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Abstract. The eigenvalues of the Sdtinger operator on a grapfi are related via an exact
trace formula to periodic orbits o&. This connection is used to calculate two-point spectral
statistics for a particular family of graphs, called star graphs, in the limit as the number of edges
tends to infinity. Combinatorial techniques are used to evaluate both the diagonal (same orbit) and
off-diagonal (different orbit) contributions to the sum over pairs of orbits involved. In this way,

a general formula is derived for terms in the (short-time) expansion of the form f&ctorin

powers ofr, and the first few are computed explicitly. The result demonstrateKtfatis neither
Poissonian nor random matrix, but an intermediate between the two. Off-diagonal pairs of orbits
are shown to make a significant contribution to all but the first few coefficients.

1. Introduction

The Schédinger operator on a graph provides a model for investigating quantum spectral
statistics and their relation to periodic orbit theory. The trace formula, which links the
eigenvalues to the classical periodic orbits of a graph, is an identity, and numerical studies have
shown that the universal random-matrix features observed in the energy-level correlations of
classically chaotic systems are present in the spectra of typical graphs [4—6].

The trace formula relates the two-point spectral correlation funcligfx) to a sum
over all pairs of periodic orbits. In the case of ‘generic’ graphs, standard semiclassical
techniques [1-3], based on approximating this sum by only evaluating the diagonal (same
orbit, modulo symmetry) contributions, can be used to explain some universal features of
R2(x) as the number of edges tends to infinity [4,5]. Specifically, they show that the first term
in the expansion of the form factd¢ (r)—the Fourier transform oR,(x)—in powers ofz
aroundr = 0 coincides with the corresponding random-matrix results.

Alternatively, combinatorial methods have been used [6] to show that the two-point spectral
correlations of small graphs coincide with those of correspondingly small random matrices.

In this paper we concentrate on a family of graphs, cadiiedt graphs which have a
particularly simple structure. A-star graph consists of a vertex connected taher vertices
in a star shape, as the name suggests. The form factor was computed numerically for a
number of star graphs and evaluated using a method equivalent to the diagonal approximation
in [5]. The results suggest that when the number of edges is large, the two-point statistics are
intermediate between those of random matrix theory and a Poisson distribution. We confirm
this here by developing a general combinatorial method for calculating terms in the expansion
of K (r) in powers ofr aboutr = 0, in the limit as the number of edges tends to infinity, and
under some restrictions on the individual lengths of the edges. The first few terms are obtained
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explicitly. Crucially, this method enables us to evaluate both the diagonal and off-diagonal
(different orbit) contributions. The off-diagonal contribution is nonzero for all but the first few
coefficients.

Quantum graphs and their spectral statistics are described in more detail in section 2.
We calculate the coefficients in the expansion of the form factor in section 3. Finally, in
section 4, we discuss the diagonal approximation and compare it with the full expansion.
Some combinatorial parts of the analysis are deferred until the appendix.

2. Quantum eigenvalues on graphs

LetG = (V, E) be agraph, wher¥ is the set of vertices (nodes) afdc V x V is the set of
edges (bonds). Itis assumed that i (i, j) € E thene = (j,i) € E. Every edge € E has
alengthi¢ (¢ = I°) associated with it, and we shall assume that these lengths are rationally
independent (incommensurate).
Define a Schidinger equation on the edge= (k, j):
2

dx?
wherex € [0, /] is the distance along, with x = 0 corresponding to the vertéxandx = [¢
to the vertexj. We require the wavefunctions on different edges to be matched at the vertices

v, (0) = v, (0) if e1=(k, j1) e2=(k, j2) 2)
and to satisfy the Neumann current conservation condition,

d
2
J

Solving (1) and applying the boundary conditions we get the following equation for the
eigenvalues. [5]:

det(/ — exp{—iAL}S) =0 4)

whereL is the diagonalE| x | E| matrix with the lengthg¢ as its diagonal elements, and the
elements of the matri$ are given by

Sk, = 0.0+ 2/ v (5)

wherev, = #{j: (k, j) € E} is the valency of the vertek, ands; ; is the Kronecker delta.
S can be interpreted as the matrix of weights of the corresponding edge-to-edge transitions.
The transition from the edggj, k) to the edgek, j) is calledbackscatteringwhile other
transitions are referred to asrmal scattering.

An exact trace formula for the eigenvalyeg} was derived in [5]. 1H(L) = > (A —A,)
is the spectral density, then

L l
() = -+ 7t Z~ iAp cos(Al,) (6)
n,pepP,
wherep = (po, p1. -, Pa), pi € E, |labels a periodic orbit of period (pg = p.), rp is the
repetition number of the orbj, L is the sum of lengths of all the edge®, is the set of all
(up to a shift) periodic orbits of period, 1, = >"!_; I?" is the length of the periodic orbj,
andA, =[['_; Sy, .., is the product of the matrix elements $falong the orbit.
In the present work we study one spectral function, the form factor (defined in section 3)
for a special family of graphs, known agar graphs These are graphs with+ 1 vertices
marked O tov andE = {(0,i), ({,0) : i = 1...v}; see figure 1. In this case the valency of

W, (x) = A2, (x) 1)

= 0. 3)
x=0
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Figure 1. Examples of a graphaj and a star graphby.

vertex 0 isv and the valency of the other vertices is 1. This simplifies the m8&trigr example,
backscattering from the vertices 1 v has weight 1. We shall call such backscatteriniygal .

As for transitions through the vertex 0, backscattering has Wéi‘;g@nvhile normal scattering

has weight 2v. It is clear that in the limib — oo the leading-order contributions come from
orbits with the maximum number of nontrivial backscatterings. This will form the basis of our
analysis.

3. Expansion of the form factor

3.1. General formulae

To study statistics of the spectrum we introduce the following functions. The two-point
autocorrelation function is defined by

27 \? 27 x
Ro(x) = (T) <d(/\)d (A - T>>
2 \? A 27 x
= (T) lim_1/@a) /_A d(Ad ()\ - T) da. (7)

The form factorK (z) is the Fourier transform of the autocorrelation function
o0
K(r) = / (R2(x) — 1) exp(2rixt) dx. (8)
—0o0

Inserting the trace formula (6) into the definition of the autocorrelation function and
performing the Fourier transform we obtain

Iy 1 I
K(t) = LZZ > ——qA A 5<r——>3,, (9)

n= 2pq€P I'pTq

whent > 0 (K is an even function). Loosely speaking, the form factor is a sum of delta
functions positioned at the lengths of the periodic orbits and weighted by the factohote

the coupling between different orbits of the same length which is present due to the Kronecker
delta. We will refer to classes of orbits of the same lengtegeneracy classe$he condition

that the individual lengths of the edges are incommensurate implies that for two orbits to have
the same length they have to traversesame set of edgéslthough in a different order. As

a consequence, all orbits in a degeneracy class have the same period. This allows us to write

1 5 ¢ Ap\
K(r)zﬁggz(s(r—z)( Z Z) (10)
n= peP,,l,=¢

T Or, rather, the sammaultisetof edges, because the number of traversals of each edge is what is important here.
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where the first (outmost) sum is over all periods, the second is over all degeneracy classes,
characterized by the lengthof their orbits, and the last is over the orbits within a given
degeneracy class.

In what follows we assume that the individual lengths of the edges are densely distributed
around their average, which, without loss of generality, we take to be unity; for example, they
might have uniform distribution on the interval f11/(2v), 1 + 1/(2v)] in such a way that
L = 2v. Note that the distribution changes with the valency his is done in such a way that
the orbits of period 2 (in star graphs all periods are even) have their lengths distributed in the
interval [2 — k/v, 2k + k/v] and, therefore, wheh/v < 1 the corresponding delta functions
are concentrated in the interval

k k k k k1 k 1
—— ==, -t |C|-—5=, -+t =—|. 11
|:v 2027 v 2v2] |:v 2v’ v 2vi| (11)
Thus, fort = k/v < 1, the contribution from orbits of different period will be confined to
nonintersecting intervals. To approximate the form factor ardyndwe integrate it against

the characteristic function of the corresponding interval and divide by the lerigtbfihe
interval. This contribution is equal to

~ . v A\
K(z):vleoolejzz( Z r—”) (12)

pePu.l=t P

wherer = k/v. Itis clear thatK () is the weak limit ofK (7) in the generalized sense as
v — Q.

Under the above conditions on the distribution of the lengths, the form fatthbyv)
is well approximated by another quantityTr $%12)/(2L), the periodic orbit expansion for
which can be obtained from (12) by substitutihng= 2k. In what follows we make the
approximatior? ~ 2k (i.e. considex| Tr §%|2)/(2L) instead ofK (k/v)) but still refer to the
resulting expression as the form factor.

We start by dividing all orbits inte groups, based on the numbeof differentedges the
orbit traverses. This number is an invariant of the degeneracy class; thus the sums over the
degeneracy classes will remain intact. In every degeneracy class the leading-order contribution
comes from the orbits with the maximum number of backscatterings from the central vertex;
that is, from the orbits witlk — j nontrivial backscatterings (for an example, see section 3.4).
Our approach will be to extract this contribution and regroup the remaining orbits based on
how many backscatterings short of the maximum they are. Thus we write

- ) o0 2 2j ) 2k—2j o0
R () = Ky() + lim % Z(Zk)2<;> (;) (U - ) Diw)=)Y K;j(x)  (13)
j=2 j=1

where

e K;(7) is the contribution from the orbits that are confined to one edge. This term will be
treated separately.

e L = 2visthe total length of the graph,

e (2k)? is the approximate squared length of the orbits,

o the binomial coefficient is the number of ways to chogseaversed edges out of the
availablev,

o (3)2/(=2)%=2 jsthe factorAZ for an orbit which traverseg different edges and has the
maximum number of backscatterings: j,
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e and
Diwy= Y Di (v (14)

_____ s)(v) of the degeneracy classes, withbeing the
number of the traversings of the edgey an orbit from a particular class. Here we count
the traversals in one direction only, e.g. the traversals from the centre to periphery.

We now have that

k—j 2\" /9 _ —m k—j _2\™
Disy... sj><v>=2(5) ( U”) Qm(j)=Z<UT2> Qn(j) (15)

m=0 m=0

where Q,,(j) represents how many orbits with— j — m backscatterings (that is; less
than the maximum) there are in this degeneracy class. Here we have ignored the influence of
repetitions, on the grounds that these give an exponentially subdominant contribution.

Taking the limit asv — oo in (13) termwise and withh = k /v fixed, we find

8 4
K(7) = Ki(v) + ) | —D;7° exp(—4r) (16)
=2
whereD; = lim,_, o v*=/ D; (v).

3.2. Calculation ofK1(7)

K1(7) is the contribution from orbits which are confined to only one edge. All factoky i)

are the same as for genejpalwith the exception that we take into account the repetitions. Or,
rather, we cannot afford to ignore them, because in this case all contributing orbits are just
pure repetitions witlr, = k. There are no degeneracies, therefore

v, v—2 2k 1 4tv/2
K = lim =2 =Ilm(1l1-— 17
0= T “( v ) ( v/2> )

and so, taking the limit while holding fixed,
K1(t) = exp(—41). (18)

3.3. Thej = 2 contribution

The j = 2 contribution is relatively simple and can be considered separately to illustrate our
approach. It has the form
42
Ky(t) = Erzexp(—4r)D2 (19)
whereD, = lim,_. 22%. We now use the fact that as— oo the sum inD,(v) can be
replaced by an integral, so

Dy(v) = U/ D?*(q1, T — q1) dg1 (20)
0

whereD(q1, g2) is thev — oo limit of D, ;,)(v), the contribution from orbits which traverse
only two edges; ands; times respectively, angl = s;/v. Dy, 4, (v) can be expanded as

~ 1 S1 pS2 2 g 1 51 ps2 2 ¢
D<51’52>(U)”1+§P2P2 v_2 +§P3P3 " +...

00 1 2 2m
— E 51 52
B m=0 m+ 1Pm+le+l <U - 2) (21)
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whereP; = (Sj) is the number of partitions of an interval of lengtimto g nonintersecting
subintervals of integer length. The idea of the decomposition is based on the facj tha2 a
orbit may be represented in general as
bo bm
——
@,....,1,2,...,2,1,...,1,...,1,...,,2,...,2) (22)

—— — —— ~———
ap ap Am

corresponding tag traversals of the first edge, thép traversals of the second, then another

ay of the first, and so on. The suln g, is equal tas; and) /-y b; = s2. In the general
termin (21),P,",, is the number of ways to decomposento a sum ofz;, P,?, is the number

of ways to decompose into a sum of; multiplied by the weight factor (2 backscatterings

less then the maximum possible numker 2) and divided byn + 1, which, again ignoring
repetitions, corresponds approximately to the cyclic symmetry. This approximation is the only
one in (21). When compared with (18)2,,(2) = — Pk, Py, and Qz,4+1(2) = 0.

Taking the limitv — oo termwise, we obtain
_ 1 2,11 ,1 5.,
D(q1,q2) =1+ EQ16122 + 3519 56122 SRR (23)
_ i (4q192)"  _ 1(4/9192)
= ml(m +1)! 2./91q2
whereg; = s1/v, g2 = s2/v and I;(x) is a Bessel function, and so, using the substitution
g1 = (T + 1 COSp)/2 we evaluate
. T 124y — 1 (7 I2(2t sin
lim Dz(v)/v=/ ivau — 4) dg1 = —/ Mdd’
v—00 0 4q1(‘L' — 611) 2t 0 S|n¢

1
= 42 (h(4o) - 20). (24)

Thus,
Ko(t) = 2exp(—4t)(11(41) — 21). (25)

3.4. K (r) for general j

......

begin with some examples fgr= 3:

e the orbit (1,1,1,3,3,2,2,2,2) has the maximum number of backscatterings and
therefore will be counted i®o(3).

e theorbit(1, 1, 3,3, 1, 2, 2, 2, 2) is one backscattering short of the maximum number and
will be counted inQ1(3).

e the orbit(1, 1, 2, 2, 3, 3, 2, 1, 2) is three backscatterings short of the maximum number,
and so belongs t@3(3).

The orbits from Qq(j) are the simplest. They achieve the maximum number of the
backscatterings and consist pfblocks of edges, like the orbit in the first example above.
There arg(j — 1)! different orbits inQq(j) (j! permutations divided by due to the cyclic
symmetry).

The structure of the orbits i1(j) is as follows. We take an orbit from, for example
the orbit(1...1,2...2,...,j...j), partition one of thej blocks of edges into two blocks
and permute the resulting+ 1 blocks, obtaining'! variants. For example, take the block of
1's of the orbit

(1,1,1,1,1,2,2,3,3,3) (26)
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1. ANANANANO-OAHH -
2. A—ANNNOOAHH -
3. a ~A—A-/N/NNO-O"A HH -
b ~A—A=/ ==/~ H H OO~

c ~A—A~ H H FO-O-A~A~/A—~
d ~A—A~ H H HFA=A=AO~0O—~
e ~A—A-O~O-/ A~/ =~ H H =
f ~A—A~O~O~A H H FA=A=A—~

Figure 2. Obtaining the orbits fromQ1(3).
Different shapes correspond to differentedges. First
we choose an orbit fron®o(3), then partition the
block of triangles into two parts (indicated by the
filling), and then we permute the resulting four
blocks, getting six orbits. Finally, we discard those

which have blocks of triangles standing next to each
other. The orbits (c) and (f) are discarded due to the
cyclic symmetry.

4. Discard a,b,c,f.

divide itinto two blocks A; = (1, 1) andA, = (1, 1, 1) and permute with the others, resulting
in j! = 6 variants, see figure 2. However, one has to take care of the permutations where the
blocksA; andA; stand next to each other, because such orbits belo@gtp). Of these there
are(j — 1)! permutations withA; standing immediately aftet, plus(;j — 1)! permutations
with A; standing in front. Thus the resulting numberjls— 2(; — 1)!. This is multiplied by
P, /2!, the number of partitionst of the block of 1's.
Finally, taking into account that we can also partition the blocks of other edges, we arrive
at
J
1) =G =2 —DH > 3P} (27)
i=1
Applying a similar algorithm forQ,(j) we note that there are two types of orbit in this
case. The first is obtained by partitioning one block into three and permuting with the other
blocks, while the second is obtained by partitioning two blocks, each into two parts. The result
is

/1
Q2(j) = ((j + D! =61 +6(j = DH Y _ = P5
i=1 "

j
HG DI —4j1+43G - DY) > FPIP

(28)
ik=1
ik
While it is easy to predict that the general formula ;) takes the form
J pPsi
Qm(]) = Z P(g1 ..... g/)(j)l_[_g; (29)
818 i1 8i*

whereg; > 1is the number of partitions of théh block andG = Z{Zl gi, itis not so easy to
calculate the polynomialB, ... . (/). The general combinatorial question can be formulated

as follows: we haves = Y "/_, ¢; objects of; different types §; objects of type, etc). How

Tt We refer to partitions of the integerinto k = 2 non-zero summands, modulo permutation of the summands. For
example, the partitions 2 + 3 and 3 + 2 are counted as one. The number of such partitions is approximated by its
first-order asymptotic as — oo, namely P} /k!. Note that in what follows we take the limit — oo termwise,

which corresponds to the limit— oco.
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many permutations of these objects are there without any objects of the same type standing
next to each other? This question is studied in the appendix. The answer is

aj 1+N

J
Py en(J) = (= 1)¢- ]Z( 1)N = 1+N[ th,(x)j| (30)
i=1

x=0
where

S /g —1\g!
hex) =Y (g - s) ‘j—!xf. (31)

s=1 8
Going back toDy, s, (v) we obtain

k—j _2 m
Dysp(@) =) (sz) On(j)

m=0
k—j 2 \" X 9i~N 1 J
-1 N 8i
.<v—2) 1\;( ) dxJ— 1+N|:x11_!g & i|
m=0 &1,--8j i=1

gi—1 Psi
8i
) 8i! he (X):|
G=m+j

91N J 00 2 &i—1 psi
= Z( DY 1+N[ ]"[(Z(v_ ) gg’hg(x))}

i=1 =1 x=0

I
,e?M

x=

x=0

S By (2

(32)

where P; = (; 1) and the limit of the innermost sum has been extended to infinity since
= 0forg > 5. Taking the limitv — oo termwise, again with; /v = ¢; fixed, gives

o0 gN+i-1 M1 J o) (2g;)%~
D(q1,...,q;) = N ——— | = ——h
@0 = S0 s [T gt
Now expanding the functior's,, (x) and resumming the series

(s _@a® Oy @)t (e =1\ &t
H(Z%&(Q H(ZZ(&Q_D, (g )i!’“)

iz1 \ g1 (& ei=ls=1 8 —5

= s (2g;)%1
(zs.(s_l). > )

s=1 gi=s (gl _S)I

N (2xg) T X (295 F
(xzs'(s—l)!z >

= = (8 =)
2x ; s—1
(xexp(Zqz)Zs(l( q)l)|>

= x/ exp(27) ]_[ R(2xq;) (34)
i=1
whereR(y) = y Y21(2/y) = Y12 ll(l‘—ﬂ)l andt = Y/_, ¢; = k/v, as before. Thus we
obtain

(33)

x=0

Il
=i i

I
i

i

N+ -1

D(Ql’--wqj)—eXrXZt)Z( 1)N8 N 1[)6’ 1]_[1’?(2)%}

(35)

x=0
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For derivatives of the functio® (2xg;) one has

" (2g:)" 8’”1 (2g:)"
R(2xq; = d R(2xq; = 36
therefore, in (35),
N 8N+ j—1 1
Z( DY 1|:xf ]_[R(zxq, } ~
o0 i qni
= ) (=pN2¥ N+ []—T 37
NZZO nl+~;n/_N J 1_[ nl'(n + 1)' ( )
where the second sum is performed oyefriables:, ..., n; and the rule
8N+/ 1 J
JxN+i— 11_[xj lfl(x)
= Y Wi f()]_[ L (38)
B ny+etn ;=N ] l Jx™ 1 ( + 1)[ Ox n+1 t
was used. Thus we arrive at
D@, ... q) =exp2) Y (=DV2V(N + ) — 1)! ]_[—n |(3l+1)| (39)

nyt--+n ;=0

whereN = Z{zl n;. Using the fact, once again, thatas> oo the summation in (14) can
be replaced by the integral

Dj:/ Dz(ql,...,qj')dql...dqj‘,l (40)
le 149i=
and applying the rule
m mq!...m;! i
Mg dgy .. g = — ML 41
/zzgq,:f e T “h
whereM = Y"/_, m;, gives
0 N+j—-—DK+j—1!
D; = exp(4r) Z (—2)N K N*K+j— 1( J )I( J : )!
5o (N+K+j—1)!
n1+--<+n/:0
J +kA)|
42
XHn'k'(n,+1)'(k +1)! (42)

1=

whereK = Y/, k; andN = Y"/_, n;. Therefore, the final result fat ; (r) is

K0 = 5037 ¢yt (43)
J* M=o
and so
K(1) = Ki(7) + Z Z c Mt (44)

]2M0
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where

Cy=(=2"

k1+---+kj+n1+---+n_,:M

(K+j—1>!(N+j—1)'1i[ (") )

M+ j—D! i1 (i + Dl(k; + 1)!
with K = Y/ ki, N = >J_,n;, and the sum being performed over thg &riablesk;
andn;.
This is our main result. It constitutes a general formula for computing the coefficients in
the expansion oK (t) for star graphs in powers afaroundr = 0. Note that as — 0, the
sum in (44) tends to zero a$, and so it follows from (18) thak (r) — 1 in this limit. Thisis
the same as for the Poisson form factor, and unlike the random-matrix results, which all tend
to zero linearly int. However, the Poisson form factor is independent 0cAnd K (t) here
clearly is not: after an initial decrease afcreases, it eventually rises to a limiting value of
one. In this sense, the result is intermediate between the Poisson and random-matrix forms.
The expression faf; can be written in another form that is more suitable for computation.
Defining
)

(K, N) = (N +DI(K +1)!

(46)

and using

(K+j—DIN+j— 1! (")
(M +j — 1) H(n,+1>'<k + 1)

kytetkjtngteAnj=M i=

oy KDV DL (") )

Py (M + j — 1)l A (n; + DV(k; + 1)!
nyttn ;=N
it follows that
M . .
(K+j—DI(M—-K+j—1)!
= (=2)M F(K,M—K 48
w=(=2) ; a1+ =D i (K. ) (48)
where
K N
Fi(K,N)=> "> Fi(k.n)F;_1(K —k, N — n) (49)
k=0 n=0

which is a form of convolution. Expression (48) for the coefficie@js is computationally

more convenient because there is a clear recursive relation for the coeffici€kitsV) which

can be facilitated using the discrete Fourier transform. The results of numerical computations
with the first few coefficients of the expansion are shown in figure 3.

4. A summable approximation

One possible approximation #(z) can be made by ignoring two contributions:

(1) the off-diagonal terms in (9). We call a term in the summation in (9) diagonal if it
corresponds tp = q, otherwise we call it off-diagonal. In symbolic form, the diagonal
approximation is

. 1 I\ l
~ Kdiag — P 2 _p
K(t) =~ K"97) E 2_2 EE; (rp> ALS <r L)' (50)
n=cp.eb,
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0.80 /[ J 1
e
1Py
A
B | ;
Z 0.60 |I
|
|
‘|
0.40 | l|
|
|
|
|
020 1 1 1 1
0.0 0.5 1.0 1.5 2.0
T

Figure 3. The first 11 terms (solid curve) and the first seven terms (dashed curve) in the expansion
for K (), compared with data from the numerical simulation by Kottos and Smilansky [5] for

(| Tr §%12) /(4v), v = 50 (circles). The dotted curve corresponds to the diagonal approximation
(52).

(2) all orbits for which the number of backscatterings is less than the maximum in their
degeneracy class. For example, the orfitdl, 4, 6, 6, 6) and(1, 1, 6, 4, 6, 6) belong to
the same degeneracy class. The first orbit has three nontrivial backscatterings which is
the maximum for this class; therefore its contribution will be counted while the second
orbit will be ignored. It is not hard to see that out of each degeneracy class jonrlyt)!

orbits will survive this approximation, wherg as before, is the number of distinct edges
traversed by the orbit.

The result of the above approximations is that the contribution of the degeneracy classes

in (13) is reduced to a factor @¢f — 1)!, the contribution of one degeneracy class, multiplied
by the number of degeneracy class(élgi):

. (20% X (v 2\ v —2\*E k—1
oo s BEE () (52 0w e

=2

Taking the limit asv — oo termwise, withr = k/v fixed, we arrive at
. o j-1
K1) ~ Ky(r) + 72 2% exp(—4v)
j=2 J!
(4r)/
j!
=exp(—4r) + v — rexp(—4r)(4r + 1)
=1 +exp(—4r)(1— 1 — 47?) (52)
which, in the limit of largev with T = k/v fixed, is exactly equal to an approximation to

(| Tr 8%2) /(4v) obtained in [5] using a different approach. Interestingly, the first four terms

in the expansion ok 99 in powers ofr agree with those ok computed in the last section.
The rest do not.

= exp(—4r) + T exp(—4r) Z
j=2
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It is worth remarking that one can get exactly the same asymptotic formuka%fef(c)
using only assumption (1). Following [5], we obtain from (50)=€ 2k)

4kv k

4k k —2\*
~ Kl(f)+v|LmooL_2”< Z —AZ - v(” : ) ) (53)

= 7.
pePy P

where we have splik 929(7) into K1(7) and ‘the rest’, as before, partly ignored the repetitions
and are now going to evaluate ‘the rest’ using a sum rule. We noté that. L£AZ =Tr Ak,

P
where the matrixA is given by

Appey = S? (54)

e1.e2

with S the matrix defined by (5). The x v matrix A has the eigenvalugd, =2, ..., =4}
and, therefore,

k
TrAk:1+(v—1)<U;4) . (55)

Using this we write

diag . v —4\* v—2\%
K (t)%Kl(r)+vleoor l+(v—l)< 5 )—v( ) (56)

v

k k 2%k
= Ki(r) + lim ‘r(l—(v_4) +vi<v_4> _<v—2> }) (57)
vV—00 v v v
= exp(—4r1) + v (1 — exp(—4rt) — 47 exp(—41))

which is exactly the same as before. This means thatthe orbitsignored in the second assumption
above do not contribute to the diagonal approximation in the limit co. The factthatthey do
contribute to the full expansion & (r) shows the limitations of the diagonal approximation.
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Appendix. Permutations without liaisons

We have addressed the question of how many permutatioGsdistinguishable objects gf
different types there are, under the condition that no objects of the same type may stand next to
each other. By a ‘permutation’ we mean a cyclic ordering of the objects so that, for example,
the permutationsl, 2, 3, 2) and(2, 3, 2, 1) are considered to be the same.

Note that the problem as stated is purely combinatorial: in this appendix we ignore the
underlying structure of the objects as blocks of edges.

If two objects of the same type stand next to each other, we say that they f@isoa.
Since all the objects are distinguishable, the liaisons are order dependent. For example, if
a; andag are objects of the same type theju, is one liaisongsa; is a different one, and
aiazaz is a group of two liaisons, see figure Al. The maximal possible number of liaisons is
Imax= G — J.
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A liaison. Another liaison. A ””” / \ ) _Zii

® A
A group of two liaisons. E M

Figure Al. Differentliaisons The type of an objectis Figure A2. A collection of four objects and its six

indicated by its shape. permutations. In the collection the objects 1 and 2 are
counted as one since they are bound by a liaison (solid
arrow). Note thatin four of the permutations an additional
liaison appears (dashed arrow).

>
OESEONSEONS
oo o] ) (=) @

The answer to our question, of course, depends on the nugibéine number of objects
of typei, which satisfyG = >"/_, g;. We derive the answer in four stages.

Stage 1. To count the permutations without liaisons we apply an analogue of the inclusion-
exclusion principle. FixX liaisons. Any objects bound by liaison(s) are considered to be
one object now. Permuting the resultiog— ! objects while imposing no restrictions apart
from holding the selected liaisons fixed, we obtaih— [)! /(G — I) permutations (the factor
1/(G — 1) is due to the cyclic symmetry). Note that in some permutations the number of
liaisons will be greater than the initiglfor an example see figure A2.
Now let F (/) be the number of ways to fixliaisons in the group of; objects. Then
Imax
Pigy..op =Y _(=D'F()(G =1 = 1)! (58)
=0
is the number of permutations without any liaisons.
Indeed, take a permutatiodh with £ liaisons. How many times is it counted in thih
term,l < k, of the sum in (58)? We can obtanby fixing / liaisons out of the givek in the
initial group of G objects; therP will be a permutation of the resulting collection 6f — /
objects. ThusP is counted once in the term fér= 0, (}) times in the term fof = 1 (see
figure A3), and, generally}) times in thelth term, wherg}) is the number of ways to choose
the subset of liaisons from the set of. Since

a k
D—l)’(,) =1 -D" =60 (59)
i=0

the permutation witlt liaisons is not counted iR, . ., unlessk = 0.

.....

Stage 2. Form the polynomial

Imax

Plgy...op(®) =Y F(D)x'. (60)
=0
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,,,,,,

Figure A3. The permutatiorP with k = 2 liaisons  Figure A4. Where can we put the object number 7? We
is counted twice in thé = 1 term of the sum in can either add it to the existing liaison chains in one of
(58), because it can be obtained from two differenRg — I = 2 x 6 — 3 places (dashed triangles) or we can leave

collections,C1 andC2, each having one liaison. it free (dotted triangle). The existing liaisons are marked by
solid arrows.
Then
J J
Pigyoapy@®) = [ [ Patg @) = [ | Pe ). (61)
i=1 i=1

This decomposition follows from the fact that the numbgy,
[ liaisons is

¢y (1) of ways to choose

.....

J J
Farop®O =Y J]Fasn@= > J]Fa.. (62)

Iyt =1 i=0 Iy++l;=1 i=0

That s, for every decompositida+ - - - +1; =1 of [, there ar [/_, F,, (I;) ways to choosé
liaisons in such a way that among the objects of tiype choosé; liaisons.

The problem is now greatly reduced. We have to answer the following question: how
many ways are there to chodd&isons in a group of objects of the same type? This number
is denoted byF, ().

Stage 3. Note that all objects are distinguishable. We derive a recursioff@j using the
following reasoning. Take one of the configurations frépt/) and add another object to it.
It can be added in two different ways: the object, numberedL, can either be free or it can
be engaged in a liaison. For any configuration frépi/) there are 2 — I ways to add it in
such a way that it forms a liaison; see figure A4. And, obviously, there is only one way to add
a free object.

Itis clear that this argument is uniquely reversible, i.e. for any configur&tioiF, .1 there
is one and only one configuration i, from which we can obtaig by adding the(g + 1)th
object. Therefore, we can write the recursion

Forr(l+1) = Fo(1+ 1) + (28 — D Fy (D). (63)
The general solution, obtained using [7], is
_(8-1\ g
0 _< ! )(g—l)! (64

which can be verified by the direct substitution.
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Stage 4. Now that we can comput&, .. .(x), we need to get back t8,, ..,,). We use

,,,,,

the formula
]max
Pigy.op =Y _(=D'F)(G —1 - 1)!
=0
Imax ; 8G -1 61
_Z( Y e P, . (65)
to obtain the final solution
Imax —1— j
/ G 1 —{;
P,... g,)—Z( 1)8 e []‘LZ ,(€)x LO
i K 0/ Jrkt 1 gi—1
:(—1)maxZ( 1 Py 1[ ]—!Z(gl_s) l!x'i| _ (66)

where the substitutions = [hax — [ ands; = g; — ¢; have been made and the upper limit in
the first sum has been extended to infinity since all higher derivatives are equal to zero.
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