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Structural properties of self-attracting walks
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Self-attracting walks~SATW! with attractive interactionu.0 display a swelling-collapse transition at a
critical uc for dimensionsd>2, analogous to theQ transition of polymers. We are interested in the structure
of the clusters generated by SATW belowuc ~swollen walk!, aboveuc ~collapsed walk!, and atuc , which can
be characterized by the fractal dimensions of the clustersdf and their interfacedI . Using scaling arguments and
Monte Carlo simulations, we find that foru,uc , the structures are in the universality class of clusters
generated by simple random walks. Foru.uc , the clusters are compact, i.e.,df5d anddI5d21. At uc , the
SATW is in a new universality class. The clusters are compact in bothd52 andd53, but their interface is
fractal: dI51.5060.01 and 2.7360.03 ind52 andd53, respectively. Ind51, where the walk is collapsed
for all u and no swelling-collapse transition exists, we derive analytical expressions for the average number of
visited siteŝ S& and the mean timêt& to visit S sites.

DOI: 10.1103/PhysRevE.64.046117 PACS number~s!: 68.35.Rh, 64.60.2i, 05.40.2a
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I. INTRODUCTION

In previous years various models of random walks~RW!
with memory or interaction have been studied@1–10# in or-
der to account for distinct features of physical, chemical, a
biological systems whose complexity goes beyond what
be obtained from the simple random walk picture. Perh
the most extensive studied model is the self-avoiding w
~SAW!, where the random walker is not permitted to step
already visited sites, simulating the behavior of linear po
mers. Although all investigated RW models with memo
are similar in the sense that they incorporate interactions
tween steps, they display quite distinct asymptotic propert
Therefore, they belong to universality classes that are usu
different from RW or SAW, though they may cross over
either RW or SAW behavior in some limits. Common pro
erties for describing the behavior of a walker are the ex
nentsn and k, characterizing the scaling with timet of the
mean square end-to-end distance

^R2~ t !&;t2n ~1a!

and the average number of visited sites

^S~ t !&;tk. ~1b!

For RW the exponents aren51/2 for all dimensionsd, k
51/2 for d51, andk51 for d>2 @11#. For SAW,k51 for
all d andn>3/(d12) @12,13#. A comparative study@14# of
some of these models@1,5,8,10# in one dimension has show
that the characteristic exponents depend crucially on the
ticular form of the interaction between the steps. Some of
important mechanisms are the range of the interaction,
presence of cumulative memory effects, and the globa
local normalization conditions. Models with global and loc
normalization conditions are also referred to in the literat
as static and dynamic models, respectively.

Recently, one of the dynamic models without cumulat
memory effects, the self-attracting random walk~SATW!
1063-651X/2001/64~4!/046117~9!/$20.00 64 0461
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@9#, has been found to display, in contrast to all other mod
a swelling-collapse transition at a critical attractive intera
tion uc in d>2 @15#. The characteristic exponentsn andk for
SATW are in different universality classes for belowuc
~swollen walk!, at uc , and aboveuc ~collapsed walk!. Above
and below criticality,n andk have been determined analyt
cally. At criticality, the exponents could only be studied n
merically, and due to the finite-size effects close to a tran
tion, there have remained open questions regarding
asymptotic behavior of SATW. A careful analysis of th
simulation data and a scaling approach different from the
developed in Ref.@15# is found to be necessary for a com
prehensive study of the structural properties of SATW, es
cially at critical u5uc , which is the focus of this paper. T
determine the fractal dimension of the cluster and the in
face generated by the walker and to give more precise res
for the characteristic exponents, we investigate the temp
development of the number of sites visited by the walker t
have a certain amount of already visited next nearest ne
bor sites. Identifying the sites belonging to the external a
internal perimeter of the cluster ind52, the fractal dimen-
sions of these structures are studied for attractions below
and above criticality.

The paper is organized as follows. In Sec. II seve
known RW models with interactions are summarized a
their behavior is compared. The SATW model is briefly r
viewed in Sec. III, presenting the analytical and numeri
results for the mean square end-to-end distance and the
erage number of visited sites for varying strength of attr
tive interaction following@15#, showing the evidence for the
phase transition. In Sec. IV we investigate the structure
the cluster grown by the walker for different attractive inte
actions using a new approach consisting of scaling ar
ments and Monte Carlo simulations, which leads to m
insight into the behavior of the system at criticality. W
study the fractal dimensions of the cluster and its interface
d52 and d53. Closed form expressions for the avera
number of visited sites and the mean time to visit a cert
©2001 The American Physical Society17-1
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number of sites ind51 are given in Sec. V. Finally, in Sec
VI we summarize our main results.

II. RW MODELS WITH INTERACTION

When a self-avoiding constraint like in the SAW model
added to the RW, the evolution of the walk becomes hea
dependent on the entire history of the walk, converting it in
a non-Markovian system. A bridge between ordinary R
and non-Markovian walks can be constructed by associa
energiesEt(w) to all possible configurationsw of a t-step
random walk, defining an ensemble probability f
a certain walk configuration asPt(w)5exp@2b Et(w)#/
(w exp@2b Et(w)#, with b5(kBT)21, where kB is Boltz-
mann’s constant andT is the absolute temperature. In th
high-temperature limit all walks become equally likely, b
at finite temperatures the ensemble probabilities of individ
paths differ. IfEt(w),0 for walks with many visited sites
walks prefering to explore new terrain dominate the syste
whereas ifEt(w).0 for walks with many visited sites, th
system is governed by configurations of walks attracted
their own path. Models based on this concept are by de
tion in the class of static models, for a comprehensive ov
view see Ref.@11#. One straightforward way of modelling
attractive and repulsive interaction between steps, know
the interacting walk@1#, is to assign an energyEt(w)
5g St(w) to a walk configuration, whereSt(w) is the num-
ber of visited sites of at-step RW configuration. For interac
tion parameterg50 the simple random walk is recovere
while for g,0 the walk becomes repulsive and the char
teristic exponents aren5k51 in d51 @2,3#. For g.0 the
walk is attractive andk51/3 and 2/3, ind51 and 2, respec-
tively, as well asd/(d12) in d>3 @1,2,11#.

In a more generalized static model including cumulat
memory effects@4# the energy of a walk configuration i
Et(w,a)5g(snt

a(s) with 0<a<2, wherent(s) is the num-
ber of times a certain sites has been visited aftert steps. For
cumulative memory parametera50 the previous model o
Ref. @1# is recovered, and fora52 it is also known as the
Domb-Joyce model@5,6#, while for g50 or a51 it reduces
to simple random walks. The model is repulsive fora,1
and g,0 or a.1 andg.0; in the latter case Flory argu
ments given5(a11)/(21a d2d) independent ofg for d
<dc52 a/(a21), wheredc is the critical dimension. For
the attractive regime, results are only known ind51, where
for a,1 andg.0 it exhibits continuous varying exponen
depending ona with n5k5(12a)/(32a), while for the
other attractive brancha.1 and g,0 it is always self-
trapping aŝ R& and ^S& saturate.

An approach analogous to the one above for the st
models can be made for the less investigated dynamic m
els, where the local normalization is done by assignin
probabilityPi to the walker to step to the next nearest neig
bor site i during the evolution of the walk, withPi

5exp(g ni
a)/(i51

2 d exp(g ni
a), a.0. Here,ni is the number of

times the neighbor sitei has already been visited in the pr
vious t time steps@7#. For g50 the simple random walk is
recovered, while forg,0 the walk is repulsive and the ex
ponent n is determined to ben5(a11)/(21a d) for d
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<dc52. For the attractive regimeg.0 it is known that in
d51 the walk is always self-trapping. A special case of th
model is the true self-avoiding walk of Ref.@8# with g,0
anda51.

In surprising contrast to the results for all abovemention
models, where the characteristic exponents are always i
pendent of the actual strength of the attraction or repuls
parameterg, are the results for the SATW model@9# focused
on here. In this model a random walker jumps with probab
ity Pi5exp(u ni)/(i51

2 d exp(u ni) @16# to a next nearest neigh
bor sitei, with ni51 for already visited sites andni50 for
not visited sites. Foru.0, the walk is attracted to its own
trajectory, so that SATW is an extension of Ref.@7# with
attraction parameteru5g.0 in the limit of no cumulative
memory effecta→0. Note that the results of Ref.@7# cannot
be directly applied to the SATW model as they are based
the restrictiona.0. Some representative examples of tw
dimensional clusters grown by SATW for different values
u at three distinct timest of evolution are shown in Fig. 1
The exponentsk andn of SATW have been found to depen
on u @9,17–19#, although it was not clear for some time ifn
andk decrease continuously with increasingu @18,19# or if a
critical valueuc exists, below, at, and above which the e
ponents show different universal behavior@9,17#. Recently,
it was found by exhaustive computer simulations with up

FIG. 1. Representative example of the structures grown
SATW after t5212, 214, and 216 time steps foru50, u50.88
(>uc), and u52.5 in d52. Gray sites form the interface, blac
sites are completely surrounded by already visited neighbor s
The length scale is arbitrary chosen so that the clusters fill the
of the box. Note that foru,uc , one can easily follow the growth
process because of the distinctive structure of the cluster, while
u5uc it is difficult to follow, since the walker keeps coming bac
more often altering the structure. Foru.uc it is not possible to do
so as the grown clusters are compact.
7-2
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STRUCTURAL PROPERTIES OF SELF-ATTRACTING WALKS PHYSICAL REVIEW E64 046117
t553109 time steps that there exists a swelling-collap
transition for SATW at a critical attractionuc @15#, analo-
gous to theQ transition in linear polymers at temperatu
T5Q when an attraction term exp@2A/T#, A,0, is added to
the self-avoiding constraint@12,13#. This phenomenon of a
swelling-collapse transition can only occur because of a
ance of the interaction energy and the configurational
tropy of the SATW at criticality. When the energy is not
the order of the entropy as investigated in Ref.@7# for a
.0, the walk collapses for any attractionu5g.0.

III. SWELLING-COLLAPSE TRANSITION FOR SATW

In @15# it was shown that the characteristic exponentsn
and k for SATW are in different universality classes foru
,uc , u5uc , andu.uc . Above uc , the walk collapses for
d>2, andn andk are given by

n5
1

d11
~2a!

and

k5
d

d11
. ~2b!

Equations~2! follow ~cf. @15#!, since for sufficiently strong
attractionu.uc the grown clusters are compact~see Fig. 1!,
so the average number of visited sites scales with the
mean square displacement^R&[^R2&1/2 as^S&;^R&d. Com-
paring this to Eq.~1a! yields k5nd for u.uc . Also, the
mean cluster growth rate is proportional to the ratio betw
the number of boundary sites and the total number of
cluster sites, d̂S&/dt;^R&d21/^R&d;t2n @17,20#. Thus^S&
;t2n11. Combining these results with Eq.~1b!, one obtains
Eqs.~2!. Below a critical interactionuc , the walk swells and
the exponents are as with no interaction@11#, i.e.,n51/2 and
k51 for d>2. The above analytic arguments are in go
agreement with numerical simulations ind52 andd53 ~see
Fig. 2!. At uc , the exponents are numerically determined
be nc50.4060.01 andkc50.8060.01 for d52 as well as
nc50.3260.01 andkc50.9160.03 ford53 @15#. Note that

FIG. 2. The values of the exponentsk ~squares! andn ~circles!
versus attractionu in d52 ~open symbols! and d53 ~filled sym-
bols! for t5108, obtained by a least square fit of the slope
ln^R2(t)& and ln̂S(t)& versus lnt for large t, respectively. Note tha
for u.uc the values ofk andn approach the theoretical prediction
of Eqs.~2!, marked as dashed lines. The estimated values ofuc are
uc50.8860.05 ind52 anduc51.9260.03 ind53.
04611
e

l-
n-

ot

n
e

for d51 no swelling-collapse transition exists, as the walk
collapsed for allu, and Eqs.~2! reveal the known valuesk
51/2 andn51/2 for random walk ind51 @11,21# ~see also
Sec. V!.

In the analogous static model of the interacting walk@1#
with attractive interaction and no cumulative memory e
fects, a phase transition can not be observed due to the
that the global normalization condition increases the wei
of the interaction energy more than the local normalizat
condition, as already observed in Ref.@14# for d51. This
can also be seen from the asymptotic behavior of the c
acteristic exponentk5d/(d12) for the attractive interacting
walk @1,11# in comparison to the ‘‘less collapsed’’k5d/(d
11), Eq. ~2b!, for the SATW discussed here. Therefore,
static interacting walk with the slightest attractionu5g.0
has a qualitatively different behavior than the ordinary R
and is collapsed. Note that in both modelsk never becomes
independent of the dimension, although it approaches u
from below in the large dimensionality limit.

Due to finite time effects at criticality it is not possible t
determine the exponentsnc andkc more and more accuratel
by simply increasing the numbert of time steps performed
by the walker. As long as the attraction is slightly above
below criticality, as it is always the case in numerical sim
lations, the exponents will finally cross over to their expec
values respectively above and belowuc after some timet.
Introducing a crossover timetj , below which the exponentn
is close tonc and above whichn approaches 1/2 foru,uc
and 1/(d11) for u.uc ~see Fig. 1 of Ref.@15#!, the follow-
ing scaling theory holds:

^R~ t !&;tncf 6~ t/tj! ~3a!

with

tj5uu2ucu2z, ~3b!

where the plus sign refers tou.uc , the minus sign tou
,uc , and the exponentz has to be determined numerically
As tj is the only relevant time scale, the scaling functio
bridge the short time and the long time regime. To ma
both regimes, it is required thatf 6(x)5const for x!1 (t
!tj) and f 1(x);x1/(d11)2nc, f 2(x);x1/22nc for x@1. An
analogous scaling approach holds for^S(t)&, and an excel-
lent data collapse can be obtained forz5761 in d52 and
z55.060.5 in d53 ~see Fig. 3 of Ref.@15#!, confirming the
numerical values fornc , kc , anduc determined from Fig. 2.

Since the mass of the cluster generated by the wal
consisting of all visited sites, scales as

^S&;^R&k/n, ~4!

the ratiok/n corresponds to the fractal dimensiondf of the
cluster,

df5
k

n
. ~5!

In d52 the clusters are compact for allu ask/n5df5d. In
d53 they are compact foru.uc , while for u,uc , the frac-
7-3
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FIG. 3. The average number of cluster sites^Ni(t)& having i already visited nearest neighbor sites plotted versus the average num
all cluster siteŝS(t)& up to t523109 time steps~for u,uc in d52 andd53 only up tot5109 andt533107, respectively! averaged over
100 configurations ind52 for ~a! u50.5,uc , ~b! u50.88>uc , ~c! u52.5.uc , and ind53 for ~d! u51,uc , ~e! u51.92>uc , and~f!
u54.uc . In d52 the data for the different values ofi are marked byi 51 ~circles!, i 52 ~squares!, i 53 ~diamonds!, and i 54 ~pluses!,
whereas ind53, i 51 ~circles!, i 52 ~squares!, i 53 ~diamonds!, i 54 ~upward triangles!, i 55 ~downward triangles!, and i 56 ~pluses!.
Note that~d! clearly differs from~a!, ~b!, ~c!, and~f!. The values of the slopesai determined from the data are summarized in Table I
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tal dimension of clusters generated by simple random wa
df52,d is obtained. At the criticality,df was found nu-
merically to bedf52.8460.25, but the possibility thatdf
5d could not be ruled out in Ref.@15#.

IV. THE CLUSTER AND ITS INTERFACE
AT CRITICALITY

To clarify if the grown clusters ind53 atu5uc are com-
pact or fractal and to learn more about the structure of
SATW clusters and their interfaces at criticality, we consid
the following: Denoting byNi(t) the number of cluster site
that havei of their 2d next nearest neighbor sites belongi
to the cluster aftert time steps, the number of all cluster sit
S(t) is the sum of allNi(t),

S~ t !5N1~ t !1N2~ t !1•••1N2 d~ t !. ~6!

The cluster growth rate isequal to the probability to be on
the boundary of the cluster multiplied by the condition
probability to expand the cluster while being on its boun
ary. Suppose the walker is on a site that hasi visited next
nearest neighbor sites. As the probability to step to a n
nearest neighbor site isP;exp(un), with n51 for already
visited sites andn50 for unvisited sites, the probability to
jump to a visited neighbor site is proportional toi exp(u),
whereas the probability to jump to an unvisited neighbor s
is proportional to 2d2 i . Thus the normalized probabilityP̃i
to expand, i.e., to jump to one of the 2d2 i unvisited next
nearest neighbor sites, is given by

P̃i5
2d2 i

i exp~u!12d2 i
. ~7!

Therefore, the average cluster growth rate is
04611
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d^S&
dt

5 P̃1

^N1&

^S&
1 P̃2

^N2&

^S&
1•••1 P̃2d21

^N2d21&

^S&
. ~8!

The situationi 52d is special becauseP̃2d50 as the cluster
cannot be expanded from a site where all surrounding s
already belong to the cluster. Assuming that the aver
number of cluster siteŝNi& that havei already visited near-
est neighbor sites scales as

^Ni&;^S&ai

with

0<ai<1, ~9!

there must be at least onei for whichai51 to ensure that Eq
~6! holds. In general, one can distinguish between two d
ferent cases:~i! there exists at least onei ,2d for which ai
51 ~ii ! only a2d51.

In case ~i!, the average cluster growth rate d^S&/dt is
dominated by thêNi& for which ai51, leading to d̂S&/dt

; P̃i^Ni&/^S&5 P̃i^S&ai/^S&5const. Therefore, in this cas
one getsk51 as^S&;t. In case~ii !, when onlya2d51, the
cluster growth rate is dominated by the^Ni& for which ai
5amax5max$a1,a2, . . . ,a2d21%. This gives d̂S&/dt
;^S&amax/^S&5^S&amax21, and hence

k5
1

22amax
~10!

when compared to Eq.~1b!. As shown below, the grown
cluster is fractal for case~i! while for case~ii ! it is compact.

The above considerations also enable us to determine
merically the exponentk in a way different from Ref.@15#,
and additionally to gain more insight into the grown stru
tures, especially in the regime atu5uc . Figure 3 shows that
the assumption of Eq.~9! is clearly supported by numerica
7-4
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results. When plottinĝ Ni& versus^S&, the decision as to
which case~i! or ~ii ! a certain regime belongs becomes o
vious from Fig. 3 for all regimes except foru5uc in d53.
For u,uc in d53 we observe case~i! @see Fig. 3~d!#, as
ai51 for all i. The other regimes belong to case~ii ! @see
Figs. 3~a!–3~c! and 3~f!# since onlya2d51. At u5uc in d
53 @Fig. 3~e!#, a more detailed investigation of the results
necessary. By plotting the successive slopesai
5d ln^Ni&/d ln^S& of the data of Fig. 3~e! versus 1/ln̂S& @Fig.

FIG. 4. ~a! The successive slopesai5d ln^Ni&/d ln^S& of the data
from Fig. 3~e! plotted versus 1/ln̂S&. A linear extrapolation of the
points to the limit 1/ln̂S&→0 yields our estimatesai50.9160.01
for 1< i ,2d and a2d51.0060.01, clearly revealing that this re
gime belongs to case~ii !. The data are marked as in Fig. 3~e!. ~b!
The average number of cluster sites havingi already visited neares
neighbors divided by the average number of all cluster s
^Ni(t)&/^S(t)& versus^S(t)& of the data from Fig. 3~a!. Note that
the data fori 54 marked by pluses show a dominant behavior co
pared to the data fori 51 ~circles!, i 52 ~squares!, and i 53 ~dia-
monds!, implying that the regimeu,uc in d52 belongs to case
~ii !.
04611
-

4~a!#, it becomes obvious that onlya2d51. Thus this regime
belongs to case~ii !. Moreover, Fig. 4~a! indicates that all
a1 ,a2 , . . . ,a2d21 asymptotically have the same value,
amax5a15a25•••5a2d21. As this is also found for all other
regimes, in the following we will denoteaI5ai for all 1< i
<2d21 in both cases~i! and~ii !, in distinction toa2d . The
values of the exponents are summarized in Table II, confi
ing the previous results for the exponentk ~see Table I! when
following Eq. ~10!. At u5uc in d53, kc can be determined
more precisely than in Ref.@15# to bekc50.9160.01. Note
that another approach to confirm our numerical results fok
is to plot^Ni& versust in a double logarithmic plot. Denoting
the resulting slopes ask i , we expect

k i5kai ~11!

as^Ni&;^S&ai;tkai;tk i when combining Eqs.~1b! and~9!.
The numerical values determined fork i are summarized in
Table II and are in excellent agreement with the values
termined forai when comparing with Eq.~11!.

When examining the distinction between cases~i! and~ii !,
it becomes clear that the structures grown by the walke
case~i! are fractal while the ones in case~ii ! are compact.
This can be explained by considering that in case~ii ! the
sites that do not belong to the interface dominate the gro
process asa2d.aI , leading to a compact structure~i.e., df
5d!. In case~i! all sites have the same contribution to th
growth of the structure due toa2d5aI @22#. As we found that
u5uc in d53 belongs to case~ii ! @see Fig. 4~a!#, the struc-
ture must be compact and we can definitely conclude tha
this regimedf has to bedf5d53, correcting the value 2.84

s

-

TABLE I. The exponentsn andk as well as the estimated value
for the transition pointuc for SATW in d52 andd53.

u,uc u5uc u.uc

d52 n 1/2 0.4060.01 1/3
k 1 0.8060.01 2/3

uc50.8860.05
d53 n 1/2 0.30360.005 1/4

k 1 0.9160.01 3/4
uc51.9260.03
he
TABLE II. The exponentsai andk i for 1< i ,2d and i 52d for all three regimesu,uc , u5uc , and
u.uc in d52 andd53 from numerical simulations. The errors are of the order of 1%. Foru,uc in d
52, most probably due to logarithmic corrections@24#, it is not possible to obtain the asymptotic value of t
exponents in numerical simulations, therefore we give them in parentheses. Note that the results forai for the
regimesu,uc and u.uc are supported by combiningk51/2 and Eq.~10! as well as Eqs.~2b! and ~10!,
respectively.

u,uc u5uc u.uc

ai k i ai k i ai k i

d52
1< i ,2d 0.95(1) 0.90(1) 0.75 0.60 0.50 0.33

i 52d 1 0.95(1) 1 0.80 1 0.67
1< i ,2d 1 1 0.91 0.83 0.67 0.50

d53 i 52d 1 1 1 0.91 1 0.75
7-5



d

h
te
te
pe
us

ks
e

a

ne

o

fa
r

in
u

t

ter-

al
e
in-
o-

ue to
st.

d in

al
iti-
ng

in

e

r
at
a

ex-

ow.

ORDEMANN, TOMER, BERKOLAIKO, HAVLIN, AND BUNDE PHYSICAL REVIEW E 64 046117
60.25 obtained earlier@15#. The latter value was calculate
by combining the numerical results for the exponentskc
50.9160.03 andnc50.3260.01 following Eq. ~5!. From
the new numerical resultkc50.9160.01 and nc5kc /df
5kc /d, we obtain the more accurate estimatenc50.303
60.005.

Next we focus on the interface of the grown cluster. T
total interface can be divided into the external perime
which is usually the more interesting fraction as it constitu
the reaction front with the environment, and the internal
rimeter, which is the boundary of the inner holes of the cl
ter @23#. First we investigate the total interface. Its massI is
equal toN11N21•••1N2d21 and therefore scales as

^I &;^S&aI. ~12!

Combining Eqs. ~4! and ~5! with Eq. ~12! yields ^I &
;^R&aIdf. Hence the fractal dimensiondI of the interface is
simply

dI5aIdf . ~13!

The values fordI according to Eq.~13! are given in Table III.
For u,uc , we recover the values for normal random wal
@11,24#, dI52 in d52 and 3. As the fractal dimension of th
external perimeter of a random walk isdEP54/3,dI in d
52 @11#, this suggests that the internal perimeter is domin
ing the interface foru,uc . In contrast, ind53 the external
perimeter governs the interface,dEP525dI @11#, as three-
dimensional holes are less likely than two-dimensional o
due to geometrical constraints. Foru.uc , we find dI5d
21, clearly confirming the assumption that the structure
this regime is collapsed~see Fig. 1!. It forms a compact disk
a compact sphere, respectively, with a rather smooth sur
and holes only in the surface layer. The clusters are simila
the clusters grown in the Eden model@25#, where each un-
visited next nearest neighbor site of the cluster has thesame
probability to be occupied at the given time step. It rema
an open question whether these clusters are in the same
versality class as one has to check if the surface foru.uc
resembles the self-affine surface of the Eden cluster. Au

TABLE III. The fractal dimensiondf of the cluster anddI

5aIdf of the interface grown by SATW for all three regimesu
,uc , u5uc , andu.uc in d52 andd53. Additionally in d52
the fractal dimensions of the external perimeterdEP and the internal
perimeterdIP are given. Ind53 it is particularly not clear whethe
the external or the internal perimeter dominates the interfaceu
5uc . In case no error bars are given, the numerical results
supported by analytical considerations.

u,uc u5uc u.uc

df 2 2 2
dI 2 1.5060.01 1

d52
dEP 4/3 1.2560.05 1
dIP 2 1.5060.01 1
df 2 3 3

d53 dI 2 2.7360.03 2
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5uc , the structure of the interface is fractal in bothd52 and
3 with the values ofdI51.5060.01 anddI52.7360.03, re-
spectively. The rather surprising result fordI in d53 can be
understood when considering that the structure of the in
face atu5uc is more compact than foru,uc but the cluster
is not collapsed as foru.uc .

A straightforward way to confirm the above numeric
results fordI is to determine the fractal dimension of th
interface by measuring it directly on the grown clusters
stead of calculating it dynamically during the growth pr
cess. Using the sandbox method@26#, the outcome supports
the results stated above, although they are less precise d
the fact that the information about the growth process is lo
For the results ofdI at criticality in d52 andd53, see Fig.
5, showing a good agreement with the values summarize
Table III and clearly excluding the value ofdf52.84 deter-
mined in Ref.@15# for d53, which would lead todI52.58
when following Eq.~13!.

A further interesting question is which perimeter, extern
or internal, is dominating the interface of the clusters at cr
cality, and what is the actual value of the nondominati
perimeter. Using the approach of Ref.@27# to identify the
sitesNEP belonging to the external perimeter of a cluster
d52, and identifying the internal perimeter sitesNIP as the
interface sites not belonging toNEP, we expect the averag
number of external perimeter sites^NEP& to scale as

^NEP&;^S&aEP ~14a!

and the average number of internal perimeter sites^NIP& to
scale as

^NIP&;^S&aIP. ~14b!

Following the reasoning leading to Eq.~13! yields

dEP5aEPdf ~15a!

re

FIG. 5. The successive slopesdI5d ln^I(R)&/d ln R of the mean
mass^I (R)& of the interface inside a disk and a sphere of radiusR
plotted versus 1/R for u5uc at t533108 and t533107 time
steps, respectively, averaged over 1000 configurations. A linear
trapolation of the points to the limit 1/R→0 yields our estimates~a!
dI51.5060.02 ind52 and~b! dI52.7260.04 ind53, confirming
the results summarized in Table III, which are marked by an arr
7-6
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and

dIP5aIPdf . ~15b!

The results foraEP ~see Fig. 6! recover the expected behavio
of dEP54/3 for u,uc and indicate that at criticalitydEP is
clearly smaller than for belowuc , although it is difficult to
determine the precise value ofdEP from this plot. Thus, atuc
the interface is dominated by the internal perimeter asdEP
,dI . This is confirmed by the results foraIP at criticality,
where the expected value ofdIP5dI51.5 is recovered, al-
though with unsatisfactory precision@28#. Using the sandbox
method@26# to measure the fractal dimension of the peri
eter directly, the results supportdIP51.5 more precisely and
we find dEP51.2560.05 for u5uc @see Fig. 7~a!#. The fact

FIG. 6. The successive slopesaEP5d ln^NEP&/d ln^S& plotted
versus 1/ln̂S& averaged over 500 configurations foru50.5,uc

~diamonds! up to t5107 time steps, foru5uc ~squares! up to t
5108 time steps, and foru52.5.uc ~circles! up to t523109 time
steps ind52. A linear extrapolation of the points to the lim
1/ln^S&→0 yields our estimatesaEP50.6860.02 and 0.5060.02 for
below and aboveuc , respectively, confirming the results summ
rized in Table III, which are marked by an arrow. Atuc , aEP is
clearly smaller than for belowuc .

FIG. 7. The successive slopes fordEP5d ln^NEP&/d ln R and
dIP5d ln^NIP&/d ln R of the mean masŝNEP& and ^NIP& of the ex-
ternal and internal perimeter, respectively, plotted versus 1/R for ~a!
u5uc at t5108 time steps and~b! u52.5.uc at t523109 time
steps averaged over 500 configurations ind52. A linear extrapo-
lation of the points to the limit 1/R→0 yields our estimates~a!
dIP51.4860.05 ~circles! and ~b! dEP51.0260.03 ~squares! and
dIP51.0160.03 ~circles!, confirming the results summarized i
Table III, which are marked by an arrow. Atuc , dEP ~squares! is
determined to bedEP51.2560.05.
04611
-

that dEP for u,uc is definitely smaller thandEP at u5uc
reinforces that at criticality the SATW model is in a ne
universality class. Foru.uc one might expect that the inter
face is dominated by the external perimeter due to the
lapsed structure of the cluster. However, we find that
internal and the external perimeter contribute equally to
interface,dIP5dEP515dI @see Fig. 7~b!#.

In d53, the fractal dimension of the external perimeter
dEP525dI for u,uc , supposing thatdEP follows the ran-
dom walk result@11# like all other characteristic values de
termined for the SATW in this regime. Unfortunately it
not possible to determinedEP or dIP in d53 numerically
using the algorithm of@27# to check which one, the externa
or the internal perimeter, governs the behavior atuc , and to
decide whether the external perimeter dominates the in
face for u.uc i.e., dEP5dI.dIP or if dEP5dI5dIP in this
regime. The values fordEP and dIP according to the above
considerations are given in Table III.

V. SATW IN ONE DIMENSION

As we mentioned above, ind51 there is no swelling-
collapse transition as the walk is collapsed for allu. The
exponentsk and n are k51/2 andn51/2 @11,21# in accor-
dance with Eqs.~2!. Following the considerations leading t
Eq. ~10!, the probability of the walker to be on the bounda
of a SATW cluster iŝ N1&/^S&52/̂ S&, therefore SATW in
d51 belongs to case~ii !, since a15amax5aI50 and a2d
51. Thus,k51/(22amax)51/2 as expected from analytica
results@21#. Note that, based on Eq.~8!, one can derive~al-
though not rigorously! a closed form expression for^S(t)& in
d51, extending the results of Ref.@21#. Since ind51 the
conditional probability to expand the cluster while being on
perimeter site isP̃151/@exp(u)11# @cf. Eq. ~7!# andN152,
we obtain

d^S~ t !&
dt

5
1

exp~u!11

2

^S~ t !&
, ~16!

yielding

^S~ t !&5S 2t

exp~u!11D 1/2

. ~17!

This result is strongly supported by numerical simulatio
~see Fig. 8!.

In d51 it is also possible to solve the inverse problem
deriving the average timêt(S)& to visit a fixed number of
visited sitesS,

^t~S!&5S211
~S22!~S21!~12 P̃1!

2P̃1

. ~18!

For asymptotically largeS, Eq. ~18! yields ^t(S)&;S2, re-
covering the expected scaling withk51/2. To derive Eq.
~18! we use the standard approach to RW ind51 ~see, for
instance, Ref.@29#!: The number of sitesS visited by a
7-7
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walker ind51 is equal to the span of the random walk. T
time t(S) passed before the span reachesS can be repre-
sented as the sum

t~S!5(
i 52

S

x i ~19!

with x i5t( i )2t( i 21) being the time spent before the sp
increases fromi 21 to i, given that the walker is initially at
the boundary. Thus, the mean time^t(S)& to visit Ssites can
be calculated as

^t~S!&5(
i 52

S

^x i& ~20!

with t(1)50 andt(2)51. Let us consider the nature of th
variablex i in some detail. When at the boundary, the walk
increases the span with the probability of successP̃1. With
probability 12 P̃1 the walker stays inside the cluster an
undertakes an excursion until it hits the boundary aga
which presents him with another opportunity to increase
span. We introduce the random variablem, which is the
number of unsuccessful attempts before the span is
creased. In other words,m is the number of excursions int
the cluster, and with probabilityP̃1(12 P̃1)m, m>0, m is
equal tom. Now we can decompose thex i as

x i511(
j 51

m

~t j11!, ~21!

wheret j is the length of thej th excursion, and 1 is added t
account for the jump from the boundary into the cluster
fore the excursion started. The random variablet j can be
viewed as the time a random walker, starting at site 1 w
the boundaries at 0 andi 22, needs to reach a boundary. I
mean is known to bêt j&5 i 23 @29#. The mean ofx i is just
the average number of excursions multiplied by the aver

FIG. 8. The average number of visited sites^S(t)& in d51 for
different values ofu, u52 ~circles!, u54 ~squares!, u56 ~dia-
monds!, and u59 ~triangles!, plotted versus timet scaled by@1
1exp(u)#21 shows a good data collapse in agreement with Eq.~17!
~solid line!. The plateau for smallt corresponds to the average tim
@equal to 11exp(u)# needed for the walker to escape the init
cluster of size 2.
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length of one excursion. More rigorously, we express^x i& in
terms of conditional averages as follows:

^x i&5K 11(
j 51

m

~t j11!L
511 (

m51

` K (
j 51

m

~t j11!Um5mL P~m5m!. ~22!

The variablest j are independent identically distributed ra
dom variables, therefore

^x i&511 (
m51

`

m^t j11&P~m5m!

511~ i 22! (
m51

`

mP̃1~12 P̃1!m

511
~ i 22!~12 P̃1!

P̃1

. ~23!

By combining Eqs.~20! and ~23! one obtains Eq.~18!.

VI. CONCLUDING REMARKS

In contrast to all other known random walk models wi
interaction, the SATW model exhibits a swelling-collap
transition at a critical attractionuc in d>2. The transition is
similar to the swelling-collapse transition observed at
‘‘ Q point,’’ T5Q of SAW with an attraction term
exp@2A/T#, A,0 @12,13#. It can only arise because the a
tractive interaction energy is of the same order as the c
figurational entropy ind>2. Below uc the entropy domi-
nates and the walk is in the universality class of simple R
aboveuc the energy governs the behavior and the walk c
lapses. Atuc , both contributions balance each other, lead
to a new universality class. Ind51, due to a small numbe
of possible configurations caused by the geometrical c
straints, the walk is always collapsed, even without inter
tion u50.

Analyzing the structure of the cluster grown by SATW
detail, we determined the fractal dimension of the cluster a
its interface. Ind52, the cluster is always compact while th
interface has a fractal dimensiondI52 and 1.5060.01 below
and atuc , respectively, dominated by the internal perimet
Aboveuc , we founddI5dIP5dEP51. The fractal dimension
of the external perimeter atuc , dEP51.2560.05, is smaller
than belowuc , dEP54/3, demonstrating once more the un
versality class at criticality. Ind53 the cluster is compac
for u>uc , while for u,uc the fractal dimension isdf52.
Probably the most unexpected result is that ind53 the
7-8
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interface has a fractal dimensiondI52 above and belowuc ,
whereas at criticality it increases todI52.7360.03. This ap-
pealing structure atuc is of interest on its own regarding tha
many challenging problems in physics, chemistry, and b
ogy are associated with growth patterns in clusters and
lidification fronts. The results for the fractal dimensions
the perimeters could also be helpful when investigating
structure of the cluster grown by SAW at the correspond
Q transition, where sufficiently large clusters are difficult
ys

nts

J

ys
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simulate because of the attrition of the walkers when st
ping into their own dead ends.
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ted versuŝS&, most probably due to logarithmic corrections
the exponents@24#.

@23# A union U of two fractal setsA andB with fractal dimension
dA and dB , respectively, has a fractal dimensiondU

5max$dA ,dB% @25#. Here, the total interface is a union of th
external and the internal perimeters.

@24# G.H. Weiss, and J.R. Rubin, J. Chem. Phys.52, 363 ~1983!.
@25# T. Vicsek,Fractal Growth Phenomena, 2nd ed.~World Scien-

tific, Singapore, 1992!.
@26# Fractals and Disordered Systems, 2nd ed., edited by A. Bunde

and S. Havlin~Springer, Heidelberg, 1996!.
@27# J.-F. Gouyet, H. Harder, and A. Bunde, J. Phys. A20, 1795

~1987!.
@28# The reason is insufficient data, since the running time for o

walk configuration is considerably increased by the implem
tation of the algorithm for the determination of the extern
perimeter at several timest during the growth of the cluster.

@29# A.N. Shiriaev,Probability ~Springer, New York, 1996!.
7-9


