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Self-attracting walkdSATW) with attractive interactioru>0 display a swelling-collapse transition at a
critical u. for dimensiongd=2, analogous to th® transition of polymers. We are interested in the structure
of the clusters generated by SATW below(swollen walk, aboveu, (collapsed walk and atu,, which can
be characterized by the fractal dimensions of the clusteaiad their interfacel, . Using scaling arguments and
Monte Carlo simulations, we find that far<u., the structures are in the universality class of clusters
generated by simple random walks. koru,, the clusters are compact, i.di=d andd,=d—1. At u., the
SATW is in a new universality class. The clusters are compact in hetB andd=3, but their interface is
fractal: d;=1.50=0.01 and 2.730.03 ind=2 andd= 3, respectively. Ird=1, where the walk is collapsed
for all u and no swelling-collapse transition exists, we derive analytical expressions for the average number of
visited sites(S) and the mean timét) to visit S sites.
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I. INTRODUCTION [9], has been found to display, in contrast to all other models,
a swelling-collapse transition at a critical attractive interac-
In previous years various models of random walR$V)  tion u.in d=2 [15]. The characteristic exponentsandk for
with memory or interaction have been stud[dd-10] in or- ~ SATW are in different universality classes for belawy
der to account for distinct features of physical, chemical, andswollen walk, atu., and abovei, (collapsed walk Above
biological systems whose complexity goes beyond what caand below criticality,» andk have been determined analyti-
be obtained from the simple random walk picture. Perhapsgally. At criticality, the exponents could only be studied nu-
the most extensive studied model is the self-avoiding walkmerically, and due to the finite-size effects close to a transi-
(SAW), where the random walker is not permitted to step ontion, there have remained open questions regarding the
already visited sites, simulating the behavior of linear poly-asymptotic behavior of SATW. A careful analysis of the
mers. Although all investigated RW models with memory simulation data and a scaling approach different from the one
are similar in the sense that they incorporate interactions beteveloped in Ref[15] is found to be necessary for a com-
tween steps, they display quite distinct asymptotic propertiegsrehensive study of the structural properties of SATW, espe-
Therefore, they belong to universality classes that are usuallyially at criticalu=u,, which is the focus of this paper. To
different from RW or SAW, though they may cross over to determine the fractal dimension of the cluster and the inter-
either RW or SAW behavior in some limits. Common prop- face generated by the walker and to give more precise results
erties for describing the behavior of a walker are the expofor the characteristic exponents, we investigate the temporal
nentsv andk, characterizing the scaling with tinteof the  development of the number of sites visited by the walker that

mean square end-to-end distance have a certain amount of already visited next nearest neigh-
2 2y bor sites. Identifying the sites belonging to the external and
(RE(1))~t (18 internal perimeter of the cluster =2, the fractal dimen-

sions of these structures are studied for attractions below, at,
and above criticality.
(S(t))~tk. (1b) The paper is organized as follows. In Sec. Il several
known RW models with interactions are summarized and
For RW the exponents are=1/2 for all dimensiondd, k  their behavior is compared. The SATW model is briefly re-
=1/2 ford=1, andk=1 ford=2 [11]. For SAW,k=1 for  viewed in Sec. lll, presenting the analytical and numerical
all d and v=3/(d+2) [12,13. A comparative study14] of  results for the mean square end-to-end distance and the av-
some of these mode]§,5,8,1Q in one dimension has shown erage number of visited sites for varying strength of attrac-
that the characteristic exponents depend crucially on the pative interaction following[15], showing the evidence for the
ticular form of the interaction between the steps. Some of thg@hase transition. In Sec. IV we investigate the structure of
important mechanisms are the range of the interaction, ththe cluster grown by the walker for different attractive inter-
presence of cumulative memory effects, and the global oactions using a new approach consisting of scaling argu-
local normalization conditions. Models with global and local ments and Monte Carlo simulations, which leads to more
normalization conditions are also referred to in the literaturdnsight into the behavior of the system at criticality. We
as static and dynamic models, respectively. study the fractal dimensions of the cluster and its interface in
Recently, one of the dynamic models without cumulatived=2 and d=3. Closed form expressions for the average
memory effects, the self-attracting random waBATW) number of visited sites and the mean time to visit a certain

and the average number of visited sites
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number of sites id=1 are given in Sec. V. Finally, in Sec. u=0 u=0.88(=u) u=25
VI we summarize our main results.

II. RW MODELS WITH INTERACTION «

N
When a self-avoiding constraint like in the SAW model is !
added to the RW, the evolution of the walk becomes heavily
dependent on the entire history of the walk, converting it into
a non-Markovian system. A bridge between ordinary RW
and non-Markovian walks can be constructed by associating
energiesk,(w) to all possible configurations of a t-step
random walk, defining an ensemble probability for %
a certain walk configuration a®,(w)=exd — 8 E(w)]/ !
> exd—BEM)], with 8=(kgT) %, wherekg is Boltz-
mann’s constant and is the absolute temperature. In the
high-temperature limit all walks become equally likely, but
at finite temperatures the ensemble probabilities of individual
paths differ. IfE,(w)<O0 for walks with many visited sites,
walks prefering to explore new terrain dominate the system.%,
whereas ifE,(w)>0 for walks with many visited sites, the !
system is governed by configurations of walks attracted to
their own path. Models based on this concept are by defini-
tion in the class of static models, for a comprehensive over-

View see Ref[11]. Qne _stralght_forward way of modelling FIG. 1. Representative example of the structures grown by
attractive and repulsive interaction between steps, known ASATW after t=212 214 and 26

: ) 5 ) \ time steps foru=0, u=0.88

the interacting walk[1], is to assign an energ(w) (=), andu=2.5 ind=2. Gray sites form the interface, black
=g S(w) to a walk configuration, wher&(w) is the num-  sjtes are completely surrounded by already visited neighbor sites.
ber of visited sites of &step RW configuration. For interac- The length scale is arbitrary chosen so that the clusters fill the size
tion parameteg=0 the simple random walk is recovered, of the box. Note that fou<u,, one can easily follow the growth
while for g<0 the walk becomes repulsive and the characprocess because of the distinctive structure of the cluster, while for
teristic exponents are=k=1 ind=1 [2,3]. Forg>0 the u=u, it is difficult to follow, since the walker keeps coming back
walk is attractive andk=1/3 and 2/3, id=1 and 2, respec- more often altering the structure. For-u. it is not possible to do
tively, as well asd/(d+2) ind=3 [1,2,11]. so as the grown clusters are compact.

In a more generalized static model including cumulative
memory effects4] the energy of a walk configuration is <d.=2. For the attractive regimg>0 it is known that in
Ei(w, @) =g2nf(s) with 0< <2, wheren(s) is the num-  d=1 the walk is always self-trapping. A special case of this
ber of times a certain sitghas been visited aftarsteps. For model is the true self-avoiding walk of Rg#B] with g<0
cumulative memory parameter=0 the previous model of anda=1.
Ref.[1] is recovered, and for=2 it is also known as the In surprising contrast to the results for all abovementioned
Domb-Joyce moddl5,6], while forg=0 or @=1 it reduces models, where the characteristic exponents are always inde-
to simple random walks. The model is repulsive o<1  pendent of the actual strength of the attraction or repulsion
andg<0 or a>1 andg>0; in the latter case Flory argu- parameteq, are the results for the SATW moddl] focused
ments givev=(a+1)/(2+ a d—d) independent of for d on here. In this model a random walker jumps with probabil-
<d.=2a/(a—1), whered, is the critical dimension. For ity P,=expln)/=2% expn) [16] to a next nearest neigh-
the attractive regime, results are only knowrdir 1, where  bor sitei, with n;=1 for already visited sites angj=0 for
for <1 andg>0 it exhibits continuous varying exponents not visited sites. Fou>0, the walk is attracted to its own
depending o with v=k=(1—a)/(3—a), while for the  trajectory, so that SATW is an extension of RET] with
other attractive branclwe>1 and g<<O it is always self- attraction parameteu=g>0 in the limit of no cumulative
trapping agR) and(S) saturate. memory effecta— 0. Note that the results of Rdf7] cannot

An approach analogous to the one above for the statipe directly applied to the SATW model as they are based on
models can be made for the less investigated dynamic modhe restrictiona>0. Some representative examples of two-
els, where the local normalization is done by assigning alimensional clusters grown by SATW for different values of
probability P; to the walker to step to the next nearest neigh-u at three distinct times of evolution are shown in Fig. 1.
bor site i during the evolution of the walk, withP;  The exponentk andv of SATW have been found to depend
=exp@nY)/22% exp@n?), a>0. Here,n; is the number of onu[9,17-19, although it was not clear for some timeuif
times the neighbor sitehas already been visited in the pre- andk decrease continuously with increasin§18,19 or if a
vioust time stepq7]. Forg=0 the simple random walk is critical valueu, exists, below, at, and above which the ex-
recovered, while fog<<O the walk is repulsive and the ex- ponents show different universal behavj@;17]. Recently,
ponentv is determined to bev=(a+1)/(2+ad) for d it was found by exhaustive computer simulations with up to
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1.0 2 for d=1 no swelling-collapse transition exists, as the walk is
koo ﬁ% -\,L collapsed for allu, and Egs(2) reveal the known valuek
23 —EEsas - =1/2 andv=1/2 for random walk id=1 [11,21] (see also
0.5 ¢ Sec. V.
v, 5. \ In the analogous static model of the interacting widlk
174 e with attractive interaction and no cumulative memory ef-
fects, a phase transition can not be observed due to the fact
0.0 I SN i
0 2 4 6 that the global normalization condition increases the weight
u of the interaction energy more than the local normalization

condition, as already observed in Rgi4] for d=1. This
versus attractiou in d=2 (open symbolsandd=3 (filled sym- can "’."S_O be seen from the asymptotic behqvio.r of the' char-
bolg for t=1CP, obtained by a least square fit of the slope of 2CLEMNStC exponerk=d/(d+2) for“the attractive mferactmg
In(R()) and () versus It for larget, respectively. Note that Walk [1,11] in comparison to the “less collapsek=d/(d
for u>u, the values ok and » approach the theoretical predictions 1), EQ.(2b), for the SATW discussed here. Therefore, a
of Egs.(2), marked as dashed lines. The estimated valueg afe  Static interacting walk with the slightest attractior-g>0
u.=0.88+0.05 ind=2 andu,=1.92+0.03 ind=3. has a qualitatively different behavior than the ordinary RW
and is collapsed. Note that in both modk&laever becomes
t=5x10° time steps that there exists a swelling-collapseindependent of the dimension, although it approaches unity
transition for SATW at a critical attraction, [15], analo- ~ from below in the large dimensionality limit.
gous to the® transition in linear p0|ymers at temperature Due to finite time effects at criticality it is not possible to
T=0 when an attraction term ekpA/T], A<0, is added to ~ determine the exponentg andk. more and more accurately
the self-avoiding constrairjt12,13. This phenomenon of a by simply increasing the numberof time steps performed
swelling-collapse transition can only occur because of a balby the walker. As long as the attraction is slightly above or
ance of the interaction energy and the configurational enbelow criticality, as it is always the case in numerical simu-
tropy of the SATW at criticality. When the energy is not of lations, the exponents will finally cross over to their expected
the order of the entropy as investigated in Réf] for o  Values respectively above and belay after some timet.

FIG. 2. The values of the exponerkgsquaresand v (circles

>0, the walk collapses for any attractior=g>0. Introducing a crossover tintg, below which the exponent
is close tov, and above whichv approaches 1/2 fou<u,
lll. SWELLING-COLLAPSE TRANSITION FOR SATW and 1/d+1) for u>u, (see Fig. 1 of Refl15]), the follow-

ing scaling theory holds:
In [15] it was shown that the characteristic exponents
andk for SATW are in different universality classes far (R(t))~t"ef . (t/t,) (33
<Ug, U=U¢, andu>u;. Aboveu, the walk collapses for

d=2, andv andk are given by with
1 t§:|u_uc|_§, (3b)
V=" (23
d+1 where the plus sign refers to>u., the minus sign ta
<u, and the exponent has to be determined numerically.
and As t; is the only relevant time scale, the scaling functions
d bridge the short time and the long time regime. To match
k= —. (2b) both regimes, it is required thdt. (x) =const forx<<1 (t
d+1 <ty) andf, (x)~xM@+D=re £ (x)~x12" " for x>1. An

analogous scaling approach holds {&(t)), and an excel-
lent data collapse can be obtained fer7+1 ind=2 and
(ﬁ= 5.0+ 0.5 ind=3 (see Fig. 3 of Ref[15]), confirming the

umerical values fop., k., andu, determined from Fig. 2.

Equations(2) follow (cf. [15]), since for sufficiently strong
attractionu>u. the grown clusters are compéaskee Fig. 1,
so the average number of visited sites scales with the ro

; — /DP2\1/2 " d _
mean square dlsplacem.e(rm)—(R )" as(S)~(R)". Com Since the mass of the cluster generated by the walker,
paring this to Eq.(1a yields k=v»d for u>u.. Also, the consisting of all visited sites, scales as
mean cluster growth rate is proportional to the ratio between '

the number of boundary sites and the total number of the (S)~(RYN”, (4)
cluster sites, (B)/dt~(R)4~Y/(R)4~t~" [17,20. Thus(S)

~t~*1. Combining these results with E€Lb), one obtains  the ratiok/» corresponds to the fractal dimensidpof the
Eqgs.(2). Below a critical interaction., the walk swells and  cluster,

the exponents are as with no interactjdd], i.e., »=1/2 and

k=1 for d=2. The above analytic arguments are in good K
agreement with numerical simulationsde- 2 andd= 3 (see df:;
Fig. 2. At u., the exponents are numerically determined to

be v.=0.40=0.01 andk.,=0.80+0.01 ford=2 as well as In d=2 the clusters are compact for allask/v=d;=d. In
v.=0.32+0.01 andk,=0.91+0.03 ford= 3 [15]. Note that d=3 they are compact far>u., while foru<u,, the frac-
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FIG. 3. The average number of cluster si¢dk(t)) havingi already visited nearest neighbor sites plotted versus the average number of
all cluster sitegS(t)) up tot=2x 10° time stepgfor u<u,in d=2 andd=3 only up tot=10° andt=3x 10’, respectively averaged over
100 configurations iml= 2 for (a) u=0.5<u, (b) u=0.88=u,, (c) u=2.5>u,, and ind=3 for (d) u=1<u, (e) u=1.92=u,, and(f)
u=4>u.. In d=2 the data for the different values bare marked by=1 (circles, i =2 (squarey i =3 (diamond$, andi=4 (pluses,
whereas ind=3, i=1 (circles, i=2 (squarey i=3 (diamond$, i =4 (upward trianglel i =5 (downward triangles andi =6 (pluses.
Note that(d) clearly differs from(a), (b), (c), and(f). The values of the slopeg determined from the data are summarized in Table II.

tal dimension of clusters generated by simple random walks d(S) - (Np) - (Np) ~ (Npg_1)
di=2<d is obtained. At the criticalityd; was found nu- TR S +P, S +- "+P2d—1T- 8
merically to bed;=2.84+0.25, but the possibility thatl
=d could not be ruled out in Refl5].

The situation = 2d is special because,4=0 as the cluster

cannot be expanded from a site where all surrounding sites

IV. THE CLUSTER AND ITS INTERFACE already belong to the cluster. Assuming that the average
AT CRITICALITY number of cluster site§\;) that havei already visited near-

o . est neighbor sites scales as
To clarify if the grown clusters inl=3 atu=u; are com-

pact or fractal and to learn more about the structure of the (Ni)~(S)™
SATW clusters and their interfaces at criticality, we consider

the following: Denoting byN;(t) the number of cluster sites With

that havel of their 2d next nearest neighbor sites belonging
to the cluster aftetrtime steps, the number of all cluster sites
S(t) is the sum of allN;(t),

O=aj=1, 9

there must be at least onér whicha; =1 to ensure that Eq.
(6) holds. In general, one can distinguish between two dif-

S(t) =Ny (t) +No(t)+ - - - + Ny g(t). (6)  ferent casesti) there exists at least oriec2d for which a,
=1 (ii) only ayq=1.
The cluster growth rate isqualto the probability to be on In case(i), the average cluster growth ratéSj/dt is

the boundary of the cluster multiplied by the conditional dominated by th&N;) for which a;=1, leading to {S)/dt
probability to expand the cluster while being on its b0Uﬂd-~F>i<Ni>/(S>=I~3i<S>ai/(S)=const. Therefore, in this case
ary. Suppose the walker is on a site that hassited next one getk=1 as(S)~t. In case(ii), when onlya,q=1, the
nearest neighbor sites. As the probability to step to a nexgluster growth rate is dominated by tkibl;) for which a;
nearest neighbor site B~exp@n), with n=1 for already =ama—=MmaxXa,,ay, ... apq_1}. This gives dS)/dt
visited sites andh=0 for unvisited sites, the probability to ~ (S)amay(S)=(S)2mac?, and hence

jump to a visited neighbor site is proportional itoexp(),

whereas the probability to jump to an unvisited neighbor site 1

is proportional to 2—i. Thus the normalized probability, k= 2—amax (10
to expand, i.e., to jump to one of thed2i unvisited next
nearest neighbor sites, is given by when compared to Eqlb). As shown below, the grown
cluster is fractal for cas@) while for case(ii) it is compact.
2d—i The above considerations also enable us to determine nu-
P=—. (7)  merically the exponenk in a way different from Ref[15],
i exp(u) +2d—i and additionally to gain more insight into the grown struc-
tures, especially in the regime atu.. Figure 3 shows that
Therefore, the average cluster growth rate is the assumption of Eq9) is clearly supported by numerical
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AP TABLE I. The exponents andk as well as the estimated values
(2) . for the transition pointu, for SATW in d=2 andd=3.
1.1 et
T P u<ug u=ug u>ug
a;
: d=2 v 12 0.40+0.01 1/3
R K 1 0.80+0.01 2/3
. < u,=0.88+0.05
0.05 0.10 0.15 020 0.25 d=3 . 12 0.303-0.005 1/4
1/In(S) k 1 0.910.01 3/4
10 [ u.=1.92+0.03
% e 4(a)], it becomes obvious that onpy=1. Thus this regime
g . u(fg% %3.?33‘;%%%%%0% belongs to caséii). Moreoyer, Fig. 4a) indicates that all
= o DDDDDDDDDDD a1,82, ..., 8241 asymptouca!ly.have the same value, so
ot mo Amax—=d=a,="--=ay4_1. As this is also found for all other
+ % regimes, in the following we will denote,=a; for all 1<i
<2d-1 in both casesi) and(ii), in distinction toa,y. The
10° L 5 . . . values of the exponents are summarized in Table Il, confirm-
10 10 10 10 10

ing the previous results for the expondrisee Table)lwhen
(s) following Eq. (10). At u=u, in d=3, k. can be determined
more precisely than in Ref15] to bek.=0.91+0.01. Note
FIG. 4. (a) The successive slopes=d In(N;)/dIn(S) of the data  that another approach to confirm our numerical resultskfor

from Fig. Je) plotted versus 1/k). A linear extrapolation of the is to plot(N;) versust in a double logarithmic plot. Denoting
points to the limit 1/18S)—0 yields our estimatea;=0.91+0.01  the resulting slopes as , we expect
for 1<i<2d and a,q=1.00+0.01, clearly revealing that this re-
gime belongs to casg@i). The data are marked as in FigeB (b) i =ka (11)
The average number of cluster sites haviirmdready visited nearest ! !
neighbors divided by the average number of all cluster sites a ke ex o
(N;(D))/{S(t)) versus(S(t)) of the data from Fig. @&). Note that as(N;)~(S)@~t*4~t*i when (_:0mb|n|ng Eqs(1b) an_d(9)._
the data foi =4 marked by pluses show a dominant behavior com-The numerical values determined fef are summarized in
pared to the data for=1 (circles, i=2 (squarel andi=3 (dia-  Table Il and are in excellent agreement with the values de-
monds, implying that the regimai<u, in d=2 belongs to case termined fora; when comparing with Eq(11).
(ii). When examining the distinction between caggand(ii),

it becomes clear that the structures grown by the walker in
results. When plotting N;) versus(S), the decision as to case(i) are fractal while the ones in casi) are compact.
which case(i) or (i) a certain regime belongs becomes ob-This can be explained by considering that in céisg the
vious from Fig. 3 for all regimes except fo=u. in d=3.  sites that do not belong to the interface dominate the growth
For u<ug in d=3 we observe casé) [see Fig. &)], as  process a®,4>4a,, leading to a compact structutee., d;
a;=1 for all i. The other regimes belong to caég [see =d). In case(i) all sites have the same contribution to the
Figs. 3a)—3(c) and 3f)] since onlya,y4=1. At u=u,in d growth of the structure due 4= a, [22]. As we found that
=3 [Fig. 3(e)], a more detailed investigation of the results isu=u, in d=3 belongs to caséi) [see Fig. 43)], the struc-
necessary. By plotting the successive slopes  ture must be compact and we can definitely conclude that in
=d In{N;)/dIn(S) of the data of Fig. &) versus 1/IS) [Fig.  this regimed; has to bed;=d=3, correcting the value 2.84

TABLE Il. The exponents; and ; for 1<i<2d andi=2d for all three regimesi<u., u=u,, and
u>u. in d=2 andd=3 from numerical simulations. The errors are of the order of 1%.uU~ou. in d
=2, most probably due to logarithmic correctid2d], it is not possible to obtain the asymptotic value of the
exponents in numerical simulations, therefore we give them in parentheses. Note that the reaufts the
regimesu<u, andu>u. are supported by combining=1/2 and Eq.(10) as well as Eqs(2b) and (10),

respectively.
u<ug u=u, u>ug
a; Kij a; Ki a; Ki
4o 1<i<2d 0.95(1) 0.90(1) 0.75 0.60 0.50 0.33
i=2d 1 0.95(1) 1 0.80 1 0.67
l<i<2d 1 1 0.91 0.83 0.67 0.50
d=3 i=2d 1 1 1 0.91 1 0.75
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TABLE lll. The fractal dimensiond; of the cluster andd, 1.7F
=a,d; of the interface grown by SATW for all three regimes (a)
<Ug, U=U., andu>u. in d=2 andd=3. Additionally ind=2 di 15! -ttt .
the fractal dimensions of the external perimeatgg and the internal
perimeterd,p are given. Ind=3 it is particularly not clear whether 131
the external or the internal perimeter dominates the interface at 0.0025 0.0050  0.0075
=U.. In case no error bars are given, the numerical results are 29 . . .
supported by analytical considerations. (b)
dy 2.7 1
u<ug u=u, u>ug 25 *tees .
d; 2 2 2 2.3 N
d, 2 1.50+0.01 1 0.02 0.04
d=2 dep 4/3 1.25+0.05 1 1/R
dip 2 1.50+0.01 1
d; 2 3 3 FIG. 5. The successive slopds=d In{I(R))/d In R of the mean
d=3 d, 2 2.73+0.03 2 mass(I(R)) of the interface inside a disk and a sphere of radus

plotted versus B for u=u, at t=3x10° and t=3x10" time
steps, respectively, averaged over 1000 configurations. A linear ex-
+0.25 obtained earlidrl5]. The latter value was calculated trapolation of the points to the limit R0 yields our estimate&)
by combining the numerical results for the exponekgs d=1.50=0.02ind=2 and(b) d,=2.72+0.04 ind=3, confirming
=0.91+0.03 andv,=0.32+0.01 following Eq.(5). From the results summarized in Table Ill, which are marked by an arrow.
the new numerical resulk.=0.91+0.01 and v.=k./d;
=k./d, we obtain the more accurate estimatg=0.303 =Uc, the structure of the interface is fractal in batk 2 and
+0.005. 3 with the values ofl;=1.50+0.01 andd,=2.73+0.03, re-
Next we focus on the interface of the grown cluster. Thespectively. The rather surprising result fiyrin d=3 can be
total interface can be divided into the external perimeterunderstood when considering that the structure of the inter-
which is usually the more interesting fraction as it constitutegace atu=u. is more compact than far<u but the cluster
the reaction front with the environment, and the internal peis not collapsed as fau>u.
rimeter, which is the boundary of the inner holes of the clus- A straightforward way to confirm the above numerical
ter [23]. First we investigate the total interface. Its mass  results ford, is to determine the fractal dimension of the
equal toN;+N,+ - - - +N,4_; and therefore scales as interface by measuring it directly on the grown clusters in-
stead of calculating it dynamically during the growth pro-
(Y~ (S)a. (12)  cess. Using the sandbox methi@], the outcome supports
Combining Egs.(4) and (5) with Eg. (12) yields (I)

the results stated above, although they are less precise due to
the fact that the information about the growth process is lost.

~(R)%, Hence the fractal dimensiaty of the interface is

simply

For the results ofl, at criticality ind=2 andd=3, see Fig.

5, showing a good agreement with the values summarized in
Table Il and clearly excluding the value df=2.84 deter-
mined in Ref.[15] for d=3, which would lead tad,=2.58
when following Eq.(13).

The values fod, according to Eq(13) are given in Table Il1. A further interesting question is which perimeter, external
Foru<u,, we recover the values for normal random walksor internal, is dominating the interface of the clusters at criti-
[11,24], d,=2 ind=2 and 3. As the fractal dimension of the cality, and what is the actual value of the nondominating
external perimeter of a random walk d&p=4/3<d, in d perimeter. Using the approach of R¢R7] to identify the
=2 [11], this suggests that the internal perimeter is dominatsitesNgp belonging to the external perimeter of a cluster in
ing the interface fou<u.. In contrast, ind=3 the external d=2, and identifying the internal perimeter sithg as the
perimeter governs the interfacdgp=2=d, [11], as three- interface sites not belonging ¥gp, We expect the average
dimensional holes are less likely than two-dimensional onesumber of external perimeter sitéNgp) to scale as

due to geometrical constraints. Far-u., we find d,=d

—1, clearly confirming the assumption that the structure of (Ngp)~(S)2eP

this regime is collapsetsee Fig. 1 It forms a compact disk

a compact sphere, respectively, with a rather smooth surfacnd the average number of internal perimeter sitég) to
and holes only in the surface layer. The clusters are similar tscale as

the clusters grown in the Eden modé&b], where each un-

d|:a|df. (13)

(143

visited next nearest neighbor site of the cluster hastiree (Nip) ~(S)*P. (14b
probability to be occupied at the given time step. It remains

an open question whether these clusters are in the same ufiiollowing the reasoning leading to E@.3) yields
versality class as one has to check if the surfaceufoiu,

resembles the self-affine surface of the Eden clusteru At dep=agpds (153
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FIG. 6. The successive slopegpr=d In(Ngp)/d In(S) plotted
versus 1/IKS) averaged over 500 configurations far=0.5<u,
(diamond$ up to t=10" time steps, foru=u, (square} up to t
=10 time steps, and fon=2.5>u, (circles up tot=2x10° time
steps ind=2. A linear extrapolation of the points to the limit
1/In{S)—0 yields our estimateagp=0.68+0.02 and 0.5 0.02 for
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that dgp for u<<u. is definitely smaller thardgp at u=u,
reinforces that at criticality the SATW model is in a new
universality class. Fou>u. one might expect that the inter-
face is dominated by the external perimeter due to the col-
lapsed structure of the cluster. However, we find that the
internal and the external perimeter contribute equally to the
interface,d,p=dgp=1=d, [see Fig. T)].

In d=3, the fractal dimension of the external perimeter is
dgp=2=d, for u<u., supposing thatlzp follows the ran-
dom walk resulf11] like all other characteristic values de-
termined for the SATW in this regime. Unfortunately it is
not possible to determindgp or dp in d=3 numerically
using the algorithm of27] to check which one, the external
or the internal perimeter, governs the behaviougtand to
decide whether the external perimeter dominates the inter-
face foru>u; i.e., dgp=d;>d;p or if dgp=d,=dp in this

below and abovel, respectively, confirming the results summa- regime. The values fodgp and d,p according to the above

rized in Table Ill, which are marked by an arrow. At, agp is
clearly smaller than for belowi.

and

dip=aypd; . (150

considerations are given in Table III.

V. SATW IN ONE DIMENSION

As we mentioned above, id=1 there is no swelling-
collapse transition as the walk is collapsed for @llThe

The results fomgp (see Fig. Brecover the expected behavior €xponentsk and v arek=1/2 andy=1/2[11,21] in accor-

of dgp=4/3 for u<u, and indicate that at criticalitglgp is
clearly smaller than for below,, although it is difficult to
determine the precise value @fp from this plot. Thus, ati,
the interface is dominated by the internal perimeteidas
<d,. This is confirmed by the results fa at criticality,
where the expected value dfp=d,=1.5 is recovered, al-
though with unsatisfactory precisi¢28]. Using the sandbox

dance with Egs(2). Following the considerations leading to
Eq. (10), the probability of the walker to be on the boundary
of a SATW cluster i(N1)/(S)=2/S), therefore SATW in
d=1 belongs to cas€ii), since a;=an,=a=0 anda,q
=1. Thus,k=1/(2—ay)=1/2 as expected from analytical
results[21]. Note that, based on E¢B), one can derivéal-
though not rigorouslya closed form expression fo8(t)) in

method[26] to measure the fractal dimension of the perim-d=1, extending the results of R€f21]. Since ind=1 the

eter directly, the results suppatf-=1.5 more precisely and
we find dgp=1.25+0.05 foru=u, [see Fig. 7a)]. The fact

d 1.6 F e ® et ° . hd ®
1P — F ot .o.

1.4

dEp [ Ll IR "
1.2 (a) 1

0.001 0.002 0.003

1.2

dEP 1.0« -..Qllll s g : -

dip
0.8 (b)

0.005 0.010 0.015
1/R

FIG. 7. The successive slopes fdgp=d In(Ngp)/d INR and
dip=dIn(N;p)/d In R of the mean mas&\gp and(N;) of the ex-
ternal and internal perimeter, respectively, plotted versR<dr (a)
u=u, at t=10° time steps andb) u=2.5>u, at t=2x10 time
steps averaged over 500 configurationglin2. A linear extrapo-
lation of the points to the limit R—0 yields our estimatesa)
d,p=1.48+0.05 (circles and (b) dgp=1.02+0.03 (squarey and
d;p=1.01=0.03 (circles, confirming the results summarized in
Table IIl, which are marked by an arrow. At., dgp (Squaresis
determined to belgp=1.25+0.05.

conditional probability to expand the cluster while being on a
perimeter site i, =1[exp@)+1] [cf. Eq.(7)] andN,=2,
we obtain

sy 1 2
dt  expu)+1 (S(1))’

(16)

yielding

12

2t
<S(t)>=(m (17)

This result is strongly supported by numerical simulations
(see Fig. 8.

In d=1 it is also possible to solve the inverse problem of
deriving the average tim&(S)) to visit a fixed number of
visited sitesS,

@(9)=s—1+ 2 AEDATPY
2P,

For asymptotically largeS, Eq. (18) yields (t(S))~S?, re-
covering the expected scaling with=1/2. To derive Eqg.
(18) we use the standard approach to RWdirn 1 (see, for
instance, Ref[29]): The number of sitesS visited by a
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10 length of one excursion. More rigorously, we expregs in
terms of conditional averages as follows:
107
. I
5 <xi>=<1+2 (T,-+1)>
AT =1
> "
, =1+, <2 (7,+1) ,u=m>P(,u=m). (22)
107 s 7 7 PG m=1 1=t
10 10 10 10 10
t/lexp(u) +1]

The variablesr; are independent identically distributed ran-

FIG. 8. Th ber of visited si{&t)) in d=1 fi )
e average number of visited sit&t)) in or dom variables, therefore

different values ofu, u=2 (circles, u=4 (squarey u=6 (dia-
mondsg, andu=9 (triangles, plotted versus time scaled by[1
+exp)]~* shows a good data collapse in agreement with(EE@).
(solid line). The plateau for smatlcorresponds to the average time
[equal to Hexp()] needed for the walker to escape the initial (xi)=1+ 2—1 m<7'j +1)P(p=m)
cluster of size 2. m=

[

o

walker ind=1 is equal to the span of the random walk. The =1+(i—2) > mPy(1-P)™
time t(S) passed before the span reacl@&san be repre- m=1
sented as the sum . ~
(i—2)(1-Py)
=1+ —— (23
Py

S
t(S)= 22 Xi (19)

with x;=t(i)—t(i— 1) being the time spent before the spanBY combining Eqs(20) and(23) one obtains Eq(18).
increases from—1 toi, given that the walker is initially at

the boundary. Thus, the mean tigi¢S)) to visit Ssites can
be calculated as VI. CONCLUDING REMARKS

s In contrast to all other known random walk models with
(t(S))=2 {xi) (20) interaction, the SATW model exhibits a swelling-collapse
=2 transition at a critical attraction, in d=2. The transition is

) ) similar to the swelling-collapse transition observed at the
with t(1)=0 andt(2)=1. Let us consider the nature of the « g point,” T=O of SAW with an attraction term

variabley; in some detail. When at the boundary, the Walkerexp{—A/T], A<0 [12,13. It can only arise because the at-

increases the span with the probability of sucdegsWith  tractive interaction energy is of the same order as the con-
probability 1-P, the walker stays inside the cluster and figurational entropy ind=2. Below u. the entropy domi-
undertakes an excursion until it hits the boundary againnates and the walk is in the universality class of simple RW,
which presents him with another Opportunity to increase th%boveuc the energy governs the behavior and the walk col-
span. We introduce the random variable which is the |apses. At,, both contributions balance each other, leading
number of unsuccessful attempts before the span is ing 5 new universality class. ld=1, due to a small number
creased. In other wordg, is the number of excursions into o hossible configurations caused by the geometrical con-
the cluster, and with probabilitP,(1—-P;)™, m=0, n is  straints, the walk is always collapsed, even without interac-
equal tom. Now we can decompose thg as tion u=0.

Analyzing the structure of the cluster grown by SATW in
detail, we determined the fractal dimension of the cluster and
its interface. Ind= 2, the cluster is always compact while the
interface has a fractal dimensidp=2 and 1.56 0.01 below
wherer; is the length of thgth excursion, and 1 is added to and atu., respectively, dominated by the internal perimeter.
account for the jump from the boundary into the cluster be-Aboveu,, we foundd,=d;p=dgp=1. The fractal dimension
fore the excursion started. The random variablecan be of the external perimeter at;, degp=1.25+0.05, is smaller
viewed as the time a random walker, starting at site 1 withthan belowu,, dgp=4/3, demonstrating once more the uni-
the boundaries at 0 arid-2, needs to reach a boundary. Its versality class at criticality. Ird=3 the cluster is compact
mean is known to bér;)=i—3[29]. The mean of; is just  for u=u,, while for u<u, the fractal dimension isl;=2.
the average number of excursions multiplied by the averagProbably the most unexpected result is thatdis3 the

"
Xi=1+21(7j+1), (22)
=
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interface has a fractal dimensiodp=2 above and below,, simulate because of the attrition of the walkers when step-
whereas at criticality it increases tp=2.73+0.03. This ap-  ping into their own dead ends.

pealing structure ai. is of interest on its own regarding that
many challenging problems in physics, chemistry, and biol-
ogy are associated with growth patterns in clusters and so-
lidification fronts. The results for the fractal dimensions of Financial support from the German-lsraeli Foundation
the perimeters could also be helpful when investigating th€GIF), the Minerva Center for Mesoscopics, Fractals, and
structure of the cluster grown by SAW at the correspondingNeural Networks, and the Deutsche Forschungsgemeinschaft
transition, where sufficiently large clusters are difficult to is gratefully acknowledged.
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