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We calculate asymptotic forms for the expected number of distinct $iggn)), visited by N noninter-
actingn-step symmetric Ley flights in one dimension. By a’lvy flight we mean one in which the probability
of making a step of sites is proportional to fij|**% in the limit j —c. All values of a>>0 are considered. In
our analysis each vy flight is initially at the origin and botiN andn are assumed to be large. Different
asymptotic results are obtained for different rangeg.iWhenn is fixed andN—oo we find that(Sy(n)) is
proportional to(Nn?)Y**® for <1 and toNY(** InYe for a>1. Whena exceeds 2 the second moment is
finite and one expects the results of Larraddeal. [Phys. Rev. A45, 7128(1992] to be valid. We give results
for both fixedn and N—« and N fixed andn—-ce. In the second case the analysis leads to the behavior
predicted by Larraldet al. [S1063-651X96)09705-X

PACS numbe(s): 05.40:+]

I. INTRODUCTION present work we calculatéSy(n)) for random walkers in
one dimension which have symmetric displacement prob-
Although the problem of calculating properties of the abilities having an asymptotically stable-law form.
number of distinct sites visited by amstep lattice random Let p(j) be the probability that any one of the random
walk, S(n), was first suggested as being of purely math-walkers makes a displacement equaj ia a single step. By -
ematical interesf1], properties of this random variable have the asymptotic stable-law form we will mean that in the limit
been extensively applied in a number of fields in the physical =%, P(j) has the property
scienceg§2-12). For example, a knowledge of the behavior
of S(n) can be used to characterize the amount of territory
reached by a diffusing particle. It is therefore useful for ex-
tending the Smoluchowski model for deriving macroscopic
rate constants from a microscopic model of a chemical reacwhereJ is a constant. Random walks having this property
tion [13,14. are special cases of what are generally termedy Lfights
Quite difficult mathematical problems arise in finding the [21-25, or, in mathematical terminology, are in the domain
probability distribution ofS(n). However, if attention is re- of attraction of stable lawi26]. Levy flights were introduced
stricted to the first two moments of this random variable theras a class of random walks which have associated limit laws
a considerable amount of information can be learned abouiut may not have finite moments. They are fundamental in
asymptotic properties because the generating functions fdhe discussion of non-Brownian enhanced diffusion. The as-
these quantities are knowfl5-17. More sophisticated ymptotic forms for(S;(n)) for random walks characterized
mathematical methods have also been used to find asympy the property in Eq(1) was first derived by Gillis and
totic properties of the second moment 8fn) [18,19. In  Weiss[27]; see alsd28,29.
principle, generating functions can be found for higher mo- Whena<2 in Eq.(1) the second moment of displacement
ments but the resulting analysis requires quite tedious calcus infinite, leading to the expectation that the asymptotic be-
lations[17]. A knowledge of generating functions combined havior should differ from that found if20]. On the other
with the application of Tauberian methods enables one ttnand, whena>2 the second moment is finite and thus one
calculate at least the first-order term in an asymptotic expammight expect that the results will be those obtained2@.
sion of the moments. However, we have found them to be correct in thesoo
The problem of finding moments &(n) as described in limit only, while for N—co the function{Sy(n)) differs from
the preceding paragraphs has been analyzed only for a singllee results derived ifi20].
random walker. More recently this analysis has been ex-
tended by Larraldet al. [20_] to that_ of fin_ding proper_ties of Il. DETAILS OF THE ANALYSIS
the expected number of distinct sites visited Nbynoninter-
acting n-step random walkers, a quantity which will be de- Let us begin by writing the formalism for calculating
noted by(Sy(n)). Even in the simplest case of an isotropic (Sy(n)) similar to that given if20]. Let p,(j) be the prob-
random walk in which the single jump is bounded the behav-ability that a single random walker is at siteat stepn, and
ior of {(Sy(n)) was proven to be surprisingly rich when con- let f,(j) be the first-passage time probability for the random
sidered as a function of the two variablesand N. In the  walker to be atj at stepn. A function required for our
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analysis is the probability that the walker hast visited j by 1 (= de
stepn. This will be denoted by ,(j) which is related to the P J'O 1-2+(30)"" a#2
set off,(j), m=0,1,...n, by p(0;2)~ 1 46 (10)
n EL 1-z+@30)an(we)’ *~ 2
(i) =1= 2 fu(i)- 2

and equal to the constapt0;1) when a<1. Whena>1 the
integral is singular ab=0 but not até=o. Hence calcula-
tions are simplified by approximating to the singular behav-
ior in that limit by setting the upper limit equal ®. The
resulting integral can be evaluated exactly, yielding the result

The expected number of distinct sites visited by dhean-
dom walkers all starting at the same site is

_ N

(Su(m)=2 [1-TR()] 3  esdnle) 1
p(0;z)~ Ja  (1—pr T z—1, 1I<a<2.
where the sum is over all sitgs (11

WhenN is large, sites close to the origin tend to be visited
after a small number of steps. Hence the principal contribuwhen a=1 the limit of integration in Eq(10) cannot be
tion to (Sy(n)) at largen is dominated by the largd{ be-  extended toe without introducing an extraneous singularity.
havior. This allows us to simplify the analysis by requiring However, the middle integral in Eq10) is trivial integrable
only a calculations the large-form of f,(j). Let p(j;2) and implies that
denote the generating function

1 1
” 6(0;2)~—In(—), z—1, a=1. (12)
o . J 1-z
B(ii2)= 2 pa(i)2" @ i
When a=2 a slightly more complicated calculation leads to

and f(j;z) be the analogous generating function for thethe result
fa(i). The relation between the two generating functions is

N 1 . 1 ~
f(1;2=p(j:2/p(0;2), j#0 5) P(0:2)~ 2575w n (1_2), 21, a=2.

[28,30. To find an approximate analytic form fdi(j;z)
valid for large|j|, and in the limitz—1 we can use the
approximation top,(j) valid at these values of. These In order to make use of the expression in E8). it is
probabilities are readily shown to have the asymptotic formnecessary to find the lardg- approximation tof ,(j). The
starting point for doing so is the representation f¢f;z)

Ill. THE CASE a>1

_ nJ« shown in Eq.(5) together with the estimates in Eq¥) and
pn(J)”mﬂ- (6)  (11). These lead to the approximation, valid in the limit
z—1,

In the indicated limits we can write fqu(j;z)

10
p(j;2)~ ——=+—15, J#O. 7
P(32)~ Gz (7
WhAenj =0 we make use of the known integral representation %
of p(0;2) [28], :§ .
-0y fw dog . g
p(0;z2)=— 0 =700’ 8 v

where p(6)=X;p(j) exp(ij #). The asymptotic property in
Eg. (1) implies that in the neighborhood @0, p(6) can be 10"

expanded to lowest order as 10 10
n
p( 9)%[ 1= (J0)2|, az2 B (9) FIG. 1. Results obtained from 50 realizations of the casd..5
1-(J30)°In(1/6), a=2. compared with the prediction of Eq17). The fitted slope of the

R line is =~0.67, which is to be compared to the theoretical value of
In consequence, the behavior @f0;z) in the z—1 limit is 1/a=3. The plotted data correspondsNe=100 (@), 5000(+), and
approximately 10 000( ).
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FIG. 2. (a) The crossover behavior far=2.5. Forn, =100 and
N~60 the crossover occurs as predicted by E&9). For

N=10%>60 the asymptotic slope is about 0.26, which is to be com-

pared with the prediction (¥+«)=0.286.(b) A line fitted to simu-
lated results fofSy(n)) for @=5 andn=500. These results corre-
spond to the asymptotic behavior derived by Larraddel. [20],
before the crossover indicated by EG9).
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n1+1/a
n l—K'mm, aF2
o=t [ ham=1 5 e |
3 [jfinn’ %
(15

whereK’ = aK/(1+ «). This approximation will be valid for
values ofn that satisfy|j|>n"“. Since this means that the
second term on the right-hand side of Ef5) is small in
comparison to 1 we can derive a lowest-order approximation

to (Sy(n)) by writing

n1+l/a
ex;{ —K’ W), aF2
1_‘r'I(J)% 2K n3/2 (16)
eXp(‘?nPInn)’ 2
and
(sum)=2 [ 1=
0 an+1/a
e
1
:2F(_1+a (K/N)l/(l+a)n1/a, a2
1 2N 1/3 n1/2
%2[‘(5 ?) m, a=2 (17)

The prediction in Eq.17) is compared with simulated
data fora=1.5 in Fig. 1. It should be noted that fat>2 the
second moment of the flights distribution, @), becomes
finite and the approximatiofs) is valid for j>n*®. Chang-
ing of the lower integration limit in(17) from zero ton®
affects only the constant i17). As for j<n*®, the probabil-

~ |j|1+a(1_z)1+1/a , a#2 10*
f(j;2)~ 233 1 (13
-1 =2.
li*(1-2)%* n (1—2)’ ¢
s 10°
The use of a Tauberian theorem can be invoked to yield the §Z
asymptoticn-dependent behavior i
L=
Q% 10°
JHesin(w/a) n'/®
fo(j %Tnﬂaz I a¢2,
n(J) |J|l+ F(l/a) |J|l+
1/2 1 . .
~K _n3| a=2, (14) 10,5 10’ 10° 10° 10*
[i[*Inn n

FIG. 3. A line fitted to data obtained from 50 realizations ac-

whereK is the numerical coefficient indicated in the detailed cording to Eq.(24) for a=0.75. The slope of the line is close to
expression. We next return to E@), which, for large values 1.13, which is in agreement with the theoretical value @1 2/)
of n, can be approximated by replacing the sum by an inte~1.143. The values dfl presented are 100@®), 5000(+), 10 000

gral, thus yielding

(), and 50 00Q A).
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TABLE I. Asymptotic results obtained in the present work for different regimea.of

a<l a=1 I<a<? a=2 a>2
N—so0 (N n2)1/(1+a) Nl/Zn(Inn)—I/Z Nl/(l+ a)nlla Nl/Snl/Z Nl/(1+ a)nl/a
N—so0 Nn Nl/2n(|nn)—1/2 Nl/(l+a)nl/a Nl/3n1/2(|nn)_l (n |nN)l/2

ity p,(j) can be approximated by a Gaussian and the corre- . Je

sponding results have been obtained by Larraidal. [20]: f(j;2)~ (0D (1—2)%" 23
Sy(n))e[n In(N)]Y2, 18
(Su(mp==[n In(N)] (18 which leads to the result

Therefore, fora>2 we have for(Sy(n)) the sum of the

results of Eqs(17) and (18). One can see that in the—o 20 |\ Uit 1 211t

limit the highest-order term is that from E(L8) and in the (Sn(n))~ 50:1) 114 (NM) :

N—o limit the highest-order term is that from E(L7). ’ (24)

In comparing the dependence @y(n)) onn andN in
simulated data we found that indeed for comparatively smalgehayior consistent with this prediction is illustrated by the
values ofn the data agrees with the prediction of E4j7), as  §ata in Fig. 3.
can be seen from the plot in Fige for «=2.5. A crossover Notice that Eq.(24) cannot hold in the limit ofN fixed
to the behavior predicted in E¢18) occurs at later times. g4 n—w, since for any value ofa, it is obvious that
Figure 2b) sho_ws simulated data in the rggion in which Eq. Sy(n)) must be less thaNn while the power to which is
(18) holds, which corresponds to a relatively small numberyzise in Eq(24) is greater than 1. We conjecture that when
of random walkers. The behavior |nd|c_ated in Eq7) oc- N is fixed andn—s (Sy(n)) is actually proportional taN,
curs as the number of random walkers increases. The time gfnce at sufficiently long times the random walkers tend to

which the crossover occurs,, , is found by equating these geparate, thereafter moving with minimal overlap. Consistent

two equations and is found to satisfy with this conjectured behavior would be a crossover time

N2+ @)\ al(a—2) optained from equating ER4) with nN, which predicts that

ol this occurs for values afi that satisfy
Ny (19
In(N)
al(l—a)

so that asa—2+ the value ofny tends to infinity, which n=0(N )- (25)
means that the regime in EQ18) no longer exists when
a<2. VI. SUMMARY

We have found the asymptotic results {@(n)), which

IV. THE CASE a=1 . . .
@ are different for different ranges in. All the results are

In this case we find displayed in Table I.
) It has been shown that far<l and fora>2, the forms
f(j'z)~ mJ (20) taken by(Sy(n)) depend on the order in which limits are
' taken: n fixed, N—« and N fixed, n—~. By equating
(1—2)212|H(E> (Sy(n)) in the two regimes we can estimate the crossover

time n, for transitions between the two regimes. We find the

Since the logarithm is a slowly varying function we can infer Crossover time between those regimes:

from this that in the limitsn—o andj?>n?
O(N¥1~%)y  for a<1

mJ%n? 2(1+a)\ al(a—2)
Fh(j)=~1- =——. 21 Nk (N
n(]) 2J2|n(n) ( ) (In(—N)) for 1<a<2.
The analog of Eq(17) then yields
g Al y Note, that whemr—2+ andn,—o only one regime exists.
212 JNY2n It is interesting to note that the result for bounded step
(Sn(n))=~ [In(m 7% (220 sizes derived i120] is not valid in the limitN—. As seen

in Table | one obtains the bounded step reg20f only when

Notice that the denominator isYA(n), in contrast to the first N iS fixed andn—-c.
power of the logarithm that occurs fdé=1[27].
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