) is the jm-th

degree polynomial

Pj~y!5S (
i50

m

aiy
i D j5 (

k50

jm

Tjky
k, ~10!

and we infer thatT5$Tjk% j ,k50
` obeys Eq.~9!.

Note that forj andk satisfyingk> jm we haveTjk[0. Therefore, each row is finite~i.e., there
is only a finite number of nonzero matrix elements in each row!. This proves the existence of
powers ofT and completes the proof.

The method of this section can be generalized to an arbitrary analytic function in the right-
hand side of Eq.~5!.5

IV. SPECIAL CASES

A. The binomial case, P(x )5apx
p1aqx

q

As one can see, in the general case elements of the matrixT have a form of rather complicated
sums. However, they are degenerated to a fairly simple expression, when the polynomial~6! has
only two terms. In this case one gets

Pj~y!5~apy
p1aqy

q! j5(
i50

j S ji Dapj2 iaq
i yp~ j2 i !1qi.

Denoting

k5p~ j2 i !1qi, i5 l ~k!5~q2p!21~k2p j !,

we have

Pj~y!5 (
k5 jp

jq

ykS j
l ~k! Dapj2 l ~k!aq

l ~k! .

Thus, the matrix elementsTjk are

Tjk5S j
l ~k! Dapj2 l ~k!aq

l ~k! .

By substituting herep51, q52, ap52aq5l, we immediately recover the solution for the logis-
tic map, Eq.~3!.
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B. The trinomial case, P(x )5a01apx
p1aqx

q, a0Þ0

Here, the transfer matrixT admits the following decomposition:

T5AT0 ,

whereT0 is the matrix corresponding to the polynomialP0(x)5apx
p1aqx

q andA is an upper-
triangular matrix. Indeed, let us considerP0(x)5apx

p1aqx
q and the corresponding matrixT0. It

yields

T0uy&5uy18&5
def

$P0
j ~y!% j50

` .

For the matrixT one gets

Tuy&5uy1&5
def

$P~y! j% j50
` ,

Pj~y!5(
i50

j S ji Da0j2 i~apy
p1aqy

q! i .

Denoting in the last lineAji[( i
j )a0

j2 i one obtainsuy1& 5 Auy18& 5 AT0uy& 5 Tuy&, andT5AT0.

V. NONCONSTANT COEFFICIENTS

As shown in Ref. 4 a generalization of Eq.~1!,

yn115lnyn~12yn! with y0[y, ~11!

can be solved using a similar approach. The solution is

yn5^euTn•••T2T1uy&, ~12!

where the matrix elements ofT i are nowi -dependent:

~Ti ! jk5~21!k2 j S j
k2 j D ~l i !

j . ~13!

The same argument is valid for an arbitrary recursionyn115Pn(n,yn) and therefore solution
Eq. ~8! takes the form of Eq.~12! with the obvious changes~a0 ,...,am becomei -dependent
functions! in the corresponding matrix elements.

VI. THE RICCATI RECURSION

This name is commonly used for the equation

yn11yn1an8yn111bn8yn1cn850.

However, by a proper change of variable1,2 this equation can be reduced to a linear one and then
treated by conventional techniques. Here we shall be dealing with the following recursion:

yn115an1bnyn1cnyn
2 with y0[y.

This is a possible~asymmetric! discrete analog of the Riccati differential equation.6 It is well
known that the latter cannot be solved in quadratures.
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The general results of the two previous sections can be employed to write down the solution
of this recursion. Namely, the solution reads

yn5^euTn•••T2T1uy&,

where the matrixT i is a product of two matrices

T i5A iSi

with matrix elements

~A i ! jk5S jkDaij2k and ~Si ! jk5S j
k2 j Dbi2 j2kci

k2 j .

VII. SYSTEM OF LINEAR FIRST-ORDER RECURSIONS

The next three sections deal with linear recursions. They are well known,1,2 but we include
those sections to help the understanding of subsequent sections, devoted to systems of nonlinear
recursions.

The solution of a system of linear first-order recursions in the most general case is rather
trivial, but for the sake of clarity we shall demonstrate it on a 232 homogeneous system

un115~l11!nun1~l12!nvn with u0[u,
~14!

vn115~l21!nun1~l22!nvn with v0[v.

Introducing the vector̂xnu5(un ,vn) and the matrix

Ln5S ~l11!n ~l12!n

~l21!n ~l22!n
D ,

one rewrites Eq.~14! as follows:

uxn11&5Lnuxn&

and, thus,

uxn11&5Ln ...L0ux0&,

where^x0u5(u,v) is an initial vector.
Further generalization to a homogeneous system ofN linear equations of first order is straight-

forward.

VIII. LINEAR EQUATION WITH NONCONSTANT COEFFICIENTS

The result of the previous section allows one to solve linear recursions of an arbitrary order
with nonconstant coefficients. As usual, we start with the simplest case—a second-order equation

xn111lnxn1mn21xn2150. ~15!

Denotingyn[mn21xn21 we obtain the system

xn1152lnxn2yn , yn115mnxn . ~16!

The solution of this equation is written as in the previous section but now
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Ln5S 2ln 21

mn 0 D
and the initial vector is (x1 ,m0x0), wherex0 andx1 are initial values of the recursion~15!.

The method we used to transform Eq.~15! to Eq. ~16! is well known in the theory of
differential equations,7 but it is useful for the simplest case of constant coefficients only.

Again, the generalization of~16! for a linear equation of arbitrary order is quite simple.

IX. SYSTEM OF LINEAR HIGHER-ORDER RECURSIONS

The generalization to higher orders is rather obvious. The simplest example is

xn111~l11!nxn1~l12!nxn211~m11!nyn1~m12!nyn2150,
~17!

yn111~m21!nyn1~m22!nyn211~l21!nxn1~l22!nxn2150.

One proceeds as in the previous section with new variablesun5xn21 andvn5yn21. Then, the
system~17! takes the form

xn111~l11!nxn1~l12!nun1~m11!nyn1~m12!nvn50,

yn111~m21!nyn1~m22!nvn1~l21!nxn1~l22!nun50,

un112xn50, vn112yn50,

i.e., the vector (xn ,yn ,un ,vn) is transformed by the transfer matrix

Ln5S 2~l11!n 2~m11!n 2~l12!n 2~m12!n

2~l21!n 2~m21!n 2~l22!n 2~m22!n

1 0 0 0

0 1 0 0

D
and subject to appropriate initial conditions.

X. SYSTEM OF NONLINEAR FIRST-ORDER RECURSIONS

Actually, very little is known about systems of nonlinear recursions.8 We now extend our
method of Sec. III to deal with systems of nonlinear equations. Let us demonstrate it on the
following example:

un115lun~12vn! with u0[u,
~18!

vn115mvn~12un! with v0[v.

Proceeding here as in Sec. III, we are checking the transformation of a productujvk:

@lu~12v !# j@mv~12u!#k5(
r ,s

l juj~21!r S jr Dv rmkvk~21!sS ksDus
5(

p,q
upvq~21!~p2 j !1~q2k!S j

q2kD S k
p2 j Dl jmk. ~19!
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We prefer to proceed with the aid of multidimensional matrices9 as being the most natural
way. However, a possibility of using traditional two-dimensional matrices also exists.5

Indeed, introducing here a four-dimensional matrixT with the elements

Tjkpq5~21!~p2 j !1~q2k!S j
q2kD S k

p2 j Dl jmk

~it can also be viewed as an ordinary matrix on the space of index pairs! we basically return to the
familiar transfer-matrix construction but for more complex objects. Namely, we shall operate with
a two-dimensional matrixX, defined as a direct product of vectorsuu& and uv&:

Xjk5ujvk.

Here the matrixX plays the same role as the vectoruy& in Sec. III. The four-dimensional matrixT
is analogous to its two-dimensional relativeT. The multiplication of such matrices is defined
rather naturally:

X1X25(
p,q

~X1!pq~X2!pq , ~TX ! jk5(
p,q

TjkpqXpq , ~T1T2! jkpq5(
rs

~T1! jkrs~T2!rspq .

Note that the matrix analog of the scalar product of vectors is just a contraction,X1X2, in the
tensor algebra nomenclature.

As in Sec. X, one can obtain the solution of the system in the form

un5E1T
nX, vn5E2T

nX,

where, as usual,

~E1! jk5d1 jd0k , ~E2! jk5d0 jd1k .

Further generalization of this approach is also rather simple. In the general case ofm first-
order nonlinear equations

xn11
~ i ! 5Pi~xn

~1! ,...,xn
~m!!, i51,...,m, ~20!

one has to consider the 2m-dimensional transfer matrixT. To construct it we are checking as
before the product

Pj 1 ,...,j m
[P1

j 1•••Pm
jm,

and them-dimensional matrixX, defined as a direct product ofm vectors of initial values
ux~1!&,...,ux(m)&.

The polynomialPj 1 ,...,j m
depends onm variablesx(1),...,x(m) and therefore can be repre-

sented as

P~ j 1 ,...,j m!~x
~1!,...,x~m!!5T~ j 1 ,...,j m!X,

whereT j 1 ,...,j m
is a constant multidimensional matrix of coefficients of the polynomialPj 1 ...,j m

.
This matrixT j 1 ,...,j m

is the (j 1 ,...,j m)-th m-section of the transfer matrixT.
Then defining the matrixEi by

~Ei ! j 1 ,...,j i ,...,j m5d0 j 1...d1 j i...d0 j m
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one can write down the solution of the system in the form

xn
~ i !5EiT

nX.

XI. SYSTEM OF NONLINEAR HIGHER-ORDER RECURSIONS

We are not going to write down even the simplest example, but the scheme is quite obvious:
introduction of new variables to bring each equation to the first-order structure and, then, con-
struction of a transfer matrix~as in the two previous sections!.

XII. CONTINUOUS ANALOG OF THE TRANSFER MATRIX

In this section we present a continuous generalization of our transfer matrix technique. We
consider the general case, the multivariable function,f :Rn→Rn. We do not try to establish the
exact conditions for existence of all the functions involved, but merely describe the algorithm.

Let

Fx→s@w~x,t!#5~2p!2nE
Rn

exp~2 i ^x,s&!w~x,t!dx,

where ^x,s& is the scalar product of two real vectorsx and s, be the Fourier transform of the
functionw:R2n→C, s,x,tPRn andFs→x

21 be the corresponding inverse Fourier transform.10 Then,
we define the transfer kernel of the functionf :Rn→Rn as Fourier transform
T~t,s!5Fx→s exp@i ^f ~x!,t&#.

For example, let us consider the logistic map,f (x)5lx(12x). Then the transfer kernel is the
function11

T~ t,s!5E
2`

`

exp@2 ixs1 i tlx~12x!#dx5Ap

tl
expF2

ip

4
1
i ~ tl2s!2

4tl G .
We define the product of the transfer kernelsS~t,s! andT~t,s! of the functionsg~x! and f ~x!

by

S(T~ t,s!5
defE

Rn
S~ t,t!T~t,s!dt.

Theorem: The product,S(T~t,s!, of the transfer kernelsS~t,s! and T~t,s! is the transfer
kernel of the compositiong+ f ~x!, whereg+ f ~x![g~f ~x!!.

Indeed, performing the inverse Fourier transform for the functionS(T~t,s! one gets

Fs→x
21 @S(T~ t,s!#5E

Rn
S~ t,t!Fs→x

21 @T~t,s!#dt5E
Rn
S~ t,t!exp@ i ^ f ~x!,t&#dt

5Ft→ f ~x!
21 @S~ t,t!#5exp@ i ^g+ f ~x!,t&#.

One can see that the product of the transfer kernels is defined in analogy to the matrix product
and we can obtain the solution of the recursion~see Sec. III! in the form

yn
~ j !52 ln$Fs→y

21 @Tn~ t,s!#u t5 iej
%

whereej5$d jk%k51
n .
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XIII. SUMMARY

In this paper we have presented a new method to obtain the solution of arbitrary polynomial
recursions. The method has been generalized to systems of multivariable recursions and recursions
of arbitrary order, in analogy to the solution of linear recursions, also presented in this paper.

Generally, the solution is obtained in the form of a matrix power, applied to the vectors of
initial values. We have presented a way to construct such a matrix.

Famous and important examples, such as the logistic map and the Riccati recursion, have been
considered and the corresponding matrices have been written down explicitly.

We also generalized the method in another direction. It is shown that instead of transfer matrix
one can use transfer kernel which can be considered as a continuous matrix.12

While the investigation of the solutions found is beyond the scope of the paper this challeng-
ing task deserves a few words. For example, the logistic map solution~2! can be used to construct
a generating function.4 Unfortunately, this latter may have an essential singularity. Therefore, it is
more natural to construct an exponential generating functionf(z)[(n

`(1/n!)ynz
n5^euexp~zT!uy&.

Then, one can try to understand the parametric dependence of the logistic map asymptotics from
a steepest descent of the Cauchy integral

yn5
1

2p i R
C0

f~z!

zn11 dz,

where the contourC0 includes the origin of coordinates.
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