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AbstratWe onsider a speial ase of multistate maps, maps with hysteresis. The mapunder onsideration is a olletion of two ontinuous, monotone real-valuedfuntions with overlapping domains of de�nition. At eah step we determinethe funtion to apply using the following rule: if the urrent iterate of theinitial point is in the domain of de�nition of the funtion we applied last thenwe apply this funtion again, otherwise the seond funtion is applied.We study two di�erent aspets of suh maps: topologial and ombinato-rial. The topologial objet of study is the global attrator (the limit imageof the whole spae under the map). We review general properties of theglobal attrator of a ontinuous map. However, maps with hysteresis are notontinuous. To �x this, we onsider two approahes to the onstrution of aontinuous map with hysteresis. The �rst approah extends the map itself,onverting it to an upper semiontinuous set-valued map, while the seondone rede�nes the spae, on whih the map ats.We onsider a parameterized family of maps with hysteresis. After es-tablishing some results on ontinuity of the global attrator as a funtionof the parameter, a more detailed analysis of a speial ase of general mapswith hysteresis, a pieewise linear map with hysteresis, is presented. In twodi�erent ases, when there are periodi points and when there are none,we desribe the global attrator, its ontinuity properties and points wheredisontinuities our.Combinatorial aspets of the maps are explored by means of kneadingsequenes and kneading invariants. We prove one-to-one orrespondene be-tween possible kneading invariants and equivalene lasses of maps with hys-teresis, where by equivalene we understand topologial onjugay.
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Chapter 1IntrodutionGiven a metri spae Y and an index set S, whih may be disrete or ontin-uous, de�ne for eah s 2 S a subset of Y , Us. By a multistate map we meana disrete time dynamial system de�ned onX = [s2S Us � fsg � Y � S: (1.1)We all the elements of Y observables, while elements of S are states. Givenan observable xn and state sn, we generate a new observable xn+1 by thetransformation xn+1 = F (xn; sn):In turn, having determined the new observable xn+1 we generate a new statesn+1 by sn+1 = G(xn+1; sn):In this work we study a speial ase of multistate maps, interval mapswith hysteresis. Here the index set S = f0; 1g and the metri spae Y =R1 . Funtions F (�; 0) = f0 and F (�; 1) = f1 are ontinuous nondereasingfuntions de�ned on intervals [a; �℄ and [�; b℄ respetively, where � � �,f0(x) � x; f1(x) � xand f0(�) = b and f1(�) = a:1



Thus, the spae of Eq. (1.1) redues toXh = �[a; �℄� f0g� [ �[�; b℄� f1g� (1.2)Throughout the work, a point x 2 Xh will mean the whole pair (x; s). Some-times we use funtions Obs(x) and St(x) to refer to observable x and states, respetively.The topology on the spae Xh is indued by the standard R topology, i.e.U � Xh is open if and only ifU = �(U0 \ [a; �℄)� f0g� [ �(U1 \ [�; b℄)� f1g�;where U0 and U1 are open subsets of real line. In the similar way we de�nethe measure on Xh, indued by Lebesgue measure on R,�(U) = � (U0 \ [a; �℄) + � (U1 \ [�; b℄) ;the partial ordering of Xh (we ompare only points of the same state) and thedistane � between two points of the same state. We extend the de�nitionof the metri � on Xh to points of any state by setting �(x;y) = P , St(x) 6=St(y), where onstant P is suÆiently large to ensure triangle inequality.With this metri Xh beomes a ompat metri spae.The mapping itself is de�ned on Xh as follows: f (xi; si) = (xi+1; si+1),where xi+1 = fsi(xi) and si+1 = ( 0 if xi+1 2 [a; �)1 if xi+1 2 (�; b℄si otherwisewith an initial point (x0; s0) 2 XhAs one an see, the periods of ation of the two funtions alternate andeah funtion, f0 and f1, is applied as long as possible. The state switheswhen the observable leaves the domain of de�nition of the orrespondingfuntion. An example of a map with hysteresis and a typial trajetory areshown on Fig. B.1.When � = � the map f redues to a single-valued funtion with onedisontinuity, a Lorenz-type map. This type of map is thoroughly studied inthe literature [1, 2℄. 2



In our work we develop a theory for general maps with hysteresis andexamine a speial ase, pieewise linear map with hysteresis (PLMH), indetail. The PLMH is given byf0(x) = 0x; f1(x) = 1x;where 0 > 1 > 1, � > � and a = 1�, b = 0�. An example of the PLMHis shown on Fig. B.2.The dynamis of a pieewise linear map strongly depends on whether ornot there are integers k and l suh that k0l1 = 1. In the former ase allpoints are eventually periodi and in the latter there are no periodi pointsat all (the proof will be given in Lemma 11).The global attrator (a de�nition will be given below) of the PLMH, ob-tained with the aid of omputer simulation, has a very interesting struture.A typial example is given in Fig. B.3. The C programme whih produedthis piture is inluded in Appendix A, but we desribe its struture here.One of the parameters of PLMH is being varied, e.g. Fig. B.3 is produed byvarying the seond threshold value, �, and keeping 0, 1 and � �xed. Forevery value of the parameter the programme takes a large number of pointsfrom Xh (points are distributed uniformly in a subinterval of Xh), performsa number of preliminary iterates to stabilize the proess and then gives thenext iterates of these points as an output. Thus for eah value of the param-eter, the output is a set of iterates of some points, whih roughly orrespondsto the !-limit set of these points (all de�nitions are given in later Chapters).The set shown in Fig. B.3 is an approximation to the global attrator[3℄,de�ned by L = 1\i=0 f i(Xh): (1.3)Although the set de�ned by Eq. (1.3) frequently ontains no informationabout lassial (ontinuous) disrete dynamial systems it plays a very im-portant role in the ase of maps with hysteresis. After presenting variousde�nitions and reounting some useful fats in Chapter 2 we thoroughlystudy the set L in Chapter 3. The set L is an attrator aording to variousde�nitions and, when onsidering a parametri family of maps, its graph vsthe parameter is upper semiontinuous.However these useful properties are established assuming the ontinuityof the map f . The lak of ontinuity in the general map with hysteresis may3



be removed by extending the de�nition of the map. Two possible extensionsare presented in Chapter 4. The �rst variant extends the map itself while theseond one rede�nes the spaeXh. Eah de�nition has its own advantages, forexample, the �rst is onvenient in onsiderations of the bifuration diagram(the graph of the set L vs some parameter) and the seond one is used in thetheory of kneading invariants.In Chapter 5, while studying PLMH, we prove theorems about the twoimportant threshold points (�; 1) and (�; 0) and their images and preimages.If the map f has no periodi points, the preimages of � and � turn tobe everywhere dense. This property is very useful in kneading theory andorresponds to topologial expansiveness in the theory of Lorenz maps. Thenwe prove that the set L is the union of omega-limit sets of (�=1; 1) and(�=0; 0) if these points are not mapped on to one-another. Now one of themain results of the hapter, that L is a non-wandering set of the map f , is aneasy orollary of the above. Furthermore, we are able to prove that in thisase the set L is the omega-limit set of any point x 2 Xh. These results allowus to reveal additional properties of the set L, as funtion of a parameter.The graph of L turns out to be lower semiontinuous at ertain points, inaddition to the upper semiontinuity proved in Chapter 4. We also study thegraph of L when k0l1 = 1 (1.4)for some integers k and l. The boundary of the graph is shown to be on-tained in a simple set and this allows us to prove some additional results onontinuity.In Chapter 6 we return to the general ase of a map with a hysteresis.Under assumption that the map is topologially expansive we develop a the-ory of kneading sequenes. Then we de�ne the kneading invariant to be theset of kneading sequenes of the points a, b, � and � and state the maintheorem of that hapter: there is a set of inequalities suh that a set of foursequenes is the kneading invariant of a map with hysteresis if and only ifthe inequalities are satis�ed.Finally, we give an overview of the work and projeted researh in theSummary.
4



Chapter 2Basi de�nitions and notation
2.1 Basi de�nitionsNotation and de�nitions, used throughout the work, are inluded here forready referene. Less known and more spei� de�nitions will appear in theourse of the report.By X we denote an arbitrary ompat metri spae and Xh is the spaede�ned by Eq. (1.2). For a set A � X, B�(A) is the open set of points withindistane � of A. The boundary of a set A is the set�(A) = fx: 8� B�(x) \ A 6= ; and B�(x) n A 6= ;g :By Int(A) and A we denote interior and losure of set A respetively,Int(A) = A n �(A); A = A [ �(A):In order to ompensate for the disontinuity of a map with hysteresis wewill be onsidering its set-valued extension (see Chapter 4). The following �vede�nitions, although formulated for single-valued maps, remain unhangedin the set-valued ase.Let f be a (single or set-valued) map. The following standard notationwill be used in our study: the image of a set A under f isf(A) = ff(x): x 2 Ag = [x2A f(x):5



Iterations of the map f are de�ned by indutionfk+1(A) = [x2fk(A) f(x):Given a set A we de�ne the set of its images byImg(A) = 1[i=0 f i(A):De�nition 1 A set A is alled forward invariant if f(A) � A. It is alledinvariant if f(A) = A.In other words, a set A is invariant if and only if it is forward invariantand weakly bakward invariant (for any x 2 A there is at least one y 2 Asuh that x 2 f(y), see also [4℄).De�nition 2 A point x is a periodi point for f if x 2 fn(x) for somen > 0. A point is alled eventually periodi if fk(x) ontains a periodi pointfor some k.De�nition 3 The !-limit set of a set U is the set!(U) = nx 2 X: 9 fnig1i=0 ; 9 fyig1i=0 � U; 9xi 2 fni (yi) �xi ! x�o :De�nition 4 A point x 2 X is alled non-wandering if for any open U � X,x 2 U , there is an integer k suh that fk(U) \ U 6= ;. The set 
 of all non-wandering points is alled the non-wandering set.De�nition 5 A point x�k is said to be a k-preimage of x under a map f ifx 2 fk �x�k�.To introdue notions of ontinuity for set-valued maps we need a metrion the spae of losed subsets of X.De�nition 6 The distane from a losed set A to a losed set B is��(A;B) = supa2A �(a; B);where �(a; B) = infb2B �(a; b). The Hausdor� metri � is then de�ned by�(A;B) = max f��(A;B); ��(B;A)g :6



Now let X and Y be ompat metri spaes.De�nition 7 A set-valued funtion f : X ! C(Y ), where C(Y ) = fF �Y : F is losedg, is upper semiontinuous at x0 iflimx!x0 ��(f(x); f (x0)) = 0:De�nition 8 A set-valued funtion f : X ! C(Y ) is lower semiontinuousat x0 if limx!x0 ��(f (x0) ; f(x)) = 0:There are also alternative (equivalent) de�nitions we will make use of.For upper semiontinuity it is formulated in Theorem 1 below. For lowersemiontinuity it is the following: a set-valued funtion is lower semiontinu-ous if for any point y 2 f(x0) and any sequene fxig ! x0 there is sequenefyig, yi 2 f (xi) suh that yi ! y0.De�nition 9 We say that funtion F :X ! C(Y ) is ontinuous at x0 if itis upper and lower semiontinuous at x0.De�nition 10 Let � be a measyre on the spae Y . A set-valued funtionf : X ! C(Y ) is measure-ontinuous at x0 iflimx!x0 � (f (x0)4 f(x)) = 0;where A4B = A nB [ B n A.De�nition 11 The graph of a set valued funtion f : X ! C(Y ) is a subsetof X � Y : Graph(f) = f(x; y) 2 X � Y : y 2 f(x)gIn our study of the set L as a funtion of a parameter � we will need anotion of onvergene of set-valued funtions.De�nition 12 Let fn be a sequene of set-valued maps. We say that it isweakly upper onvergent to a map f if for any subsequene fn0g8xn0 8yn0 2 fn0 (xn0) �(xn0 ! x) ^ (yn0 ! y)) y 2 f(x)�7



Loosely speaking, if there is a sequene f(xn0; yn0)g in the graphs of thefuntions fn whih onverges to a point (x; y) then y 2 f(x). Note, that thisnotion di�ers from upper graphial onvergene [5℄: in our ase the graphof f may be bigger then the upper limit of graphs of fn. We introduethis di�erene in order to ensure that this property is inherited by iteratedfuntions fkn , see Lemma 1.De�nition 13 Let ff�g�2� be a family of set-valued maps. We say, that itis weakly upper ontinuous at a point �0 if for any sequene �n ! �0 thesequene of funtions f�n is weakly upper onvergent to the funtion f�0 .We will also make use of the lower variant of onvergene of maps. Again,our de�nition of weak lower onvergene di�ers from lower graphial onver-gene [5℄.De�nition 14 Let fn be a sequene of set-valued maps. We say that it isweakly lower onvergent to a funtion f if for any point y0 2 f (x0) and anysequene fxng ! x0 9yn 2 fn (xn) (yn ! y0) :A family ff�g�2� of set-valued maps is said to be weakly lower ontinuousat a point �0 if for any sequene �n ! �0, the sequene of funtions f�n isweakly lower onvergent to the funtion f�0.De�nition 15 A family ff�g�2� of set-valued maps is weakly ontinuous ifit is weakly upper and lower ontinuous.2.2 Some useful fatsTheorem 1 A set-valued map is upper semiontinuous if and only if itsgraph is losed.This theorem is well-known and we refer, for example, to [5℄ for the proof.Lemma 1 Let a family ff�g�2� of set-valued maps be weakly upper ontin-uous at a point �0. Then for every k the family �fk�	�2� is weakly upperontinuous at �0. 8



Proof. We prove this lemma by indution. We assume that statementis true for k � 1, i.e. �fk�1� 	�2� is weakly upper ontinuous at �0. We wantto prove that if xn ! x and there are yn 2 fk�n(xn) suh that yn ! y theny 2 fk�0(x).Eah yn has a preimage zn,zn 2 fk�1�n (xn); yn 2 f�n(zn):We hoose a onvergent subsequene from fzng:9xn0 and 9zn0 2 fk�1�n0 (xn0)�zn0 ! z�:The subsequene fxn0g onverges to x and the assumption that �fk�1� 	�2�is ontinuous implies that z 2 fk�1�0 (x). On the other hand, we havezn0 ! z; yn0 2 f�n0 (zn0) and yn0 ! y:Sine f� are ontinuous at �0 this means that y 2 f�0(z). Together with theprevious observation we get that y 2 fk�0(x). Q.E.D.Corollary 1 If a set-valued map f is upper semiontinuous then its k-thiterate fk is also upper semiontinuous for any k.Indeed, if we take the family ff�g�2� with f� � f for every �, the de�ni-tion of weak upper ontinuity of the family redues to the de�nition of uppersemiontinuity of the map f and we an apply Lemma 1 to obtain the result.A lemma, similar to Lemma 1, is true about weak lower ontinuityLemma 2 Let a family ff�g�2� of set-valued maps be weakly lower ontin-uous at a point �0. Then for every k the family �fk�	�2� is weakly lowerontinuous at �0.Proof. Again we use indution for our proof. Let the statement be truefor k�1. We want to prove that for any point y0 2 fk�0 (x0) and any sequenesf�ng ! �0 and fxng ! x0 there is a sequene fyng ! y0, yn 2 fk�n (xn).Let the point z0 be suh thatz0 2 fk�1�0 (x0) and y0 2 f�0 (z0) :9



By the de�nition of weak lower ontinuity and assumption of indution thereis a sequene fzng ! z0, zn 2 fk�1�n (xn). We apply the de�nition of weaklower ontinuity one more to get a sequene fyng, yn 2 f�n (zn) suh thatyn ! y0. It is lear that the sequene fyng is the one we need. This obser-vation �nishes the proof.Lemma 3 If a set-valued map f :X ! C(Y ) is measure-ontinuous at apoint x0 then there is a set N � f(x0), � (N) = 0, suh that the set-valuedmap ef(x) = f(x) nN is lower semiontinuous at x0.Proof. We putN = fy 2 f(x0): 9 open Uy 3 y; � (Uy \ f (x0)) = 0g :The set N has measure zero. Indeed, N admits the representationN = [y2N Uy \ f (x0) ;where Uy \ f (x0) has measure zero and open sets Uy are hosen from aountable base for the topology. The set of di�erent possible Uy is at mostountable, therefore the union above onsists of at most a ountable numberof distint sets and we an use �-additivity of the measure to onlude that�(N) = 0.We are going to prove that for any point y 2 f (x0)nN and any sequenefxig ! x0 there is a sequene fyig ! y, yi 2 f fxig. Assume the ontrary,there is a sequene fxig ! x0 and an open neighbourhood U of y 2 f (x0)nNsuh that U \ f (xi) = ; for any i. ThenU � f (xi) n f (x0)and the measure � (f (x0)4 f(x)) � �(U \ (f (x0) nN)) > 0 for any i. Thisis in ontradition to the measure-ontinuity of the funtion f at the pointx0. Q.E.D.
10



Chapter 3Global attrator and itspropertiesLet f be an upper semiontinuous set-valued map, f :X ! C(X), on aompat metri spae X.We de�ne the global attrator [3℄ of the spae X under the map f byL = limn!1 fn(X) = 1\i=0 fn(X):The set L is non-empty, losed and invariant: f(L) = L. Indeed, f(X) � X,therefore fn+1(X) = fn(f(X)) � fn(X):The sets fn(X) are losed for every n and the global attratorL = 1\i=0 fn(X)is also losed. This representation also implies that L is non-empty. To proveinvariane we need some additional reasoning.The inlusion f(L) � L is trivial. To prove that L � f(L) we assume theontrary: there exists a point x 2 L whih does not have a preimage in L.In other words, f�1(x)TL = ;, where f�1(x) is the set of all 1-preimagesof the point x. f�1(x) is a losed set, beause f is upper semiontinuous.Then the open set V = X n f�1(x) � L is suh that V T f�1(x) = ;. Using11



the de�nition of L we infer that fn(X) � V for some n and, therefore,fn+1(X) 63 x, whih ontradits the hypothesis x 2 L.De�nition 16 A set A is alled an attrator if there is an open set U ,U � A, suh that the !-limit set of U is A.Lemma 4 The global attrator L is an attrator aording to De�nition 16and !(X) = L.Proof. First we note that !(L) = L. Indeed, for any point x 2 L wean �nd a preimage y1 2 L of x, then preimage y2 2 L of y1 et etera whiheventually forms the sequene used in De�nition 3.Then, as !(X) � !(L) = L we have to prove that any x satisfyingx 2 !(X) is in the set L. The de�nition of the !-limit set provides sequenesof points fyig1i=0 and of iterations fnig1i=0 suh that9xi 2 fni (yi)�xi ! x�:Sine X is ompat the sequene fzig1i=k,zi 2 fni�k (yi) ; xi 2 fk (zi) ;has a ondensation point, x�k, for any k. Without loss of generality weassume that fzig itself onverges to the point x�k. Finally, we havezi ! x�k; xi 2 fk (zi) ; xi ! x:We use upper ontinuity of the funtion fk (Corollary 1) to infer that x 2fk �x�k�. Thus, x 2 fk(X) for any k and, therefore, x 2 L.Now we take U = X in De�nition 16 to �nish the proof.Another possible de�nition of an attrator involves an open set U whihis mapped into itself [6℄:De�nition 17 A set A � X is alled an attrator if for any � > 0 there isan open set U of positive Lebesgue measure in the �-neighbourhood of A suhthat A � U , f(U) � U and x 2 U implies !(x) 2 A.Lemma 5 The global attrator L is an attrator aording to De�nition 17.12



Proof. In order to show that L satis�es the de�nition we have to �nd aneighbourhood U of L suh that f(U) � U ; the seond ondition is satis�edsine !(x) � !(X) = L for any x 2 X.Step 1. For any � > 0 and set U satisfyingL � U � B�(L); f(U) � Uthere is a Æ0 > 0 suh that fk (BÆ(U)) � B�(L)for any k and Æ < Æ0.Assume the ontrary: there is a dereasing sequene Æn ! 0 and sequenesfkng and fxng suh thatxn 2 X nB�(L) and xn 2 fkn (BÆn(U))Sine X nB�(L) is ompat we an assume xn ! x0 =2 B�(L) without lossof generality. There are two ases to onsider:� fkng is unbounded. Then, aording to De�nition 3, x0 belongs to!(X) = L. But L � U � B�(L), whih is a ontradition.� fkng is bounded. Then there is a number k0 whih is repeated in fkngin�nitely many times. We assume that kn � k0 for any n without lossof generality. Then xn 2 fk0 (yn), where yn 2 BÆn(U). As Æn ! 0 thesequene fyng onverges to the set U and, therefore, has a point y 2 Uamong its limit points. Due to the ontinuity of fk0 and the propertyf(U) � U we haveyn ! y; xn 2 fk0 (yn) ; xn ! x0 ) x0 2 fk0(y) � U � B�(L);whih is a ontradition.Step 2. For any � > 0 there exists an open set U � L suh thatU � B�(L); f(U) � U
13



We de�ne sets Un = f �eUn�1�, where eUn = B� (Un), with �, dependingon n, being suh that fk (B� (Un)) � B�(L); (3.1)for any k. The initial set is U0 = L. To prove that ondition (3.1) is possibleto satisfy we use indution. For n = 0 it is possible due to Step 1. Assumethe statement is true up to the n � 1-th step. We onsider the set Wn =S1i=0 f i �Sn�1j=0 eUj�, whih is invariant under f and is ontained in B�(L) byour assumption. ThereforeWn satis�es the onditions of Step 1 and we hoosethe next � to obtain fk (B� (Wn)) � B�(L). Then eUn = B� (Un) � B� (Wn)and ondition (3.1) is satis�ed.Finally we put U = S1k=0 eUk whih �nishes the proof of Step 2: U isforward invariant, beause f �eUk� � eUk+1, is ontained in B�(L) and itsmeasure is �(U) � ��eU0� = � (B�(L)) > 0:The lemma is proven.Lemma 6 Let f :X ! C(X) be an upper semiontinuous map. Then thenonwandering set 
 is ontained in the global attrator L.Proof. Let Un = B�n(X) be a sequene of open neighbourhoods of apoint x 2 
 with �n ! 0. Let fkng be a positive sequene suh that k = knis the minimal number to satisfy fk (Un) \ Un 6= ;. We onsider two ases.Sequene fkng is bounded. Then there is a subsequene of indies, fn0gsuh that kn0 = k. From the ontinuity of f we imply that the point x isk-periodi, x 2 fk(x), and, therefore, x 2 L.Sequene fkng is not bounded. Then for any i there is a subsequene fn0gsuh that kn0 > i, therefore any point from fkn0 (Un0) \ Un0 has i-preimages.These preimages have an aumulation point, xi, and by ontinuity x 2f i (xi). Q.E.D.Now let ff�g�2� be a family of set-valued maps weakly upper ontinuousat a point �0 (for more general results, see [7℄).Theorem 2 The funtion L(�) is upper semiontinuous at �0.14



Proof.It is suÆient to prove, that the graph of L(�) is losed in the spae R�X(see Theorem 1). Let f(�i; xi)g1i=1 be a onvergent sequene with xi 2 L (�i)and (�i; xi) ! (�0; x0). We want to prove that x0 2 L (�0), thus we have to�nd a k-preimage of x0 under f�0 for any k.Let x�ki be a k-preimage of the point xi under f�i . Sine X is ompat,we assume without loss of generality that sequene onverges x�ki ! x�k.Then we have x�ki ! x�k; xi 2 fk�i �x�ki � ; xi ! x0:Sine ff�g�2� is assumed to be weakly upper ontinuous we apply Lemma 1to infer that fk� is also ontinuous and, therefore, x0 2 fk �x�k�. Thus x�kis k-preimage of the point x0. Q.E.D.
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Chapter 4Continuous maps withhysteresis and their properties
4.1 De�nition of ontinuous map with hys-teresisA map with hysteresis, as de�ned in Chapter 1, is not ontinuous.Notation. If the points �f�11 (�); 1� and �f�10 (�); 0� belong to the spaeXh we all them disontinuity points and denote them by ��1 and ��1 re-spetively.At the point ��1, the map f is ontinuous from the right only:f(Obs(x) ; 1) = � (f1(Obs(x)); 1) if x � ��1(f1(Obs(x)); 0) if x < ��1 ;where St(x) = 1 and therefore omparison of x with ��1 is legitimate. Thesituation is the same with the point ��1, but here the map f is ontinuousfrom the left. In order to make use of fats derived in the previous hapterwe have to rede�ne f in suh a way that it beomes ontinuous.We present two di�erent ways of rede�nition. The �rst one is to onsiderthe map f as a set-valued map, i.e. to setf ���1� = f(�; 1); (�; 0)g and f ���1� = f(�; 1); (�; 0)gWith this de�nition map f beomes an upper semiontinuous set-valued map,it is also lower semiontinuous everywhere exept at points ��1 and ��1.16



Another onept is losely related to the previous one, but instead ofhaving two images of a troublesome point it splits the troublesome pointinto two (see also [8℄).We de�ne the spae extended fXh as onsisting of all points whih are notpreimages of ��1 and ��1 plus for eah point x suh that fk(x) = ��1 or��1 we distinguish x� and x+. The �rst sort of points we all two-sided andthe seond is one-sided (or +- and �-points). Furthermore, we regard thefollowing points as one-sided:(�; 1) = �+ (�; 0) = ��(a; 0) = a+ (b; 1) = b�:An ordering (for points with same state) is indued on fXh by the orderingof Xh with the addition x� < x+.An extended mapping ef is de�ned by� if x is two-sided then ef(x) = f(x)� if x is one-sided then{ ef(��1+ ) = �+, ef(��1� ) = (�; 0)(�) and the same for ��1.{ ef(�+) = a+, ef(��) = b�.{ ef(a+) = f(a)(+), ef(b�) = f(b)(�).{ ef(x�) = f(x)�, ef(x+) = f(x)+ for the other one-sided points.A sign in parentheses is used only when the orresponding point is split.The next step is to �x a metri on the extended spae fXh. The metri ofX gives �(x�;x+) = 0 therefore x� = x+;whih does not suit us. The new de�nition of the metri is losely related tothe notion of the kneading sequene of a point. If St(x) = St(y) we pute�(x;y) = �(Obs(x) ;Obs(y)) + 1Xi=1 2�ijSt�f i(x)�� St�f i(y)� j; (4.1)
17



where �(�; �) is the distane in R1 . For x and y suh, that St(x) 6= St(y) weset e�(x;y) = P + 1; (4.2)where P = supSt(u)=St(v) �(u; v)is the maximal distane between points of the same state.Now to hek triangle inequality in the ase St(x) = St(y) = St(z) weobserve, that �(St(x) ; St(y)) � �(St(x) ; St(z)) + �(St(z) ; St(y))jSt�f i(x)�� St�f i(y)� j � jSt�f i(x)�� St�f i(z)� j+jSt�f i(z)�� St�f i(y)� j for any i;sine � is a metri and St(f i(�)) are real numbers. Summing these inequalitiesaording to Eq. (4.1) we obtain the result for e�.When states of points x, y and z are di�erent we note, that the distanebetween any two points with the same state is not greater than P + 1 andEq. (4.2) ensures that the triangle inequality holds.Lemma 7 In the metri e� the spae fXh is ompat and omplete.Proof. Any sequene in Xh orresponds to a sequene in fXh, whih maybe \larger" in the sense that some points of the �rst sequene orrespondto two points of the seond. We employ this orrespondene to obtain ourresult.First we prove the auxiliary statement: if a sequene fxng 2 Xh onvergesto a point x in the spae Xh then there is a subsequene fx0ng 2 fXh whihonverges either to x or to one of x� = fx�;x+g.There are two ases to onsider, x 2 Xh orresponds to one point x 2 fXhand x orresponds to two points, x� and x+. In the latter ase we hoose amonotone subsequene fx0ng whih onverges in Xh to x from one side. Letit be onvergent from the left, without loss of generality. Assume, that thissubsequene does not onverge to x� in fXh. Then there must be a numberi, suh that St(f i(xn0)) 6= St(f i(x�)) for any n0 > N . Otherwise, sine18



St(f i(xN)) = St(f i(x�)) implies St(f i(xn0)) = St(f i(x�)) for any n0 > N(for explanation see Chapter 6) we obtain1Xi=1 2�ijSt�f i(xn0)�� St�f i(x�)� j ! 0;whih is a ontradition.Thus we have St(f i(xn0)) 6= St(f i(x�)) and it means that there is a i-preimage of a disontinuity point, y�, suh that xn0 < y� < x�. The pointsy� orrespond to a point y 2 Xh and xn0 < y < x, whih ontradits ourassumption that xn0 ! x.It is interesting to note, that the sequene fxngmay ontain subsequeneswhih onverge to x� and subsequenes whih onverge to x+. This is notthe ase when x is not a preimage of a disontinuity point. However, thesame argument as above an be used to prove the onvergene xn0 ! x andthus we omit it.Now to prove the ompatness of the spae fXh we take an arbitrarysequene fxng 2 fXh and onsider the orresponding sequene in the spaeXh. The spae Xh is ompat and we �nd a subsequene whih is onvergentin Xh. Then, using the auxiliary statement, we hoose a subsubsequeneonvergent in fXh.We make use of the same approah to prove that the spae fXh is omplete.From a Cauhy sequene, whih onverges in Xh, we hoose a subsequeneonvergent in fXh. But if a Cauhy sequene has a onvergent subsequeneit onverges itself and fXh is omplete. Q.E.D.Eah extension of ouple (Xh; f) has its advantages and we make use ofboth of them. First (set-valued) approah is used in the rest of the urrenthapter and in Chapter 5 and the seond approah is very onvenient in thedevelopment of kneading theory, Chapter 6.4.2 Maps with hysteresis and disontinuousmapsThere are many di�erent ways to establish orrespondenes between the dy-namis of a map with hysteresis and the dynamis of a lassial disontinuous19



interval map. We present two onstrutions of this type. However, we foundit harder to study these lassial maps than the original one.4.2.1 Map with \mirrors"A point x with St(x) = 0 is swithed to state 1 by the map f if and only ifx 2 ���1; (�; 0)i. Similarly, if St(x) = 1 and x 2 h(�; 1); ��1�, the state ofthe next iterate is St(f(x)) = 0.The idea of the map with mirrors is to put two funtions f0 and f1 suf-�iently far aside suh that their domains of de�nitions do not interset andto plae two additional linear funtions of the form x+ , \mirrors", in orderto transfer points from f0 to f1 and bak. Thus, the interval ���1; (�; 0)iis mapped onto the �rst \mirror" and then to the orresponding intervalin the domain of the funtion f1. This onstrution adds one step to thetrajetory eah time it swithes from one state to the other, but trajetoriesof the original problem are in one-to-one orrespondene with trajetories ofthe modernized map.An example of a map with hysteresis and of a orresponding map withmirrors is presented on Fig. B.4.4.2.2 First return mapAssume that a map with hysteresis has no �xed points. Then the dynamis issuh that if we take a suÆiently large interval in the domain of de�nition ofa funtion fi, i = 1; 2, trajetories of points from the interval will eventuallyreturn to it. Examples of suh intervals are ���1; (�; 0)i and h(�; 1); (b; 1)i.The �rst hoie has an advantage that no points are in the interval after the�rst iteration.We de�ne the map g: J� ! J�, J� = ���1; (�; 0)i by puttingg(x) = fk(x)(x);where k(x) = mini>0 ff i(x) 2 J�g.An example of a �rst return map is given on Fig. B.5. As seen on the pi-ture it has a regular struture with some disontinuity points. The strutureis very similar to one of a NDI map [1℄:20



De�nition 18 NDI (N disontinuities, inreasing) maps of the interval arethose h: [a; b℄! [a; b℄ satisfying:There exist a < 1 < 2 < � � � < N < b suh that1. h is ontinuous and stritly inreasing on (a; 1), (1; 2), . . . , (N ; b).2. limx!i� h(x) = b and limx!i+ h(x) = a for all i = 1; : : : ; N .Atually, the �rst return map of a map with hysteresis is a ompositionof two NDI maps:Lemma 8 An interval map g: J ! J , J = (Obs(��1) ; �℄, is the �rst returnmap of a map with hysteresis without �xed points if and only if there are NDImaps h1; h2: J ! J that g(x) = h2 (h1(x)).We onsider �rst visit maps (de�ned in analogy to �rst return map) eh1from interval J to J 0 = (Obs(��1) ; �℄ and eh2: J 0 ! J . It is easy to seethat the maps are (after applying an homeomorphism from J 0 to J) NDImaps and, onversely, given two NDI maps there is a hoie of a map withhysteresis, suh that these maps are �rst visit maps.4.3 Topologially expansive maps and onju-gate mapsHere we introdue de�nitions spei� to maps with hysteresis.De�nition 19 A map with hysteresis f is said to be topologially expansiveif for any points x and y, whih are not preimages of the disontinuity points,there is an iteration n suh thatSt(fn(x)) 6= St(fn(y)) :The following lemma gives the relation of this de�nition to the alternativeone [1℄.Lemma 9 The following statements are equivalent:1. Preimages of the points ��1 and ��1 are everywhere dense in Xh.21



2. f is topologially expansive.3. There exists � > 0 suh that for any points x and y, whih are notpreimages of the disontinuity points� �f i(x); f i(y)� > �for some i.Proof. 1: ) 2: Let St(x) = St(y). Let k be the minimal number suhthat there is a k-preimage of a disontinuity point in the interval (x;y). ThenSt(f i(x)) = St(f i(y)), i = 1; : : : k and St�fk+1(x)� 6= St�fk+1(y)�.2: ) 3: By the de�nition of the metri on Xh, St(f i(x)) 6= St(f i(y))implies that � ff i(x); f i(y)g > P , where P is a onstant.3:) 1: Here we use an argument similar to the one in [1℄. Let A1 and A2be the sets of preimages of the disontinuity points ��1 and ��1 respetively.We are going to prove that losure A = X, where A = A1SA2.Assume the ontrary, B = X n A is nonempty. The set B is open by thede�nition, therefore it is a ountable olletion of intervals. Now we take anarbitrary intervalB0 � B from the olletion. The set B is invariant thereforeB0 is mapped by f to another interval, whih we denote by B1: f (B0) � B1.Proeeding by indution we get the sequene fBig1i=0, f (Bi) � Bi+1.There are two possibilities to onsider: either the sequene is periodi orthe intervals Bi are all di�erent. In the �rst ase, f maps some interval intoitself, whih is inompatible with ondition 3. In the seond ase, lengths ofintervals will eventually beome less than any � whih is also a ontradition.Q.E.D.De�nition 20 Two maps with hysteresis f and g de�ned on spaes Xh andX 0h are said to be topologially onjugate if there is a state-preserving home-omorphism �:Xh ! X 0h suh thatObs(� (f(x))) = Obs(g(�(x))) and St(f(x)) = St(g(�(x))) : (4.3)4.4 Continuity of the graph of LAlthough we were able to prove upper semiontinuity of the graph of theglobal attrator L vs a parameter �, a general map with hysteresis does nothave other types of ontinuity (lower semiontinuity and measure-ontinuity).22



Example 1 For the map shown on Fig. B.6 the set L is the whole interval[a; �℄�f0g and three intervals on the branh 1. However, any inrease of theparameter  (with the parameter d �xed) will result in disappearane of theinterval h �f�10 (d); 0� ; �f�10 (e); 0�℄ from the branh 0 after some iterations.Thus, the hoie � =  auses both lower and measure disontinuity in L(�).However, in some simple ases we an prove ontinuity of the graph. Firstwe prove an auxiliary lemma.Lemma 10 The boundary of the global attrator is �(L) � Img(f��1; ��1g).Proof. For the boundary of the global attrator one has�(L) � 1[i=0 � (f i(Xh))and, therefore, it is suÆient to prove that the boundary � (f i(Xh)) belongsto the set i[k=0 �fk ���1� [ fk ���1��for any i.We prove it by indution. The boundary of f 0(Xh) onsists of the points�, �, (a; 0) 2 f(�) and (b; 1) 2 f(�). Assume that the statement is provenfor f i(Xh).The losed set f i+1(Xh) is a �nite olletion of losed intervals. Letx 2 � (f i+1(Xh)). Then x has a preimage y. If y 2 � (f i(Xh)) we are doneby indution. In the other ase y is a point of disontinuity of the funtionf , y = ��1 or y = ��1. Indeed, assume the ontrary: f is ontinuous aty and, therefore, monotone. Then there exists an open neighbourhood U ,y 2 U � f i(Xh) suh that f is ontinuous on U . Therefore, f(U) is an openset and x 2 f(U) � f i+1(Xh). Thus we get x =2 � (f i+1(Xh)), whih is aontradition.Q.E.D.
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Theorem 3 Let ff�g�2� be a family of (set-valued) maps with hysteresisweakly upper ontinuous at �0. Let at the point �0 the set L be equal tofn(Xh) for some n and��1 62 f i ���1� ; ��1 62 f i ���1� 1 � i � n+ 1f i ���1� \ f j ���1� = ; 0 � i; j � n + 1:Then graph of L is lower semiontinuous and measure-ontinuous at �0.Proof. To prove the theorem we develop a slightly new approah to theset L. For eah iteration i we onsider the setBi = ���1; ��1; f ���1� ; f ���1� ; : : : ; f i+1 ���1� ; f i+1 ���1�	of the possible boundaries of the set f i(Xh) (points ��1 and ��1 are not thepossible boundaries, but we inlude them also). The set Bi depends on �,whih we indiate by writing Bi(�) sometimes. Conditions of the theoremimply that for eah 0 � i � n + 1 the set Bi(�0) onsists of exatly 4i + 6points. Note, that f (��1) and f (��1) are sets of two points eah.Now we divide intervals [a; �℄�f0g and [�; b℄�f1g into subintervals withboundaries in Bi. For example, for i = 0 subintervals areh(a; 0); ��1i; h��1; (�; 0)i on 0-branhand h(�; 1); ��1i; h��1; (b; 1)i on 1-branh:Every time we obtain exatly 4i + 4 subintervals. We denote the set ofsubintervals by Si. It is easy to see that the interior of any subinterval fromSi may either be a subset of f i(Xh) or be disjoint with it (otherwise thereare boundary points in the interior whih is in ontradition to the de�nitionof Si). We say that a subinterval J 2 Si is full if Si � f i(Xh). Otherwise wesay that it is empty. For example, for i = 0 there are no empty intervals.Although we use here the �rst (set-valued) onept of a ontinuous mapwith hysteresis it is helpful to split points ��1 and ��1. In other words, weput, for examplef�[(�; 1); ��1℄� = [a; �℄� f0g and f�[��1; (b; 1)℄� = [�; f1(b)℄� f1g :24



However, this addition is made to simplify the proof and has no e�et on thedynamis of the map (it is implied of the fat that ��1 and ��1 are not inthe set of possible boundaries of f i(Xh) for 0 � i � n+ 1).With this modernization, the properties of the set Si are the following:� For every J 2 Si the funtion f jJ is a monotone ontinuous funtion.� Let J1 2 Si and J2 2 Si+1 be suh that f (J1) \ J2 6= ;. Then J2 �f (J1).There is a ertain partial ordering of the sets Bi(�), i � n + 1 and it iseasy to see, that for small � > 0 the ordering for � 2 (�0 � �; �0 + �) is thesame as for �0. The set Bn+1 onsists of �nite number of points; we anhoose Æ suh that Æ-neighbourhoods of these points do not interset. Thenfor eah point x�0 2 Bn+1 we �nd orresponding �x suh that x�, belongs toa Æ-neighbourhood of x�0 , provided, that � 2 (�0 � �x; �0 + �x). The needed� is minimum of �x over all x 2 Bn+1.If the ordering is preserved then set Si is preserved too. There is a naturalone-to-one orrespondene between Si(�) and Si (�0). We argue that aninterval from Si(�) is full if and only if the orresponding interval from Si (�0)is full.We prove it by indution. For i = 0 the statement is true. Assume it istrue for i � 1. If an interval J�0 2 Si (�0) is full then there is a full intervalJ 0�0 2 Si�1 (�0) suh that f �J 0�0� � J�0. Then the orresponding intervalJ 0� 2 Si�1 (�) is also full (by indution assumption) and preserved orderingof Bi(�) implies that interval orresponding to J�0 , J�, is J� � f� (J 0�). Thesame argument proves that if an interval J� is full, J�0 is full also.Finally we obtain that the equality fn+1�0 (Xh) = fn�0(Xh) implies thatfn+1� (Xh) = fn� (Xh) and, therefore, fn� (Xh) = L(�) with the intervals ofL(�) in one-to-one orrespondene to the intervals of L (�0). We alreadyknow, that the Hausdor� distane between Bn(�) and Bn (�0) an be madearbitrarily small and, therefore,� (L (�0) ; L (�))! 0 as �! �0:This observation implies lower semiontinuity and, sine the number of in-tervals in L(�) is onstant, measure-ontinuity. Q.E.D.25



Chapter 5Pieewise linear maps withhysteresis
5.1 Basi properties of the the PLMHThe pieewise linear map with hysteresis is a map withf0(x) = 0x and f1(x) = 1xand the threshold points are� = a1 and � = b0Lemma 11 A pieewise linear map with hysteresis has periodi points if andonly if k0l1 = 1 for some integer k and l. If there are any periodi pointsthen eah point is eventually periodi.Proof. It easy to see that existene of periodi points implies that k0l1 =1. To prove the onverse we onsider all irreduible numbers of the formxi0j1, where (x; s) is a point from Xh. We all a number irreduible if andonly if there are no i0 and j 0 suh thati0 < i; j 0 < j and i00 j01 = i0j1:In other words, either i must be less than k or j less than l (otherwise takei0 = i � k and j 0 = j � l). This ondition and ondition 0 < a < xi0j1 < blearly imply that there is only a �nite number of possibilities for i and j.26



For any n we have Obs(fn(x; s)) = xi0j1 and, sine there is only a�nite number of possibilities, fn(x; s) = fn+k(x; s) for some n and k. Thisobservation �nishes the proof.Note that the period k and the transition n are uniformly bounded. An-other way to formulate this lemma is to say, that a PLMH is periodi if andonly if ln 1= ln 0 is rational. Observe that in this ase x 2 L if and only ifx is periodi (and not just eventually periodi).Lemma 12 If a pieewise linear map is obtained from another map by� Multiplying the numbers a, b, � and � by a positive oeÆient k.� Raising the numbers a, b, �, �, 0 and 1 to a positive power pthen these maps are topologially onjugate.To prove this lemma we use homeomorphism �(x; s) = (kx; s) in the �rstase and �(x; s) = (xp; s) in the seond ase.Another useful property of PLMH is existene of the non-inreasing mea-sure.De�nition 21 The measure � is said to be non-inreasing under a map f iffor any open set U �(f(U)) � �(U):Lemma 13 The measure d� = d lnx is non-inreasing under a PLMH.Moreover, if St(x) = St(y) for any x;y 2 U then �(f(U)) = �(U)We remind that for any A � XhA = (A0 � f0g) [ (A1 � f1g)and A is measurable if A0 and A1 are measurable,�(A) = �(A0) + �(A1) = Z IA0d lnx + Z IA1d lnx;where IA0 and IA1 are indiator funtions.Now we onsider a family of pieewise linear maps with hysteresis whihare obtained by varying one of the parameters �, �, 0 or 1. This family27



is weakly ontinuous at every point and, therefore, the graph of L(�) as afuntion of the parameter is upper semiontinuous at every point. We annotsay the same about lower semiontinuity. However we observe that in theexample of a non-ontinuous graph (see Chapter 4) a ruial role is playedby a trajetory whih onnets two disontinuity points.Conjeture 1 The graph L(�) is lower semiontinuous if��1 62 Img���1� ��1 62 Img���1� :We will prove the onjeture in the irrational ase after learning someproperties of the disontinuity points ��1 and ��1.There exists a possibility to lassify the sets L basing on the number ofdisontinuities of the �rst return maps used in Lemma 8. The possible pairsof numbers are 0 and 1, 1 and 1, 1 and greater than 1. The simplest ase is0 and 1 or, in other words��i1 62 [�; b℄ for any i or ��i0 62 [a; �℄ for any i:Then the �rst return map to the interval [�; b℄�f0g (in the �rst ase) is justa irle homeomorphism [9℄ and the set L has the very simple struture,L = N[i=0 f i([�; b℄; 0)with some �nite N . The example of suh a map with the set L and the �rstreturn map is shown on Fig. B.7.5.2 Priniple of equivalent distaneOur subsequent analysis will be based mostly on the following Priniple:Theorem 4 (Priniple of equivalent distane). Let an interval (x;y) �Xh ontain no k-preimages of the disontinuity points, where k = 1; : : : ; K.Then the set fk((x;y)) is a onneted open interval for k = 1; : : : ; K andC1r � � �fk (x)+ ; fk (y)�� � C2r;28



where r = �(x;y), k = 1; : : : ; K,fk(z0)� = limz!z0� fk(z)and C1, C2 are onstants depending on f only.Proof. Sine there are no preimages of the disontinuity points, fk isontinuous on (x;y). Moreover, fk ats on observables as a linear funtion,fk(z) = k0l1z, for some k and l. These observations settle the �rst part ofthe Priniple.The hoie of the possible k and l is restrited sine fk(z) does not leavethe interval [a; b℄. In other words, there is a number z 2 [a; b℄ suh thatk0l1z 2 [a; b℄. This implies that the inequalitiesk0l1a � b and k0l1b � amust be satis�ed. We summarize the inequalities inab � k0l1 � baand put C1 = a=b, C2 = b=a to �nish the proof.5.3 Preimages of the disontinuity pointsTheorem 5 Let the slopes 0 and 1 be suh that funtion f has no periodipoints. Then the set of preimages of the disontinuity points ��1 and ��1 iseverywhere dense in Xh.Proof. We assume the ontrary and repeat the third part of the proof ofLemma 9 to get the sequene fBig.Interval Bi is new for eah i, i.e. Bi 6= Bj when i 6= j. Otherwise,there exist i and j suh, that f j (Bi) � Bi. Bi does not ontain preimagesof threshold points, therefore f j is ontinuous on Bi and has a �xed point.However f does not have periodi points and we get ontradition.Now by the Priniple of equivalent distane we have� (Bj) � � �f j (B0)� � C1� (B0)29



for any j, where � is (Lebesgue) measure. Therefore1 > �(Xh) � 1Xi=0 � (Bi) � C1 1Xi=0 � (B0) =1and we get a ontradition. Q.E.D.5.4 Omega-limit sets of the disontinuitypointsIn this Setion we study images of disontinuity points ��1 and ��1.De�nition 22 A �nite set F is said to be an �-net of a set A ifA � [x2F B�(x):If A is ompat and G is dense in A than one an hoose an �-net F , F � G.The following lemmas are proven under assumption that ln 1= ln0 isirrational and the ondition��1 62 Img���1� ; ��1 62 Img���1� : (5.1)is satis�ed.Lemma 14 Let the set of preimages of the point ��1 be everywhere dense.Then L = ! (��1).Proof. The onditions of the lemma imply that for any point x theset fk(x) onsists of two points at most. Indeed, map f is single-valuedeverywhere, exept the points ��1 and ��1. If a point x is a preimage of��1 then the set fk(x) will onsist of two values after some iterations. Butfurther division is impossible, beause fk(x) annot be equal to ��1 again (fhas no periodi points) and annot be equal to ��1 due to ondition (5.1).The struture of the map f suggests that for any x0 two possible valuesof fk(x0) are limx!x0� fk(x) and limx!x0+ fk(x):30



Now every point y 2 L has a k-preimage yk suh thatlimx!yk� fk(x) = y or limx!yk+ fk(x) = y:It is easy to see that for any � > 0 there is N suh that n-preimages ofthe point ��1, n = 1; : : : ; N form a �=2-net of the spae Xh. Let yk be ak-preimage of a point y, k > N and y is the limit of fk(x) as x ! yk fromthe left, without loss of generality. The open interval (yk � �;yk) ontainsat least one of the n-preimages of the point ��1, n = 1; : : : ; k. Let ��jbe the nearest of these preimages. Then the interval (��j;yk) satis�es theonditions of Priniple of equivalent distane and applying fk we obtainlimx!��j+ fk(x) = z 2 Img���1� ; limx!yk� fk(x) = y; and �(z;y) < C2�:Sine � was arbitrary and C2 is �xed we an �nd an image of ��1 in anyneighbourhood of y. Therefore, y 2 ! (��1).The onverse, ! (��1) � L, is always true. Q.E.D.Lemma 15 Let the sets X� and X� of limit points of preimages of ��1 and��1 be non-empty. Then L = ! (��1) = ! (��1).Proof. First of all, Theorem 5 implies thatXh = X� [X�:It is easy to see that there are points p1 and p2 suh that for any � there arepreimages of ��1 in the intervals (p1 � �; p1) and (p2; p2 + �) and preimagesof ��1 in the intervals (p1; p1+ �) and (p2� �; p2). Next we �nd the intervals���j1; ��k1� � (p1 � �; p1 + �) j1 � k1���j2; ��k2� � (p1 � �; p1 + �) j2 � k2���j3; ��k3� � (p2 � �; p2 + �) j3 � k3���j4; ��k4� � (p2 � �; p2 + �) j4 � k4to satisfy Priniple of equivalent distane.31



Applying the funtion fn�1, n = max fj; kg, to eah interval we get that��1 is a limit point of images of ��1 with limiting sequenes approahingform both left and right. The same is true about ��1. Thus we haveImg(��1) � ! ���1� ;Img(��1) � ! ���1� :However, observe, that !(x) � Img(x) for any x and, therefore, ! (��1) =! (��1). Now we repeat the proof of Lemma 14 to onlude that any y 2 Lis ontained either in ! (��1) or in ! (��1), but sine they oinide we obtainL = ! ���1� = ! ���1� :The lemma is proven.In the following theorem ondition (5.1) is not ompulsory.Theorem 6 Let ln 1= ln0 be irrational. The set Img(f��1; ��1g) is every-where dense in L: L � Img(f��1; ��1g):Proof. Proofs of the enlosure y 2 ! (��1)[(��1), as given in Lemmas 14and 15, are still valid for any y 2 L whih is not an image of a disontinuitypoint even if ondition (5.1) is violated. Therefore,L = ! ���1� [ ! ���1� [ Img����1; ��1	� � Img(f��1; ��1g):Q.E.D.5.5 Main theoremsNow we an summarize the onsequenes of the previous setions.Theorem 7 If ln 1= ln0 is irrational and ondition (5.1) is satis�ed thenL = !(x) for any x.Proof. Union of sets X� and X�, de�ned in the Lemma 15, is the wholespae Xh, therefore, for any x (for x equal a, b, � or � onsider f 2(x) instead)we an �nd intervals(y1;x) and (x;y2) ; �(y1;x) < � �(x;y2) < �32



where y1 and y2 are some preimages of the disontinuity points. ApplyingPriniple of equivalent distane to the intervals we obtain that (at least oneof) the disontinuity points are (is) ontained in !(x). Lemmas 14 and 15now imply that L � !(x). Conversely !(x) � L is always true and thetheorem is proven.Theorem 8 A pieewise linear map is topologially expansive if and only ifln 1= ln0 is irrational.Indeed, if ln 1= ln0 is irrational then preimages of points ��1 and ��1are everywhere dense. Conversely, if preimages are everywhere dense thenthe set of preimages must be in�nite. When ln 1= ln 0 is rational all pointsare eventually periodi with uniformly bounded periods and transitions, seeLemma 11. Let p be the longest period and t be the longest transition. Thenthe set of preimages of point � and � isp+t[i=0 f�i(f�; �g);whih is learly �nite and nowhere dense.Theorem 9 Let f be a pieewise linear map with hysteresis. We imposeondition (5.1) in the ase when ln 1= ln0 is irrational. Then the globalattrator L is equal to the non-wandering set 
.Lemma 6 implies that 
 � L. To prove inlusion L � 
 we onsider twoases: ln1= ln 0 is rational and it is not. In the former ase x 2 L if andonly if x is periodi, therefore L � 
.If ln 1= ln0 is irrational we employ Theorem 7 to onlude that L =!(x) � 
.5.6 Continuity of the graph of L(�)Theorem 10 Let ��1; ��1 2 L(�) for any � from some open neighbourhoodof �0. Then the graph L(�) is lower semiontinuous at �0.33



Proof. For any sequene �n ! �0 and any point xo 2 L (�0) we have to�nd a sequene xn ! x0, xn 2 L (�n).If x0 2 L (�n) we are done. Assume, that x0 62 L (�n) for any n (withoutloss of generality). We de�ne the sequene fkng to satisfyx0 2 fkn�1�n (Xh) and x0 62 fkn�n (Xh):Intervals Jn are the maximal intervals to satisfyx0 2 Jn � fkn�1�n (Xh) n fkn�n (Xh):Boundaries of the intervals Jn are ontained in the sets� �fkn�1�n (Xh)� [ � �fkn�n (Xh)�and, therefore, � (Jn) � Img(��1��1) � L (�n) with the last inlusion im-plied by the ondition of the theorem.Now, if � (Jn) ! x0 we are done (we found a sequene xn 2 L (�n),xn ! x0). Assume that this is not true: there is a subsequene fn0g (= fngwithout loss of generality) suh that � (Jn) > m > 0. Then there are twoases to onsider:� fkng is unbounded. Then for eah interval Jn there is a sequene ofkn � 1 sets J�in � fkn�i�n (Xh) n fkn�i+1�n (Xh)suh that f (J�in ) = J�i+1n . It is lear, that these sets are disjoint andif � is a non-inreasing measure, we have � (J�in ) > � (Jn) > m, whihis ontrary to the assumption that fkng is unbounded.� fkng is bounded. Without loss of generality we assume that kn = kfor any n. Then we onsider a k-preimage of point x0 under f�0 , pointx�k. Weak lower ontinuity and Lemma 2 imply that fk�n �x�k�! x0and we get a ontradition.Therefore, the ase �Jn 6! x0 is impossible. Q.E.D.Theorem 11 Let a family of PLMH with the parameter � be weakly ontin-uous at a point �0, ln1= ln 0 be irrational and��1 62 Img���1� ; ��1 62 Img���1� :Then the graph L(�) is lower semiontinuous at the point �0.34



Proof. First we prove an auxiliary statement: if ��1 62 L(�0) thenthere is a neighbourhood of �0 suh that for any � from the neighbourhood,��1 62 L(�).Let k be suh that��1 2 fk�1�0 (Xh) and ��1 62 fk�0(Xh):Then there is � suh that8� (j�� �0j < �)���1 62 fk� (Xh)�:Indeed, assuming the ontrary we obtain that9�n ! �0 9zn ! z���1 2 fk�n(zn)�and, by weak upper ontinuity, ��1 2 fk�0(z). This is a ontradition.As a orollary we obtain that at least one of the points ��1 and ��1 isontained in the set L. Indeed, if ln 1= ln0 is irrational, Theorem 5 impliesthat one of these points has an in�nite number of preimages and, therefore,belongs to L. In the rational ase we assume the ontrary: both points arenot in the set L. Then we hoose 0 as a parameter and employ our auxiliarystatement to dedue that ��1; ��1 62 L(�) in some neighbourhood of �. Butirrational maps are dense in this neighbourhood and we get a ontradition.Now to prove the theorem we onsider two ases.��1 2 L (�0) and ��1 62 L (�0). Then L (�0) = ! (��1) (Lemma 14). Forany point x 2 L (�0) there is an image of ��1 whih is lose to x:8� > 0 9ex 2 fn�0�0 ���1� �(ex� x) < �=2�:Lemma 2 implies that there is � suh that8� (j�� �0j < �) 9x� 2 fn� ���1� �jx� � exj < �=2�and, therefore, jx�� xj < �. Provided that x� 2 L(�) it is proof of the lowersemiontinuity of the graph.To prove that x� 2 L(�) it is suÆient to prove that ��1 2 L(�). But ourauxiliary statement implies that ��1 62 L(�) for � in some neighbourhood of�0 and, using the orollary, we onlude that ��1 2 L(�).35



If both ��1 and ��1 are ontained in L(�0) then L(�0) = ! (��1) =! (��1). Therefore, we an perform the same analysis for both ��1 and ��1to get 8� (j�� �0j < �1) 9x� 2 fn� ���1� �jx� � xj < ��8� (j�� �0j < �2) 9y� 2 fn� ���1� �jy� � xj < ��:Now, sine either ��1 or ��1 belong to L(�) we dedue that either x� or y�belong to L(�) too. Q.E.D.5.7 The graph of L(�)We onsider the graph of L whih is obtained by varying the threshold �,� = �. We onsider the ase whenk0l1 = 1for some mutually prime k and l. Let  be suh that0 = k; 1 = �k:For eah value of � the set L(�) onsists of �nite number of losed inter-vals. Furthermore, the number of intervals is uniformly bounded if � belongsto some bounded interval.Lemma 10 implies that for any ��(L(�)) � Img(�) [ Img(�) � �i�:�k � i � k0	 [ �i�: l0 � i � l	 ;where k0 = maxi �i� � b	 l0 = mini �i� � a	 :We are going to prove that boundaries of the graph of L(�) are also ontainedin this set.Lemma 16�(Graph(L(�)) � ���; i�� :�k � i � 1	 [ ���; i�� :�1 � i � l	 :36



Proof. In this and the subsequent proofs we will use ideas from the proofof Lemma 3.First we denote the set of possible boundaries by B,B = ���; i�� :�k � i � 1	 [ ���; i�� :�1 � i � l	 :Set B onsists of ountable (and �nite on any �nite interval) number ofstraight lines and is shown on Fig. B.8 for  = 8=7, k = 3 and l = 4.To prove the lemma we assume the ontrary. There is a point (�0;x) 2�(Graph(L(�)) whih is not in the set B.The properties of this point are� x 2 L (�0), beause the graph is losed.� fn�0(x) = x for some n, beause all motion on L (�0) is periodi.� f i�0(x) 62 B for any i, beause B is invariant under f�0 .Let � > 0 be suh that��; f i�0(x)� 62 B for any 0 � i < n and � 2 (�0 � �; �0 + �) : (5.2)Then one has f i�0(x) = f i�(x). Indeed, by indution, let f i�1�0 (x) = f i�1� (x).Eq. (5.2) implies that f i�1� (x) satis�es the same inequalities with respet to� and � (= �) as f i�1�0 (x) does and, therefore, the ation of f is the same onboth points. For i = n this property yields fn� (x) = fn�0(x) = x, therefore, xis periodi under f�, is ontained in L(�) and f i�(x) 2 L(�) for any i.Now let � < � be suh that(y; �) \B = ;;where y 2 B� �f i�0(x)� for some i < n and � 2 B� (�0). Then for any suh �the set �(�;y):y 2 B� �f i�0(x)�	 either belongs to L(�) or does not intersetwith it. But we already know that f i�(x) 2 L(�), therefore the whole set�(�;y) : y 2 B� �f i�0(x)� ; � 2 B� (�0)	 � Graph(L(�)and point (�0;x) is not boundary point of the graph. We get a ontradition.Corollary 2 The graph of L(�) is measure-ontinuous.37



For a given �0 the indiator funtions IL(�) onverge to IL(�0) as � ! �0pointwise everywhere exept possible boundary points (i.e. almost every-where). Indeed, for any y 2 L(�0) n �(L(�0)) the previous lemma impliesthat y 2 L(�) if � is lose to �0. The di�erene IL(�0)(y)� IL(�)(y) is, there-fore, 0. By the Dominated Convergene Theorem, jIL(�) � IL(�0)j ! 0 inmeasure and this is equivalent to measure-ontinuity.Lemma 17 If f i�0 ���1� 63 ��1 and f i�0 ���1� 63 ��1for any i then the graph of L(�) is lower semiontinuous at the point �0.Proof. This lemma is an extension of Lemma 3 for the speial ase ofperiodi PLMH and varying threshold �. Indeed, the only violated onditionof Lemma 3 is��1 62 f i ���1� ; ��1 62 f i ���1� 1 � i � n+ 1; (5.3)beause the dynamis of the map is periodi and the period of ��1 or ��1might be less then n, where n is determined by the ondition fn(Xh) = L.However, we made assumption (5.3) in order to ensure that the sets Bi(see proof of Lemma 3) are preserved under small hanges of the parameter�. Now the nature of the problem is suh, that trajetories of ��1 and ��1may hange only if, for example, f i (��1) = ��1 for some i. But this aseis exluded by the ondition of the lemma. Thus we an apply the proof ofLemma 3 to our ase. Q.E.D.
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Chapter 6Kneading invariant of mapswith hysteresis
6.1 De�nition of kneading invariantsThroughout this hapter we will use the seond onept of a ontinuous mapwith hysteresis and regard Xh and f as an extended spae and map. Themap f is assumed to be topologially expansive.For a point x 2 Xh we de�ne the kneading sequene as a binary sequenek(x) = s0s1s2 � � � ;where si = St(f i(x)).We order kneading sequenes lexiographially, i.e. s0s1 � � � < r0r1 � � � ifand only if there is j � 0 suh that si = ri for i < j and sj < rj. Thisordering an be obtained also by writing a sequene as a number in base 2,[k(x)℄ = 1Xi=0 si2�(i+1):It is easy to see, that in this de�nition of the ordering kneading sequenes aremonotone in x: k(x) � k(y) whenever x < y. The de�nition of topologiallyexpansive map impliesLemma 18 k(x) = k(y) if and only if x = y.39



Corollary 3 If the kneading sequene of a point x is periodi then x is alsoperiodi.Now we de�ne the shift operator �:� (s0s1 � � �) = s1s2 � � � :Its ation learly orresponds to the ation of f on the original point x,�(k(x)) = k(f(x)):The most important kneading sequenes for our analysis are�a = k (a+) ; �b = k (b�) ;�� = k �(�; 0)(�)� ; �� = k �(�; 1)(+)� :Together they form the kneading invariant of the map f .Next we de�ne three types of ondition, for the two-sided points, the �-points and the +-points. A kneading sequene �x = k(x) satis�es a middleondition (C) if �a < �i(�x) < �b;�i(�x) < �� if �i�1(�x) = 10 � � � ; (C)�i(�x) > �� if �i�1(�x) = 01 � � � ;for i > 1. Lower (C�) and upper (C+) onditions are the similar onditionsfor the �-points and the +-points�a < �i(�x) � �b;�i(�x) � �� if �i�1(�x) = 10 � � � ; (C�)�i(�x) > �� if �i�1(�x) = 01 � � � ;�a � �i(�x) < �b;�i(�x) < �� if �i�1(�x) = 10 � � � ; (C+)�i(�x) � �� if �i�1(�x) = 01 � � � ;The meaning of these onditions is simple: eah suessive image of apoint under the mapping f (and, therefore, kneading sequene of the image)40



must lie between a and b | �rst inequality; when the state swithes from1 to 0, the point must be somewhere between a and � | seond inequality| and when state swithes to 1, the point must be between � and b |third inequality. Some inequalities are strit beause a two-sided point anbe mapped only to two-sided, a �-point annot be mapped to +-point et.Lemma 19 Every point x 2 Xh satis�es orresponding ondition. Con-versely, for any sequene �x, satisfying one of the onditions (C), (C�) or(C+) there is a point x 2 Xh suh that k(x) = �x.Proof. The �rst part of the Lemma is already proven. To prove theseond part we assume that �x = 1s1s2 : : : (without loss of generality) andonsider the points y1 = supk(y)��xy and y2 = supk(y)��xy:Sine k(�; 1) < �x < �b (the �rst inequality is implied by �(k(�; 1)) = �a <�(�x)) points y1 and y2 are well de�ned. It is easy to see that only two asesare possible: y1 = y2 = y and y1 = y�, y2 = y+ for some y 2 Xh.Now we refer to the auxiliary statement, formulated in the proof ofLemma 7. It an be rephrased as followslimz!z(�)� k(z) = k(z(�)); limz!z(+)+ k(z) = k(z(+));where limits are understood in the topology, indued by the ordering. Thus,k(y1) � �x � k(y2). We want to prove that either k(y1) = �x or k(y2) = �x.Assume the ontrary: inequalities are strit. Case y1 = y2 = y is thereforeexluded. The only possibility is k(y�) < �x < k(y+), y is a preimage ofa disontinuity point. Let f i(y) = ��1. The states of fk(y�) and fk(y+)oinide for k � i. We apply �i+1 to the inequality to obtaink(f i+1(y�)) < �i+1(�x) < k(f i+1(y+))and �� = k(�; 0) < �k+1(�x) < k(�; 1):The �rst inequality is impossible if �k+1(�x) = 0 : : : and the seond one isimpossible if �k+1(�x) = 1 : : : (it implies �k+2(�x) < �(k(�; 1)) = �a). We get aontradition. 41



Corollary 4 Two topologially expansive maps with hysteresis have the samekneading invariant if and only if they are topologially onjugate.Proof. De�nition 20 implies that kneading invariants of onjugate mapsare equal.To prove the onverse we put: h(x) = x0 if and only if k(x) = k (x0), wherex 2 Xh and x0 2 X 0h. It is easy to see that h is ontinuous and ontinuallyinvertible. Thus h is the homeomorphism needed in De�nition 20. Theorollary is proven.Now we an state our main theorem (ompare to [1℄):Theorem 12 Let F be a topologially expansive map with hysteresis withkneading invariant (�a;�b; ��; ��). Then �a and �� satisfy (C+), �b and �� satisfy(C�).Conversely, for any kneading sequenes ��a;�b; ��; ��� satisfying (C+) and(C�) respetively there exists a topologially expansive map f with hysteresiswith the given kneading invariant and f is unique up to onjugay.6.2 Proof of Theorem 12An observation made in Lemma 8 simpli�es the proof in the ase when fdoes not have �xed points (topologially expansive map with hysteresis anhave only two �xed points: f(a) = a and f(b) = b). In the absene of �xedpoints the theorem is just a orollary of the similar result for NDIE maps(N disontinuities, inreasing expansive maps) [1℄.However, when there are �xed points this approah is not easily applia-ble. Thus we prefer to give our own variant of the proof, suitable for anyase. It is based on the ideas of the proof given in [1℄, but sine onditions(C�) and (C+) are more strit than the orresponding onditions in [1℄ theirimplementation is slightly more diÆult.The �rst part of the Theorem and uniqueness in the seond part areproven in the previous Lemma and its Corollary. To prove the rest of theseond part we use the orrespondene between kneading sequenes and num-bers written in base 2 to onstrut a mapping on a irle whih is onjugateto the original mapping f . 42



The mapping on a irle is indued by the shift operator:�(x) = 2x mod 1:We need to hoose those points of the irle whih orrespond to possiblekneading sequenes. Therefore, these points must satisfy one of the ondi-tions (C), (C�) or (C+), where � is now a funtion on the irle and theinequalities are onsidered in the sense of real numbers. To hoose thesepoints we iterate the following algorithm:The initial values are W 11 = [�a; ��℄ and W 12 = [��;�b℄.1. Gj+11 = [�a; 1=2℄ \ S1i=1W j2 =2iGj+12 = [1=2;�b℄ \ S1i=1 �W j1 + 2i � 1� =2i2. W j+11 = [�a; ��℄ \Gj+11W j+12 = [��;�b℄ \Gj+12Here kneading sequenes are onsidered as numbers written in base 2. Thisalgorithm is onstruted to hoose appropriate images of the intervals W 11and W 12 under the 2-valued funtion ��1.We onsider the limit sets of the algorithm:G1 = limj!1Gj1; G2 = limj!1Gj2W1 = limj!1W j1 ; W2 = limj!1W j2 ;whih satisfy the following properties:1. G1 = [�a; 1=2℄ \ S1i=1W2=2iG2 = [1=2;�b℄ \ S1i=1 (W1 + 2i � 1) =2i2. W1 = [�a; ��℄ \G1W2 = [��;�b℄ \G23. W1 � G1W2 � G2 43



Proposition 1 Any point  2 G1 [ G2 satis�es one of the onditions (C),(C�) or (C+).Indeed, let point  belong to set G1. Then, by the property 1,  2 2�k1W2for some k1. Applying � suessively we get�j() 2 2�k1+jW2 � [�a; 1=2℄ for j < k1�k1() 2 W2 � [ ��;�b℄ � [1=2;�b℄:Thus the onditions are learly met for the �rst k1 iterations. Furthermore,�k1() 2 W2 � G2, therefore �k1() 2 2�k2W1+�2k2 � 1� 2�k2 and we proeedby indution.Proposition 2 Any point  2 [0; 1℄nG1[G2 does not satisfy the onditions.Let the point  belong to [0; 1=2℄,  2 Gj�11 and  62 Gj1. Then  2 2�kW j�22for some k and one has�k() 2 W j�22 � Gj�22�k() 62 W j�12 therefore �k() 62 Gj�12 :We proeed by indution until the proess ends in the situation�n() 2 W 0� and �n() 62 W 1�:The point �n() is thrown out after the �rst iteration and learly does notsatisfy the onditions. Therefore,  does not satisfy the onditions too. Theproposition is proven.Note, that the points �a, �b, �� and �� are in the set G1 [G2, beause theysatisfy the onditions. Similarly, if  is a preimage of one of these points(under �) and  2 G11 [G12 then  2 G1 [G2 also.Proposition 3 Set [0; 1℄nG1[G2 onsists of disjoint open intervals withoutommon endpoints.Assume that  is a ommon endpoint of two open intervals, therefore 2 G1 [G2 and  is isolated.We say that a point x is the +-boundary of a set S if x 2 S and (x ��; x) \ [0; 1℄ n S 6= ;. Analogially, x is the �-boundary if x 2 S and (x; x +44



�) \ [0; 1℄ n S 6= ;. An example is the point �a whih is +-boundary of the setG1.It is easy to see that all �-boundaries of the sets Gk1 [Gk2 are preimagesof �� or b under �. The same is true about +-boundaries and the points ��and a. Now we onlude that  annot be isolated after a �nite number ofsteps: otherwise it is preimage of (�� or b) and (�� or a) and, therefore,  is a+-point and a �-point simultaneously whih is not aeptable.Thus  2 Jk � Gk1 [Gk2 for any k, where Jk is an isolated losed intervaland 1\k=0Jk = : (*)However the remark we made after Proposition 2 implies that boundariesof Jk are ontained in Gk1 [ Gk2. On the other hand, Eq. (*) implies that�(Jk) ! , where �(Jk) is the boundary of Jk. Therefore,  is not isolated.The proposition is proven.Now to onstrut a map with hysteresis on an interval we use monotonebijetions to map h1 : G1 \ [�a; ��℄! [a; �℄� f0gh2 : G2 \ [ ��;�b℄! [�; b℄� f1gh3 : G1 \ [��; 1=2℄! [�; �℄� f0gh4 : G2 \ [1=2; ��℄! [�; �℄� f1gRemark 1 The sets G1 and G2 ontain entire intervals only in the degen-erate ase �a = 0, �b = 1 and �� = �� = 1=2. Otherwise, images of this intervalunder � will eventually over the whole irle.To show that bijetions are possible we propose a simple way to onstrut,for example, h1. We represent set [�a; ��℄ n G1 as a union of a ountablenumber of open intervals S1i=1 Ui. Then we identify the �rst interval U1with some point in [a; �℄, say, (a + �)=2, interval U2 with the point (a +3�)=4 or (3a + �)=4, depending on the position of U2 with respet to B1et. Thus we establish one-to-one orrespondenes between intervals Ui andbinary rationals of interval [a; �℄. Intervals Ui are dense in [�a; ��℄ \ G1 (inthe sense of Remark 1) and we extend the orrespondene by ontinuity.45



Note, that the boundaries of open intervals are mapped into one point x inthe interval [a; �℄, but this orresponds to splitting x into x� and x+. Thusbijetion is established between G1 \ [�a; ��℄ and the extended interval [a; �℄.Finally we de�ne the branh f0 of a map with hysteresis by putting�0(x) = �� �h�11 (x)� if x 2 [a; �℄� f0g� �h�13 (x)� if x 2 [�; �℄� f0gf0(x) = 8<:h1 (�0(x)) if �0(x) 2 [�a; ��℄h3 (�0(x)) if �0(x) 2 [��; 1=2℄h2 (�0(x)) if �0(x) 2 [ ��; b℄and the funtion f1 is de�ned analogously. Thus we onstruted a map withhysteresis and it is an easy orollary of the proedure of the onstrutionthat kneading invariant of the map is the given (�a;�b; ��; ��). This observation�nishes the proof.

46



Chapter 7SummaryIn the work we studied a speial ase of multistate maps, interval maps ofwith hysteresis. We developed a theory for general maps with hysteresis aswell as for a simple example, a pieewise linear map with hysteresis. Themain objet of our study was the global attrator L, or, in other words, thelimit image of the spae X under the map f .The global attrator was shown to play a signi�ant role in the dynamisof the map f . In the pieewise linear ase (with some additional require-ments) the set L turned to be the omega-limit set of any point and, there-fore, nonwandering set of the map. We were able to prove ontinuity of theset L with respet to a parameter �. In addition to upper semiontinuity inthe general ase, the set L(�), onsidered as a set-valued funtion of the pa-rameter, is lower semiontinuous in a number of speial ases. A onjetureformulated in Setion 5.1 is a topi for future researh. Other possible topisare: lassi�ation of types of L based on �rst return maps, formulation ofsuÆient ondition of disontinuity and a study of the appliability of ourtehnique to the ase of general maps with hysteresis.A part of the work was devoted to the study of ombinatorial propertiesof maps with hysteresis. A natural extension of our results obtained is tode�ne the renormalisation operator [2℄ for suh maps. This will possiblysimplify the lassi�ation of global attrator types.
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Appendix AC Programme
/* Three ommline args: name of the output file, numberof preliminary iterations, number of valid iterations.Start point is varying. Slope is also varying. */#inlude<stdio.h>#inlude<math.h>int i;long int st, it;float x0, xs, a=1.35358, b, trsh1=1.0, trsh2=1.9;FILE *outf;har stat='0';har Iter(void);main(int arg, har *argv[℄){ if (arg < 3) return 0;if ( (outf=fopen(argv[1℄, "w")) == NULL)puts("Hrenovo s failom! Error opening file!");st=atoi(argv[2℄);it=atoi(argv[3℄); 48



for(b=0.46; b<0.7; b+=0.002){/* slope is varying here */for(xs=0.6; xs<1.2; xs+=0.05) {/* st is start point for iteration */stat='0'; x0 = xs;for(i=1; i<st; i++) stat=Iter();/* preliminary iterations */for(i=1; i<it; i++){ stat=Iter();/* valid iterations */if (stat == '1')fprintf(outf,"%f %f\n",b, x0);/* Print observables when state is 0 */}}}flose(outf);}/* iteration funtion */har Iter(void){ if ( (stat=='0') ) x0*=a; else x0*=b;if (x0 > trsh2) return '1';if (x0 < trsh1) return '0';/* return new state */return stat;} 49



Appendix BFigures
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a bα βFigure B.1: An example of a map with hysteresis and a typial trajetory
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Figure B.2: An example of a pieewise linear map with hysteresis and atypial trajetory
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Figure B.3: Graph of the global attrator of a pieewise linear map withhysteresis. The varying parameter is �.53



bα βa

bβαa α b’’’ βFigure B.4: A map with hysteresis and the orresponding map with \mir-rors". 54
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Figure B.6: An example of a family of maps whih produe disontinuousgraph. If we hoose  as a parameter, with d �xed, the global attrator L()is both measure and lower disontinuous.
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α α -1Figure B.7: The simplest example of a pieewise linear map with hysteresis.The �rst return map to the interval [�; b℄ is a irle homeomorphism. Theglobal attrator onsists of one interval on the branh 0 and two intervals onthe branh 1.
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Figure B.8: Graph of the global attrator when 0 = (8=7)3, 1 = (7=8)4and the varying parameter is �. On the seond plot lines y = (8=7)k andy = (8=7)kx are added. 58
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