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Abstract

We use quantum graphs as a model to study various mathematical aspects of the
vacuum energy, such as convergence of periodic path expansions, consistency among
different methods (trace formulae versus method of images) and the possible connection
with the underlying classical dynamics.

In our study we derive an expansion for the vacuum energy in terms of periodic
paths on the graph and prove its convergence and smooth dependence on the bond
lengths of the graph. For an important special case of graphs with equal bond lengths,
we derive a simpler explicit formula. With minor changes this formula also applies to
graphs with rational (up to a common factor) bond lengths.

The main results are derived using the trace formula. We also discuss an alternative
approach using the method of images and prove that the results are consistent. This
may have important consequences for other systems, since the method of images, unlike
the trace formula, includes a sum over special “bounce paths”. We succeed in showing
that in our model bounce paths do not contribute to the vacuum energy.

Finally, we discuss the proposed possible link between the magnitude of the vac-
uum energy and the type (chaotic vs. integrable) of the underlying classical dynamics.
Within a random matrix model we calculate the variance of the vacuum energy over
several ensembles and find evidence that the level repulsion leads to suppression of the
vacuum energy.

1 Introduction

Vacuum energy is a concept arising in quantum field theory and was first shown by Casimir
[1] to have an observable effect on two perfectly conducting parallel plates, causing them to
attract. Since then, experiments with various physical geometries have confirmed the effects
of vacuum energy (see [2, 3, 4, 5]).
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In time-independent situations the vacuum energy is formally given by

E =
1

2

∑

n

kn (1)

where k2
n are the eigenvalues of a Hamiltonian1, H . The above expression arises in quantum

field theory in the context of cavities and cosmological models [3], and it is formally diver-
gent. To get meaningful result from this expression, the vacuum energies for two different
configurations are subtracted from one another [2]. To accomplish this in a systematic way,
we employ an ultra-violet cutoff defining the energy as the regular part of

E(t) =
1

2

∑

n

kne
−knt, (2)

as t → 0. To evaluate (2), it is sometimes convenient to employ the trace of the cylinder
kernel, T (t) =

∑

n e
−knt, [6]. In this way, E(t) = −T ′(t)/2. The singular term in the expan-

sion of E(t) is related to the vacuum energy density of free space, and physical justification
for its removal is described, for example, in [2] (for systems similar to those considered here,
see [7, 8]).

A widely employed method of calculation of the vacuum energy is expanding it into a
sum over classical paths [9, 10, 11, 12, 13, 14]. The expansion is usually done by the method
of images, or “multiple reflections”, leading to a sum over all closed paths. It has been
argued in [11] that for certain geometries restricting the sum to include only the periodic
paths (“semiclassical evaluation”) correctly reproduces asymptotic behavior of the vacuum
energy and is much simpler to evaluate. A periodic path comes back to the starting point
with the same momentum, while a closed path might not. Another popular approximation
predicts the sign of the vacuum energy by considering only short orbits [15, 8]. This implicitly
assumes that the convergence of the complete series is sufficiently fast.

In the present paper we aim to contribute to this discussion by studying the vacuum
energy on quantum graphs (for another model where similar questions are addressed, see
[16]) . Quantum graphs are often used as mathematical models that exhibit the relevant
phenomena while being sufficiently simple to allow mathematical treatment. We compare
the method of images with the direct application of the trace formula (which is exact on
graphs) and demonstrate that the outcome is the same. This is done by showing that the
contribution of the “bounce paths” — the paths that are closed but not periodic — is
identically zero. We also prove that the resulting sums converge, giving an estimate for the
rate of convergence, and can be differentiated term-by-term with respect to the topological
parameters present in the model.

One of the main reasons for the success of quantum graphs as models (for example, of
quatum chaos, see [17] for a review) is the existence of an exact trace formula on quantum
graphs. A trace formula is a relation between the spectrum and the set of periodic orbits of
the system. For graphs, the trace formula was first found by Roth [18] and then by Kottos

1throughout we take ~ = 1 = c.
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and Smilansky [19]. Subsequent studies of the mathematical properties of the trace formula
on graphs included works by Kostrykin, Potthoff and Schrader [20] and Winn [21].

The trace formula of [19] gives an expression for the density of states d(k) defined as

d(k) =

∞
∑

n=1

δ(k − kn), (3)

where δ(·) is the Dirac delta-function. The vacuum energy is then, formally,

E(t) =
1

2

∫

ke−ktd(k)dk, (4)

quickly leading to the result (for k-independent scattering matrices, see Sec. 2),

Ec = − 1

2π

∞
∑

n=1

∑

p∈Pn

Ap

ℓpn
. (5)

The sum is over periodic paths p on the graph, ℓp is the metric length of the path, np is the
period (the number of bonds) of the path and Ap is its stability amplitude (see Section 4.1
for definitions).

After introducing the notation in Section 2 and considering some explicit examples in
Section 3, we prove the mathematical correctness of the calculation outlined above. This is
done in Section 4.3, where the convergence of (5) is also analyzed. In Section 4.4 we show
that we can differentiate (5) with respect to individual bond lengths, showing the smoothness
(C∞) of Ec as a function of lengths.

In Section 5 we briefly discuss the method of images (covered more fully in [22]) and
show that the contributions from the bounce paths cancel. Finally, in Section 6.1 we discuss
random matrix models of the vacuum energy. As expected, in such models the average
vacuum energy is zero and there is no preferred sign to the Casimir force. However, by
analyzing the second moment of the energy we confirm an earlier observation by Fulling
[23, 6] that level repulsion tends to decrease the magnitude of the energy.

2 Vacuum energy and quantum graphs

Quantum graphs were introduced as a model of vacuum energy by Fulling [24] who considered
the effect of the energy density near a quantum graph vertex by constructing the cylinder
kernel for an infinite star graph (a graph with one vertex and B bonds extending to infinity).
The quantum field theory origins of this in a graph context were given by Bellazzini and
Mintchev [25]. The vacuum energy expression for quantum graphs obtained in the present
manuscript was also used in [8] where the convergence was inversigated numerically (we
prove rigorous estimates here).

We start by briefly recalling the terminology of the quantum graph model, see [26] for a
general review of quantum graphs. We consider a finite metric graph Γ consisting of a set
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of vertices V, and a set of bonds B. A (undirected) bond b connecting the vertices v and w
is denoted by {v, w}. Each bond b is associated with a closed interval [0, Lb], thus fixing a
preferred direction along the bond (from 0 to Lb). This direction can be chosen arbitrarily.
If the direction from v to w is chosen, the bond b = {v, w} gives rise to two directed bonds,
b+ = (v, w) and b− = (w, v). Whenever the distinction between b+ and b− is unimportant,
we will denote the directed bonds by Greek letters: α, β. In addition, the reversal α is
denoted by ᾱ (e.g. if α = b+, then ᾱ = b−). We will denote by B the number of bonds |B|;
correspondingly, the number of directed bonds is 2B. The length of the directed bond is
naturally determined by the length Lb of the underlying undirected bond. The total length
of Γ is L =

∑

b∈B Lb. We will denote by L = diag{L1, . . . , LB, L1, . . . , LB} the diagonal
2B × 2B matrix of directed bond lengths.

In this this article we study the spectrum of the negative Laplacian on the graph. The
Laplacian acts on the Hilbert space H(Γ) :=

⊕

b∈BH
2
(

[0, Lb]
)

of (Sobolev) functions defined
on the bonds of the graph. On the bond b it acts as the 1-dimensional differential operator
− d2

dx2
b

. A domain on which the Laplacian is self-adjoint may be defined by specifying matching

conditions at the vertices of Γ, see e.g. [27, 28, 29, 26].
To specify the matching conditions, let f be a function in H(Γ). For a vertex v of

degree d we denote by f (v) the vector of values of f at v, f (v) = (fb1(v), . . . , fbd
(v))T , where

fb(v) = fb(0) if b = {v, w} is oriented from v to w and fb(v) = fb(Lb) otherwise. Furthermore,
let g(v) denote the vector of outgoing derivatives of f at v, g(v) = (f ′

b1
(v), . . . , f ′

bd
(v))T , i.e.

f ′
b(v) = f ′

b(0) if b = {v, w} is oriented from v to w and f ′
b(v) = −f ′

b(Lb) otherwise. Matching
conditions at v can be specified by a pair of matrices A(v) and B(v) through the linear equation

A
(v)f (v) + B

(v)g(v) = 0 . (6)

The matching conditions define a self-adjoint operator if (A(i),B(i)) has maximal rank and
A(i)B(i)† is self-adjoint at each vertex (where a B(i)† represents the adjoint of B).

A solution to the eigenvalue equation on the bond b,

− d2

dx2
b

ψb(xb) = k2ψb(xb), (7)

can be written as a linear combination of plane waves,

ψb(xb) = cbe
ikxb + ĉbe

−ikxb . (8)

where c is the coefficient of an outgoing plane wave at 0 and ĉ the coefficient of the incoming
plane wave at 0. A solution on the whole graph can be defined by specifying the corresponding
vector of coefficients c = (c1, . . . , cB, ĉ1, . . . , ĉB)T .

The matching conditions at the vertex v define a vertex scattering matrix

σ(v)(k) = −(A(v) + ikB
(v))−1(A(v) − ikB

(v)), (9)

see [27]. σ(v) is unitary and the elements of σ(v) are complex transition amplitudes which
in general depend on k. However, for a large class of matching conditions including the so
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called Kirchhoff or natural conditions the S-matrix is independent of k and it is with such
k-independent scattering matrices that we will work in the following.

Kirchhoff matching conditions require that ψ is continuous at the vertex and the outgoing
derivatives of ψ at the vertex sum to zero. These conditions may be written in the form (6)
with matrices

A =















1 −1 0 0 . . .
0 1 −1 0 . . .

. . .
. . .

0 . . . 0 1 −1
0 . . . 0 0 0















B =











0 0 . . . 0
...

...
...

0 0 . . . 0
1 1 . . . 1











. (10)

Substituting in (9) leads to k-independent transition amplitudes

[σ]ij =
2

d
− δij , (11)

where d is the degree of v.
The matrix σ(v) relates incoming and outgoing plane wave coefficients at v, c(v) = σĉ(v).

Collecting together transition amplitudes from all the vertices of a graph we may define the
familiar 2B × 2B bond scattering matrix S [30],

[S](v′,w′)(v,w) = δw,v′[σ
(w)](v,w′) . (12)

We shall also need the quantum evolution operator U = SeikL, which acts on the vector of
2B plane wave coefficients indexed by directed bonds. For a general graph, the spectrum
can be computed as the zeros of the equation

det(I − SeikL) = 0. (13)

This formula goes back at least to [31]; for a discussion of scattering matrices of different
types we refer the reader to [30].

3 Some explicit examples

3.1 Star graph with bonds of equal length

One case where the vacuum energy can be computed explicity is the quantum star graph with
bonds of equal length. This example was first considered in [8] and here, for completeness,
we summarize the computation.

Consider a star graph (see Fig. 3.1) with B bonds. The bond b has length Lb. We
consider the eigenvalue equation (7) with Neumann conditions. At the central vertex, this
translates into

∑

b

ψ′
b(0) = 0, ψ1(0) = . . . = ψB(0) (14)

5



. . . . .

B 2

1

Figure 1: A star graph with B bonds

and, at the end-vertices, into
ψ′

b(Lb) = 0, ∀b. (15)

Solutions of (7) together with (15) can be written as

ψb(x) = Cb cos(k(Lb − x)).

Imposing (14) we conclude that the spectrum consists of the solutions to

Z(k) =

B
∑

b=1

tan(kLb) = 0,

if the lengths are rationally independent. We note that since Z(k) is an increasing function,
there is exactly one zero of Z(k) between each pair of consecutive poles. Because of rational
independence, the poles of different tangents do not coincide. If we lift the restriction on
lengths, in addition to the zeros of Z(k) we have the following eigenvalues: κ is an eigenvalue
of multiplicity m if there are m+ 1 lengths Lbj

such that κ is a pole of each tan(kLbj
).

In particular, if all lengths are equal, L1 = . . . = LB = L, Z(k) is simply B tan(kL).
Each zero of Z(k) is a simple eigenvalue, while each pole is an eigenvalue of multiplicity
B − 1. We can now evaluate

T (t) =

∞
∑

n=1

e−tkn =

∞
∑

j=0

e−nπt/L + (B − 1)

∞
∑

j=0

e−(2n+1)πt/2L =
1 + (B − 1)e−πt/2L

1 − e−πt/L

=
BL

π
t−1 +

1

2
− (B − 3)π

24L
t+O(t2)

Now we take the regular part and the limit t → 0 of −T ′(t)/2 which gives us the vacuum
energy,

Ec =
(B − 3)π

48L
. (16)
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3.2 General graphs with bonds of equal length

If all bond lengths of the graph are equal to L, we can use equation (13) to explicitly
describe the infinite spectrum of the graph in terms of the finite spectrum of S. Indeed
let Λ be the diagonal matrix of the eigenvalues of S. Then eikL = eikLI and, therefore,
det(I−SeikLI) = det(I−ΛeikL) and, therefore, the solutions of equation (13) are the values
k such that

eikLeiθj = 1 (17)

for some j. Here by eiθj we denoted the j-th eigenvalue of (unitary) matrix S. Thus the
k-spectrum is

2B
⋃

j=1

{

2πn− θj

L

}∞

n=1

, (18)

where we choose θj to lie between 0 and 2π. Now we can compute the trace of the cylinder
kernel T (t),

T (t) =
∞
∑

n=1

e−tkn =
2B
∑

j=1

etθj/L
∞
∑

n=1

e−2πnt/L =
(

e2πt/L − 1
)−1

2B
∑

j=1

etθj/L

=

2B
∑

j=1

[

L

2πt
+
θj − π

2π
+

3θ2
j + 2π2 − 6θjπ

12Lπ
t+O(t2)

]

.

(19)

Thus, the vacuum energy is

Ec = −
2B
∑

j=1

3θ2
j + 2π2 − 6θjπ

24Lπ
= − π

2L

2B
∑

j=1

B2(θj/2π), (20)

where B2(·) is the Bernoulli polynomial (compare to the B = 1 case discussed in [6]).
As an example consider again the star graph with equal bond lengths. The eigenphases

θj of the S-matrix of a star graph are 0, π, π/2 and 3π/2, the latter two with multiplicity
B − 1. Substituting these into equation (20) one can recover (16). Another commonly used
vertex scattering matrix2 is the fast Fourier transform matrix

[S]ij =
1√
d
ei 2π

d
ij , (21)

which has equal probability of scattering in each direction. The S-matrix of a star graph with
the fast Fourier transform matrix at the central vertex has eigenphases that are multiples of
π/4, their multiplicities are given in table 1. From (20) we find

Ec = − π

96L









[

B

4

]

+















41
2

if B = 0 mod 4
4 if B = 1 mod 4
2 if B = 2 mod 4
11

2
if B = 3 mod 4









. (22)

2It is not straightforward to get this matrix from a self-adjoint operator, but we ignore this issue here.
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B mod 4 0, π π/4, 5π/4 π/2, 3π/2 3π/4, 7π/4
0 [B/4] + 1 [B/4] [B/4] [B/4] − 1
1 [B/4] + 1 [B/4] [B/4] [B/4]
2 [B/4] + 1 [B/4] [B/4] + 1 [B/4]
3 [B/4] + 1 [B/4] + 1 [B/4] + 1 [B/4]

Table 1: The multiplicity of eigenphases of the S-matrix of a fast-Fourier-transform star
graph

3.3 Graphs with bonds of rational length

By introducing the Neumann vertices of degree 2 we do not change the spectrum of the
graph and therefore the vacuum energy. On the other hand, if the bonds of the graph are
rational (up to an overall factor), by introducing such “dummy” vertices we can convert
the original graph into a graph with bonds of equal length. The number of bonds (and the
dimension of the scattering matrix S) will increase as a result, but the vacuum energy will
still be explicitly computable using equation (20).

Moreover, one can conceivably approximate rationally independent lengths by rational
ones and use the result as a numerical approximation to the true vacuum energy. For this
approach to work one needs to know, a priori, that Ec is continuous as a function of bond
lengths. This question is one of the main subjects of Section 4.

4 Vacuum energy via the trace formula

4.1 Formal calculation

In this section we perform a formal calculation of the vacuum energy Ec using the trace
formula. We shall investigate the rigor of the manipulations in Section 4.3.

The trace formula (see, e.g. [17]) connects the spectrum {kn} of the graph with the set
of all periodic orbits (or periodic paths) on the graphs. A periodic path of period n is a
sequence (α1, α2, . . . , αn) of directed bonds which satisfy [S]αj+1,αj

6= 0 for all j = 1, . . . , n
(the index j+1 is taken modulo n). A periodic orbit is an equivalence class of periodic paths
with respect to the cyclic shift (α1, α2, . . . , αn) 7→ (α2, . . . , αn, α1). We denote by Pn the set
of all periodic paths of period n and by P the set of periodic paths of all periods. The the
trace formula can be written as

d(k) ≡
∞
∑

n=1

δ(k − kn) =
L
π

+
1

π
Re
∑

p∈P

Ap
ℓp
np
eikℓp, (23)

where L is the total length of the graph (the sum of the bond lengths), np is the period
of the periodic path p, ℓp =

∑np

j=1Lαj
is the length of p and Ap =

∏n
j=1[S]αj+1,αj

is its
amplitude. Using the trace formula and equation (2) we can formally compute the vacuum
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energy. Indeed,

∞
∑

n=1

kne
−tkn =

∫ ∞

0

ke−ktd(k)dk (24)

=
L
2π

∫ ∞

0

ke−ktdk +
1

π
Re
∑

p∈P

Ap
ℓp
np

∫ ∞

0

ke−kt+ikℓpdk (25)

=
L
π
t−2 +

1

π
Re
∑

p∈P

Apℓp
np(t− iℓp)2

(26)

Removing the divergent Weyl term L/πt2 due to regularization and taking the limit t → 0
leads to the following simple expression for the vacuum energy,

Ec = − 1

2π
Re
∑

p∈P

Ap

ℓpnp
. (27)

4.2 Equal bond lengths; equivalence to (20)

In the case of equal bond lengths (27) should be equivalent to the sum of Bernoulli polyno-
mials (20). If the length of each bond is L an orbit that visits n bonds has length nL and
we may rewrite (27) as a sum over the the topological length n followed by a sum over the
set of all periodic paths visiting n bonds, Pn,

Ec = − 1

2πL
Re

∞
∑

n=1

1

n2

∑

p∈Pn

Ap (28)

= − 1

2πL

∞
∑

n=1

1

n2

2B
∑

α1=1

· · ·
2B
∑

αn=1

Re(Sα1α2
Sα2α3

. . . Sαnα1
) (29)

= − 1

2πL

∞
∑

n=1

1

2n2

(

trSn + tr(S†)n
)

(30)

= − 1

2πL

∞
∑

n=1

2B
∑

j=1

cos nθj

n2
, (31)

where eiθj are the eigenvalues of the matrix S with 0 6 θ 6 2π. The sum over n can be
expressed in a closed form, see Abramowitz and Stegun [32], formulae 27.8.6,

∞
∑

n=1

cos(nθ)

n2
=

3θ2 + 2π2 − 6πθ

12
= π2B2(θ/2π), (32)

where B2(·) is the Bernoulli polynomial. Consequently we recover expression (20).
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4.3 Convergence of (27); vacuum energy as a function of the bond
lengths

We shall now present a rigorous derivation of equation (27).

Theorem 1. The vacuum energy of the graph, defined as

Ec =
1

2
lim

t→0+

[

∞
∑

n=1

kne
−tkn − L

πt2

]

,

is given by

Ec =
1

2π

∞
∑

n=1

1

n
Re

∫ ∞

0

tr
(

Se−sL
)n

ds (33)

= − 1

2π
Re

∞
∑

n=1

∑

p∈Pn

Ap

ℓpnp

, (34)

where Pn denotes the set of all periodic paths of period n. The vacuum energy is smooth
(C∞) as a function of bond lengths on the set {Lb > 0}.

Remark 1. The sum over the periodic orbits in (34) is finite for each n. We will show, in
particular, that the sum over n is absolutely and uniformly convergent. More precisely we
will derive the following bound,

∣

∣

∣

∣

∣

∑

p∈Pn

Ap

ℓpn

∣

∣

∣

∣

∣

≤ 2B

n2Lmin

, (35)

where 2B is the number of (directed) bonds and Lmin is the minimal bond length. This
estimate shows that, if the (finite!) sum over periodic orbits of a fixed length is performed
first, the series in (34) becomes absolutely convergent. Moreover, it is uniformly convergent
with respect to the change in bond length as long as Lmin remains bounded away from zero.

We would like to mention that our estimate (35) agrees with the numerical results of [8],
even though in [8] the ordering of the periodic orbits was different (according to the metric
length ℓp rather than topological length n).

Proof of (33)-(34). The C∞ part of the proof will be given in the following section.
We start with the definition of the vacuum energy and integrate by parts,

∞
∑

n=1

kne
−tkn =

∫ ∞

0

(tk − 1)e−tkN(k)dk, (36)

where N(k) is the integrated density of states (IDS), a piecewise constant, increasing function

N(k) = #{n : 0 < kn < k}. (37)
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The integrated density of states N(k) can be split into two parts,

N(k) = const +
kL
π

+Nosc(k). (38)

The first two terms are unimportant: The first term makes no contribution in the integral,
and the second term is removed at the regularization stage. The oscillatory part possesses
an expansion, see [17], equation (5.24),

Nosc(k + iε) =
1

π
Im

∞
∑

n=1

1

n
trUn(k + iε), (39)

where U = SeikL.
This expansion is absolutely convergent as long as ε > 0 since the matrix Un(k + iε) is

then subunitary (all eigenvalues lie within a circle of radius strictly less than 1). As ε → 0,
Nosc(k + iε) converges to Nosc(k) pointwise almost everywhere. Moreover, |Nosc(k + iε)| is
uniformly bounded by the number of bonds B (in other systems one can show that the Weyl
law implies that |Nosc(k)| = O(kd) as k → ∞ where d is the dimension of the system).
Therefore,

Ec = −1

2
lim
t→0

lim
ε→0

∫ ∞

0

(tk − 1)e−tkNosc(k + iε)dk, (40)

and, using the convergence of expansion (39),

Ec = − 1

2π
lim
t→0

lim
ε→0

∞
∑

n=1

1

n
Im

∫ ∞

0

(tk − 1)e−tk [trUn(k + iε)] dk. (41)

We will now show that the integral

Rn =

∫ ∞

0

(tk − 1)e−tk [trUn(k + iε)] dk (42)

is absolutely bounded by 1/n. Thus the series is absolutely convergent uniformly in ε and t
and we can take the limits inside the sum.

A typical term in the (finite!) expansion of the trace is Ape
ikℓpe−εℓp. The two exponential

factors, e−tk and eikℓp, ensure that the integrand is exponentially decaying in k in the first
quadrant of C. Therefore we can rotate the contour of integration to the imaginary line,
k = is. The integral becomes

Rn = i

∫ ∞

0

(ist− 1)e−ist tr
(

Se−(s+ε)L
)n
ds. (43)

We estimate
∣

∣

∣
tr
(

Se−(s+ε)L
)n
∣

∣

∣
≤

2B
∑

j=1

|λj(s+ ǫ)|n, (44)
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where 2B is the size of the matrix S and λj is j-th eigenvalue of the matrix Se−(s+ε)L.
According to a familiar argument (see, e.g. [33]), the maximal |λj| is bounded from above
by the maximal singular value of the matrix. The singular values are square roots of the
eigenvalues of

(

Se−(s+ǫ)L
)† (

Se−(s+ǫ)L
)

= e−2(s+ǫ)L,

which is a diagonal matrix with the maximal entry e−2(s+ǫ)Lmin (Lmin is the smallest bond
length of the graph). Thus we can estimate

∣

∣

∣
tr
(

Se−(s+ε)L
)n
∣

∣

∣
≤ e−nsLmin2B. (45)

Finally,

|Rn| ≤ 2B

∫ ∞

0

|ist− 1|e−nsLminds ∼ 1

n
. (46)

We notice that the integrand of (43) can be absolutely bounded by e−ns(Lmin−δ) for arbi-
trarily small δ and sufficiently small t. Thus, having brought the limits inside the sum, we
can use the dominated convergence theorem to bring them inside the integral. Taking the
limit t→ 0 and ε → 0 inside integral (43) produces

Ec =
1

2π

∞
∑

n=1

1

n
Re

∫ ∞

0

tr
(

Se−sL
)n

ds. (47)

Now we expand the trace,

tr
(

Se−sL
)n

=
∑

p∈Pn

Ape
−sℓp, (48)

and integrate term by term to recover (34).

Remark 2. The basic idea of the proof, shifting the convergence into the subunitary matrix
(see equation (43) and (45)) can also be used to study the convergence of the trace formula
itself. This was done in [34].

Remark 3. Since S is k-independent, the trace in the integral is real and we do not need
to take the real part in equations (33)-(34). Indeed, the following lemma easily follows from
the definition of S and [20, Prop 2.4] applied to the matrices σ(v).

Lemma 1. The S-matrix of a graph is k-independent if and only if it satisfies

JSJ = S†, (49)

where J is defined by Jα,β = δα,β̄ (β̄ is the reversal of β as defined in section 2).

Now the complex conjugate of tr
(

Se−sL
)n

is

tr
(

e−sLS†
)n

= tr
(

e−sLJSJ
)n

= tr
(

SJe−sLJ
)n

= tr
(

Se−sL
)n
, (50)

where we used the fact that the length of a bond is invariant with respect to direction reversal
and, therefore, Je−sLJ = e−sL.
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4.4 Derivatives of the vacuum energy

Proof of differentiability of Ec. We differentiate the expression (33) term by term and show
that the result is also absolutely convergent. This can be done by using the following bound
on the partial derivatives of tr

(

Se−sL
)n

,

∣

∣

∣

∣

∂m1 . . . ∂mB

∂Lm1

1 . . . ∂LmB

B

tr
(

Se−sL
)n

∣

∣

∣

∣

6
2Be−snLmin/2

(Lmin/2)|m|
. (51)

Before proving (51) we note that it implies the following bound,

∣

∣

∣

∣

1

n

∫ ∞

0

∂m1 . . . ∂mB

∂Lm1

1 . . . ∂LmB

B

tr
(

Se−sL
)n

ds

∣

∣

∣

∣

6
2B

n2(Lmin/2)|m|+1
. (52)

Consequently
∞
∑

n=1

1

n

∫ ∞

0

∂m1 . . . ∂mB

∂Lm1

1 . . . ∂LmB

B

tr
(

Se−sL
)n

ds

converges absolutely and we are therefore allowed to differentiate (33) term by term. We
conclude that the vacuum energy is C∞ as a function of bond lengths.

To prove bound (51) we use the Cauchy integral formula (see, e.g., [35]),

∂m1 . . . ∂mB

∂Lm1

1 . . . ∂LmB

B

tr
(

Se−sL
)n

=
1

(2π)B

∫ 2π

0

. . .

∫ 2π

0

tr
(

Se−s(L+R(φ))
)n

Rm1

1 . . . RmB

B

dφ1 . . .dφB (53)

where Rj = rje
iφj and R(φ) = diag{R1, . . . , RB, R1, . . . , RB}. Let A = Se−s(L+R). Since

S is self-adjoint, we find A†A = e−s(2L+R+R†). The eigenvalues of A are bounded by the
maximal singular value of A,

|eig(A)| 6 max
b=1...B

e−s(Lb+rb cos(φb)) . (54)

By choosing the radius rb = Lmin/2 we see that

|eig(A)| 6 max
b=1...B

e−s(Lb−Lmin/2) = e−sLmin/2 , (55)

and
∣

∣tr
(

Se−s(L+R(φ))
)n∣
∣ = |trAn| ≤

2B
∑

j=1

|eig(A)j|n ≤ 2Be−snLmin/2. (56)

Using this bound in (53) gives

∣

∣

∣

∣

∂m1 . . . ∂mB

∂Lm1

1 . . . ∂LmB

B

tr
(

Se−sL
)n

∣

∣

∣

∣

6
1

(2π)B

∫ 2π

0

. . .

∫ 2π

0

2Be−snLmin/2

(Lmin/2)|m|
dφ1 . . .dφB (57)

which establishes (51).
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5 Method of images expansion and the equivalence of

two expansions

We can evaluate the trace of the cylinder kernel T (t) by constructing the kernel itself. The
cylinder kernel, Tbb′(t; x, y) where x is measured on bond b and y on bond b′ satisfies the
following equation on each bond b

− ∂2

∂x2
Tbb′(t; x, y) =

∂2

∂t2
Tbb′(t; x, y) (58)

for t > 0, Tbb′ → 0 as t→ ∞, with boundary conditions (6) with respect to the x coordinate,
and the initial condition Tbb′(0; x, y) = δbb′δ(x− y). By separating variables in (58) it can be
shown that the trace of T is

T (t)
def
=

B
∑

b=1

∫ Lb

0

Tbb′(t; x, x) dx =
∑

n

e−knt . (59)

The corresponding free space kernel (i.e. the solution of equation (58) on the whole real
line with the initial condition T0(0; x− y) = δ(x− y)) is

T0(t; x− y) =
t/π

t2 + (x− y)2
. (60)

We can apply the method of images (i.e. multiple reflection) to the free space kernel to obtain
the kernel on the graph. The cylinder kernel is then written in terms of paths which begin
at y on the bond b′ and end at x on the bond b (the details of the construction are given in
[22]),

Tbb′(t; x, y) = δbb′T0(t; x− y)

+
∞
∑

n=0

∑

p∈Pn

[

Ab+p b′+T0(t;Lb + ℓp + x− y) + Ab+p b′−T0(t;−ℓp − x− y)

+ Ab−p b′−T0(t;−ℓp − Lb + x− y) + Ab−p b′+T0(t;Lb′ + ℓp + Lb − x− y)
]

(61)

In the above expression, we denote the two directed bonds associated with the undirected
bond b by b+ and b−. The path of topological length n, p = (α1, . . . , αn) is an n vector
of directed bonds and Pn is the set of all such paths. The metric length of a path is ℓp =
∑n

j=1Lαj
and Ap = [S]αnαn−1

· · · [S]α3α2
[S]α2α1

is the stability amplitude of the path. Note
that even at the stage represented in (61) we have assumed the matrix S is k-independent.

To obtain the trace, we let b = b′ and y = x. While this corresponds to “closing” the
paths, we do not always get periodic paths in the topological sense of Section 4.1. Indeed, a
periodic path would return to the initial point xb with the same momentum (or direction),
whereas when the paths corresponding to the second and fourth terms of (61) return to xb,
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Figure 2: An example of a periodic path (left) and a bounce path (right).

the momentum has the opposite sign, see Fig. 5. The latter paths we shall call bounce paths.
The difficulty in the method of images is in the handling of the bounce paths.

After integrating Tbb(t; x, x) we break the formula into three parts

T (t) = TFS(t) + TPO(t) + TBP(t), (62)

where FS stands for free space, BP for bounce paths, and PO for periodic orbits. The three
parts are (taking into account that T0(t; x) is even in x):

TFS(t) =
B
∑

b=1

∫ Lb

0

T0(t; 0) dx = T0(t; 0)L, (63)

TPO(t) =

B
∑

b=1

∫ Lb

0

∞
∑

n=0

∑

p∈Pn

[

Ab+p b+T0(t;Lb + ℓp) + Ab−p b−T0(t; ℓp + Lb)
]

dx, (64)

TBP(t) =

B
∑

b=1

∫ Lb

0

∞
∑

n=0

∑

p∈Pn

[

Ab+p b−T0(t; ℓp + 2x) + Ab−p b+T0(t; 2Lb + ℓp − 2x)
]

dx. (65)

We shall use the following lemma to simplify the bounce path term.

Lemma 2. If the scattering matrix S of a graph is k-independent, then

2B
∑

α=1

Aααn−1···α1ᾱ = Jα1αn−1
Aαn−1···α1

,

where Jα,β = δα,β̄.

Proof. Writing out the above,

∑

α

Aααn−1···α1ᾱ = Sαn−1αn−2
· · ·Sα3α2

Sα2α1

∑

α

Sα1ᾱSααn−1
. (66)

The last sum in the above is equivalent to an element of SJS, but JSJS = I, see lemma 1,
and J−1 = J, therefore SJS = J.

15



Now we come to the following theorem which proves the equivalence of this method to
the trace formula method of Section 4.

Theorem 2.

T (t) =
L
πt

+
1

4
tr (JS) +

∞
∑

n=1

∑

p∈Pn

Ap
ℓp
n

t/π

t2 + ℓ2p
(67)

and consequently,

Ec = − 1

2π

∞
∑

n=1

∑

p∈Pn

Ap

ℓpn
. (68)

Remark 4. A special case of this proof was done for the heat kernel with Kirchhoff conditions
by Roth [18]. Similarly, Kostrykin and Schrader have an analogue of this proof (again, for
the heat kernel) in [20].

Proof. The first term in T (t) is the free space term TFS, which we found above to be equal
to T0(t; 0)L = L/πt. Thus we need only consider the periodic path and bounce path terms.
Periodic orbit contribution. There is no x-dependence in (64), so the integration gives

TPO(t) =

∞
∑

n=0

∑

p∈Pn

B
∑

b=1

[

Ab−p b− + Ab+p b+

]

T0(t; ℓp + Lb)Lb. (69)

The two amplitudes can be written as a single sum over the directed bond α,

B
∑

b=1

[

Ab−p b− + Ab+p b+

]

T0(t; ℓp + Lb)Lb =

2B
∑

α=1

AαpαT0(t; ℓp + Lα)Lα . (70)

The path αpα is actually a periodic path of period n + 1 which we will denote by p. The
amplitude of p is Ap = Aαp α and its length is ℓp = ℓp + Lα. Thus,

TPO(t) =

∞
∑

n=0

∑

p∈Pn+1

Ap
ℓp

n + 1
T0(t; ℓp) =

∞
∑

n=1

∑

p∈Pn

Ap
ℓp
n
T0(t; ℓp) . (71)

Bounce path contribution. We can again combine the two amplitudes and change the vari-
ables in the integrals to obtain

TBP(t) =
1

2

∞
∑

n=0

∑

p∈Pn

2B
∑

α=1

Aαp ᾱ

∫ ℓp+2Lα

ℓp

T0(t; x) dx . (72)

We now fix y > 0 and introduce the cutoff function,

H(y − x) =

{

1 x 6 y

0 x > y
. (73)
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Instead of T0(t; x) in the integral, we consider T̂y(t; x) = T0(t; x)H(y−x). Since the minimum
bond length Lmin is greater than zero, taking m large enough we will have ℓp > y for all
paths of topological length m− 1 or greater. Therefore, for a path p in Pm−1 or in Pm and
any α, we can write

∫ ℓp+2Lα

ℓp

T̂y(t; x) dx =

∫ y

ℓp

T̂y(t; x) dx, (74)

since the integrand is identically zero on both intervals of integration. We can also ignore
all paths from Pn with n > m.

We can therefore write the bounce path contribution with the given cutoff in the following
form,

T̂BP(t) =
1

2

m−2
∑

n=0

∑

p∈Pn

2B
∑

α=1

Aαp ᾱ

∫ ℓp+2Lα

ℓp

T̂y(t; x) dx

+
1

2

∑

p∈Pm−1

2B
∑

α=1

Aαp ᾱ

∫ y

ℓp

T̂y(t; x) dx+
1

2

∑

p∈Pm

2B
∑

α=1

Aαp ᾱ

∫ y

ℓp

T̂y(t; x) dx . (75)

Applying Lemma 2 to the last set of sums in (75), we obtain

∑

p∈Pm

2B
∑

α=1

Aαpᾱ

∫ y

ℓp

T̂y(t; x) dx =
∑

p∈Pm−2

2B
∑

β=1

Aβpβ̄

∫ y

ℓp+2Lβ

T̂y(t; x) dx. (76)

Here the new path is the same as the old path but with the first and the last bond removed
and β corresponds to the last bond of the old path.

Now we can take the sum corresponding to n = m− 2 in (75) and add it to the result of
(76),

∑

p∈Pm−2

2B
∑

α=1

Aαpᾱ

∫ ℓp+2Lα

ℓp

T̂y(t; x) dx+
∑

p∈Pm−2

2B
∑

β=1

Aβpβ̄

∫ y

ℓp+2Lβ

T̂y(t; x) dx

=
∑

p∈Pm−2

2B
∑

α=1

Aαpᾱ

∫ y

ℓp

T̂y(t; x) dx (77)

Therefore, T̂BP(t) can be rewritten exactly in the form of (75) but with m reduced by 1.
Proceeding by induction, we obtain

T̂BP(t) =
1

2

2B
∑

α

Aαᾱ

∫ y

0

T̂ (t; x, y) dx+
1

2

2B
∑

α=1

Jαα

∫ y

Lα

T̂ (t; x, y) dx. (78)

However, Jαα = 0 and we can take the limit y → ∞ to get back TBP(t),

TBP(t) =
1

2

[

2B
∑

α=1

(SJ)αα

]

∫ ∞

0

T0(t; x) dx =
1

4
tr(SJ) . (79)
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The significance on this term is explored thoroughly in [36]. Since it is constant it vanishes
upon differentiation and thus makes no contribution to the vacuum energy expression.

The above method can be applied to other integral kernels, and we can also find the
vacuum energy density if we look at −1

2
∂
∂t
Tbb(t; x, x), see [22].

6 Random matrix models of vacuum energy

It has been observed by Fulling [23, 6] that level repulsion tends to decrease the magnitude of
vacuum energy. A natural conclusion would be that in a chaotic system the vacuum energy
should be suppressed. In this section we attempt to quantify and model this observation.

The first serious problem is that of comparison: vacuum energy should be suppressed
compared to what? One cannot directly compare vacuum energy of a chaotic system to that
of an integrable one: such systems would be too different. Thus the right approach seems to
be the average of the energy over an appropriate ensemble of chaotic/integrable systems

In such situations it is customary to employ random matrices as models of chaotic sys-
tems. Which leads to a second problem: vacuum energy is not an exciting quantity when
the spectrum is finite. Thus, (finite) random matrices do not immediately provide a suitable
model.

In this section we use a fusion of random matrix and graph models as a testing ground
for the above conjecture. Namely, we study quantum graphs with equal bond lengths but
with scattering matrices drawn from the appropriate ensembles of unitary matrices. The
advantages are clear: each individual system will have an infinite spectrum, the spectra (in
the limit of large graphs) will have the desired statistics and the averaging can be done
explicitly.

6.1 Average vacuum energy

The spectrum of a generic quantum system with a chaotic classical counterpart is observed to
behave like that of a random matrix, which is referred to as the Bohigas-Giannoni-Schmidt
conjecture [37]. For a system with time-reversal symmetry the appropriate ensemble of
unitary matrices is the circular orthogonal ensemble (COE) while in the absence of time-
reversal symmetry it is the circular unitary ensemble (CUE), which is the unitary group U(N)
with Haar measure see [38]. For a system with time-reversal symmetry and half-integer spin
the random matrix should be drawn from the circular symplectic ensemble (CSE). To model
the vacuum energy of a generic chaotic system we consider quantum graphs with equal bond
lengths where the scattering matrix S is taken from an appropriate ensemble.

The average vacuum energy of such graphs can be evaluated using equation (20), which
expresses the vacuum energy of a graph with equal bond lengths in terms of the eigenphases
of S. Using the standard expression for the eigenphase density of the random matrices results
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in

〈Ec〉β = − π

2L

1

Nβ

∫ 2π

0

. . .

∫ 2π

0

2B
∑

j=1

B2(θj/2π)
∏

l<m

∣

∣

∣

∣

2 sin

(

θl − θm

2

)∣

∣

∣

∣

β

dθ1 . . .dθ2B = 0 (80)

where Nβ is a normalization constant and β = 1 for the COE, β = 2 for the CUE and β = 4
for CSE.

The eigenphases of an integrable system, in contrast, behave like uniformly distributed
random numbers on the interval [0, 2π]. This can also be modeled by integrating the vacuum
energy expression, equation (20), over 2B independent uniform random phases,

〈Ec〉Poisson = − π

2L

1

(2π)2B

∫ 2π

0

. . .

∫ 2π

0

2B
∑

j=1

B2(θj/2π) dθ1 . . .dθ2B = 0 . (81)

In each case the average 〈Ec〉 of the vacuum energy is zero. In fact, the vacuum energy
expression must be zero when averaged over any measure which is invariant under a rotation
of all the eigenphases by some angle γ. Indeed, in Section 4.2 we have shown that

Ec = − 1

2πL

∞
∑

n=1

1

2n2

(

trSn + tr(S†)n
)

. (82)

But for any rotationally invariant distribution of eigenphases on the unit circle, 〈trSn〉 = 0
for all n > 0 and thus the mean vacuum energy is always zero. As the Casimir force is the
derivative of Ec with respect to L this suggests that the there is no a priori reason to expect
either an attractive or repulsive force based purely on the underlying nature of the classical
dynamics.

6.2 Variance

To get a handle on how the magnitude of the vacuum energy is affected by the distribution
of the eigenvalues we will calculate the variance of the vacuum energy for the ensembles of
random graphs introduced previously. For Poisson distributed eigenphases the variance is

〈E2
c 〉Poisson =

π2

4L2

1

(2π)2B

∫ 2π

0

. . .

∫ 2π

0

2B
∑

j=1

B2
2(θj/2π) dθ1 . . .dθ2B (83)

=
π2B

360L2
, (84)

where 2B is the dimension of S and we used the independence of θj to conclude that

〈

B2(θr/2π)B2(θj/2π)
〉

=
〈

B2(θr/2π)
〉〈

B2(θr/2π)
〉

= 0. (85)
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The variance of the vacuum energy modeled by random matrices from the circular en-
sembles can be computed using expression (30),

〈E2
c 〉 =

1

4π2L2

∞
∑

m,n=1

1

4n2m2

〈

(

trSn + tr(S†)n
)(

trSm + tr(S†)m
)

〉

. (86)

For the circular ensembles 〈trSn tr(S†)m〉 = 0 unless m = n as the average of a product of
matrix elements is zero unless the number of elements of the matrix and the number from
its Hermitian conjugate are the same [39]. Consequently

〈E2
c 〉 =

1

8π2L2

∞
∑

n=1

1

n4
〈| trSn|2〉 . (87)

We notice that 〈| trSn|2〉 is the form factor of the (finite) ensemble and use the standard
formulae [38] for CUE

〈| trSn|2〉CUE =







(2B)2 n = 0
n |n| < 2B
2B |n| > 2B

(88)

to obtain

〈E2
c 〉CUE =

1

8π2L2

(

1

2
Ψ(2)(2B) + ζ(3) +

B

3
Ψ(3)(2B)

)

(89)

where Ψ(n)(x) is the n-th polygamma function and ζ the Riemann zeta function. For all
fixed B this is less than π2B/360 the variance of the Poisson distributed eigenphases. In fact

lim
B→∞

〈E2
c 〉CUE =

ζ(3)

8π2L2
. (90)

This result parallels that for a random matrix model of the grand potential considered in
[16]. Thus, while the variance of the Poisson ensemble grows linearly with matrix size, the
CUE variance converges.

The relevant parts of the form factor of the COE and CSE for finite matrix size are,

〈| trSn|2〉COE =

{

2n− n
∑n

m=1
1

m+(2B−1)/2
0 < n 6 2B

4B − n
∑2B

m=1
1

m+n−(2B+1)/2
2B 6 n

(91)

〈| trSn|2〉CSE =

{

2n+ n
∑n

m=1
1

(2B+1)/2−m
0 < n 6 2B

4B 2B 6 n
(92)

Note that in the CSE form factor the double degeneracy of the eigenphases of S (Kramers’
degeneracy) has not been lifted. Using (87) we evaluate

〈E2
c 〉COE =

1

4π2L2

(

(

1

2
Ψ(2)(2B) + ζ(3)

)(

1 +
1

2
Ψ(B + 1/2)

)

−
2B−1
∑

n=1

Ψ(n +B + 1/2)

2n3

+
∞
∑

n=2B

[

2B

n4
+

Ψ(n−B + 1/2) − Ψ(n+B − 1/2)

2n3

]

)

(93)
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〈E2
c 〉CSE =

1

4π2L2

((

1

2
Ψ(2)(2B) + ζ(3)

)(

1 +
1

2
Ψ(1/2 − B)

)

−
2B−1
∑

n=1

Ψ(n− B + 1/2)

2n3
+
B

3
Ψ(3)(2B)

)

(94)

For B > 1 〈E2
c 〉COE and 〈E2

c 〉CSE are less than 〈E2
c 〉Poisson.

While the results do not have a simple closed form, in the limit of large matrices the
result is rather concise,

lim
B→∞

〈E2
c 〉COE =

ζ(3)

4π2L2
= lim

B→∞
〈E2

c 〉CSE (95)

Modeling the vacuum energy variance of a quantum graph through random matrices
suggests that the magnitude of the vacuum energy where eigenphases of S experience level
repulsion are indeed smaller on average than those where the eiegenphases are Poisson dis-
tributed. Moreover, the magnitude gets smaller as the level repulsion increases from linear
(COE) to quadratic (CUE) and quartic (CSE). Indeed, to compare the effect of the increased
level repulsion in CSE we need to lift the Kramers’ degeneracy: otherwise the degeneracy
“compensates” the repulsion. Without the degeneracy, the result for CSE becomes 4 times
smaller:

lim
B→∞

〈E2
c 〉CSE/Kramers =

ζ(3)

16π2L2
,

thus leading to
〈E2

c 〉COE > 〈E2
c 〉CUE > 〈E2

c 〉CSE/Kramers

for B > 1.

7 Conclusions

Through both the method of images and the trace formula, we demonstrate that the vacuum
energy in quantum graphs is a well-defined quantity (i.e. it is both convergent and a smooth
function of the bond lengths). The closed form expression (5) is dependent only on the
periodic paths in the quantum graph; this is a consequence of the exactness of the trace
formula which includes only those paths. Having demonstrated how the bounce paths (closed
paths that are not periodic) cancel when using the method of images we hope that our proof
will shed light on the observation that periodic paths provide the correct leading asymptotic
behavior even when the trace formula is only semiclassically correct.

The smoothness of the expression for the vacuum energy in a quantum graph allows us
to suggest an alternative method for its calculation, by approximating with systems with
simpler geometries. In the case of graphs the “simpler geometry” means rational bond
lengths, where an explicit expression for the vacuum energy is obtained.

We also suggest a random ensemble model for the vacuum energy when the statistics of
the spectrum are Poisson (for integrable systems) or random matrix (for chaotic systems).
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We find the average energy in both cases to be zero, thus giving no a priori reason to expect
a positive or negative energy from the dynamics. Furthermore, we find the variance of the
energy and conclude that the magnitude of the energy is typically smaller when the level
repulsion is stronger. We stress that this prediction is only correct in the probabilistic sense
and no conclusions about particular systems can yet (if ever!) be drawn.
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