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Intermediate Wave Function Statistics
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We calculate statistical properties of the eigenfunctions of two quantum systems that exhibit
intermediate spectral statistics: star graphs and Šeba billiards. First, we show that these eigenfunctions
are not quantum ergodic, and calculate the corresponding limit distribution. Second, we find that they
can be strongly scarred, in the case of star graphs by short (unstable) periodic orbits and, in the case of
Šeba billiards, by certain families of orbits. We construct sequences of states which have such a limit.
Our results are illustrated by numerical computations.
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FIG. 1. Comparing P�R�, as given by (8), to a direct numeri-

the methods of [6]). cal computation for a star graph with 90 bonds when � � 3.
It has been conjectured that the quantum spectral
statistics of systems that are chaotic in the semiclassical
limit are generically those of random matrix theory [1].
The behavior of the eigenfunctions of such systems is
described by the semiclassical eigenfunction hypothesis
[2,3], which implies that they equidistribute over the
appropriate energy shell. This is in agreement with a
theorem of Schnirelman [4], which implies equidistribu-
tion of almost all eigenstates on scales independent of �h,
assuming only classical ergodicity. Such behavior is
termed quantum ergodicity. This theorem still permits
the possibility of a small number of states which do not
equidistribute.

It has been suggested that some of these exceptional
states may be ‘‘scarred’’ by short classical periodic orbits
[5]. Further investigations [6–11] have distinguished be-
tween weak and strong scarring. Weak scarring relates to
states averaged over energy windows that contain a semi-
classically increasing number of levels, whereas strong
scarring means that sequences of states can be con-
structed whose limit is wholly or in part supported by
one or more periodic orbits. Thus far the only systems
known rigorously to support strong scarring are the cat
maps [12], which have nongeneric spectral statistics [13].

For systems that are classically integrable, it is ex-
pected that the quantum spectral statistics are Poisson-
ian, i.e., those of independent random numbers [14]. The
corresponding eigenfunctions semiclassically equidistri-
bute on tori in phase space [15].

Recently, classes of systems which exhibit spectral
statistics that are intermediate between random matrix
and Poissonian have been discovered [16–18]. Two repre-
sentative families of examples are Šeba billiards [19] and
star graphs [20]. It was shown in [21] that these two
systems have the same (intermediate) spectral statistics.
We study the eigenfunction statistics of such systems.
Specifically, given that these systems are not classically
ergodic, we are interested in whether the eigenfunctions
are quantum ergodic and whether they show strong scar-
ring (that they exhibit weak scarring may be shown using
0031-9007=03=91(13)=134103(4)$20.00 
Star graphs are quantum graphs [22] that have one
central vertex, and b outlying vertices each connected
only to the central vertex [20]. For such graphs, the limit
b! 1 is analogous to the semiclassical limit. To inves-
tigate the possibility of quantum ergodicity in this limit,
we consider a graph with b � �v bonds, where v� 1,
� > 1, and introduce the observable B defined by

B �

�
1 on bonds indexed 1; . . . ; v;

0 on bonds indexed v� 1; . . . ; b:

Thus B picks out a fraction ��1 of the bonds. Let  n
denote the wave function associated with the nth eigen-
state. We calculate the probability distribution P�R� for n
chosen at random, that h njBj ni is less than R, subject to
some mild restrictions on the bond lengths. A system that
exhibits quantum ergodicity would have

P�R� �

(
0; 0 � R< ��1;

1; ��1 � R � 1:

Our result [see Eq. (8) and Fig. 1] differs from this,
proving that star graphs are not quantum ergodic. In
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fact, we are able to say more: For a fixed (finite) number of
bonds, we explicitly find eigenstates that are strongly
scarred along closed (unstable) orbits of the graph with
period 2. This is the first class of examples showing
generic (in this case intermediate) behavior in which
strong scarring has been rigorously demonstrated.

The term Šeba billiard refers to any integrable quan-
tum system that has been perturbed by the addition of a
point singularity. We consider the specific example of a
billiard on a torus. By exploiting the connection between
Šeba billiards and star graphs [21] we argue that Šeba
billiards are also not quantum ergodic and find states that
appear to show behavior analogous to strong scarring, in
this case by families of orbits.

We begin by describing how to calculate the probability
distribution P�R�.

Eigenenergies of a star graph with b bonds are given by
En � k2n, where kn is the nth solution of Z�k� � 0 with

Z�k� �
Xb
j�1

tankLj; (1)

the individual bond lengths being denoted by L1; . . . ; Lb.
The component of the nth wave function on the ith bond
134103-2
of the graph is  n;i�x� � Ai�kn� coskn�x� Li�, where

Ai�kn� �

���
2

p

cosknLi�
P
j
Ljsec

2knLj�
1=2
; (2)

the sum being taken over all bonds. Then

h njBj ni �

P
v
i�1 Lisec

2knLiP
b
j�1 Ljsec

2knLj
�O�k�1

n �: (3)

To calculate the distribution of values taken by this
quantity we average over a large number of states, making
the error term in (3) negligible. We choose incommensu-
rate bond lengths from an interval � �LL; �LL� �L� that
shrinks in such a way that v�L! 0 as v! 1. Thus
we can replace Li by �LL wherever it does not multiply kn.

To evaluate a function f�k� at the zeros of Z�k� we
integrate against the density of states, so

1

N

XN
n�1

f�kn� �
1

N

Z kN

0
f�k�Z0�k���Z�k��dk;

where � denotes the Dirac delta function. Writing the
delta function in Fourier representation, ��x� �
�2���1

R
1
�1 e

i�xd� , and taking the limit N ! 1,
lim
N!1

1

N

XN
n�1

f�kn� �
1

2� �dd
lim
K!1

1

K

Z K

0

Z 1

�1
f�k�Z0�k� exp�i�Z�k��d�dk; (4)
writingK � kN and using kN � N= �dd, where �dd � b �LL=� is
the mean density of states. We apply (4) with f�k� �
exp�i X"�k��, where

X"�k� �
1

v2
Xb

j�v�1

sec2kLj �
"

v2
Xv
i�1

sec2kLi (5)

for  ;" constants. This is related to the distribution of
h njBj ni by the fact that

P�X"�kn� > 0� � P�h njBj ni<R�

when R and " are related by " � 1=R� 1.
We observe that whenever k appears in (4) it is multi-

plied by a bond length, and is an argument of a�-periodic
function. Since the bond lengths are incommensurate, the
k integral can be rewritten as a multiple integral over the
b variables xj � kLj. A similar argument was used in
[23,24]. The integrand then factorizes, so that

lim
N!1

1

N

XN
n�1

f�kn� �
1

2�v

Z 1

�1
I1Iv�1

2 I�v�v3

� ��� 1�I4I
v
2 I
�v�v�1
3 d�; (6)

where

I1 �
1

�

Z �

0
sec2x exp

�
i�
v
tanx�

i "

v2
sec2x

	
dx;

I2 �
1

�

Z �

0
exp

�
i�
v
tanx�

i "

v2
sec2x

	
dx;
I3 is obtained by replacing  with � =" in I2, and I4 by
making the same substitution in I1. Techniques to analyze
the asymptotics of these integrals were discussed in [24].
Using them we find that

I1 �
v�������������
�i "

p exp

�
i�2

4 "

	
;

and

Iv2 � exp



�

2����
�

p
���������
i "

p
exp

�
i�2

4 "

	
��erf

�
�

2
���������
i "

p

	�
;

as v! 1. Substituting the above into (6) and denoting
the result e� �, we arrive at

e� � �
1

2�

Z 1

�1

1����
 

p T
�
�����
 

p

	
exp



�

����
 

p
%
�
�����
 

p

	�
d�;

where

T�&� �
1���������
i�"

p exp

�
i&2

4"

	
�
��� 1�����������
�i�

p exp

�
�
i&2

4

	

and

%�&� �
2����
�

p
������
i"

p
exp

�
i&2

4"

	
�&erf

�
&

2
������
i"

p

	
�
2��� 1�������

i�
p

� exp

�
�
i&2

4

	
�&��� 1�erf

�
ei�=4&

2

	
:

The Fourier transform of e� � is the probability density
134103-2
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function of X"�kn� where the index of the state n is chosen
at random. The probability distribution for h njBj ni to
be less than R is then given by

P�R� �
1

2�

Z 1

0

Z 1

�1
e� �e�i 'd d'

"�1=R�1
: (7)

The Fourier transform of e� � is

�1

2��
Re

Z 1

�1
T�&�

����
�

p
%�&�

2�i'�3=2
w
�
�%�&�

2
����������
�i'

p

	
d&;

having made the substitution & � �=
����
 

p
and using the

notationw�z� � e�z
2
erfc��iz�. Performing the' integral

in (7) gives, finally,

P�R� �
1

2
�

1

��
Im

Z 1

�1
T�&� log�%�&��d&; (8)

with " � 1=R� 1, for 0<R< 1.
The results of numerical computations which support

this calculation are shown in Figs. 1 and 2.
We now turn to constructing sequences of eigenstates

on star graphs, when b is fixed, that are strongly scarred
by certain short periodic orbits. (Note that on such graphs
all orbits are unstable.) Our construction exploits the
properties of the spectral determinant (1). The spectral
determinant has poles at the points

P �
[b
i�1

Pi �
[b
i�1

�
�=2� �n

Li
:n 2 Z

�

(i.e., P is the union of the sets Pi). Since the derivative of
Z�k� is everywhere greater than zero, there is exactly one
root of Z�k� � 0 between every two consecutive poles.

Given a small * > 0, which will control the quality of
the scarred eigenstate, we can find a pole p1 in the set P1

satisfying the following properties: (a) there is a pole p2

from P2 within a distance * of p1 and (b) p1 is approxi-
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

FIG. 2. Difference between P�R� and numerics when b � 15
(+), 30 (�), 45 (*), 60 (square with dot), 75 (�), and 90 (circle
with dot).

134103-3
mately equidistant from the two nearest poles from Pi, for
each i > 2. Because of the ergodic properties of the
sequence P (assuming that the bond lengths Li are in-
commensurate), the above situation occurs with nonzero
frequency along the k axis.

Denote the root squeezed between p1 and p2 by k0.
Then cosk0Li is of the order of * when i � 1; 2 and is of
the order of 1 otherwise. Going back to the eigenstate
formula (2), we see that

A1;2�k
0�

Ai�k
0�

� O�*�1� for i > 2;

that is, the amplitude of the k0 eigenstate on the bonds 1
and 2 is *�1 times stronger than on any other bond.
By selecting suitably small * one can find eigenstates
localized on any two given bonds to any precision.
Understandably, higher precision leads to a smaller fre-
quency of the scarred eigenstates. In fact, the frequency is
proportional to *.

Since Z�k0� � 0 it follows that A1�k0� � A2�k0� which
provides an explanation for the visible singularity at R �
1=2 in the difference between P�R� for finite b and its
limiting form (see Fig. 2). This singularity corresponds to
the eigenstates localized on bonds e and e0 such that e is
picked out by the observable B and e0 is not.

The above construction can be generalized to produce
eigenstates localized on any number j � 2 of bonds.
However, once j > 2, the amplitudes on the j bonds are
generally not equal, which explains the lack of singulari-
ties at rational fractions other than 1=2. Finally, the
singularities at R � 0 and 1 correspond to the cases
when the eigenstates are localized fully outside (R � 0)
or inside (R � 1) the v bonds picked out by B.

The preceding calculations can be made rigorous. We
defer the details to [25].

In [24] it was suggested that the squares of the coef-
ficients, c2i , of the eigenfunctions of Šeba billiards ex-
pressed in the basis of states of the unperturbed billiard

j i �
X
i

cij 
�0�
i i (9)

are distributed in the same way as the square of the
maximum norm on a single bond of a star graph in the
limit as v! 1. This conjecture was supported by nu-
merical evidence. We extend this analogy to interpret the
above results in terms of the Šeba billiard. Since the
quantity in (3) is similar to a sum of norms of eigenfunc-
tions on a fraction of bonds, we conjecture that the sum of
the squares of a fraction ��1 of the coefficients has
probability distribution P�R�. To elucidate this idea, con-
sider preparing a Šeba-type system in a randomly chosen
eigenstate. The perturbation is then removed instantane-
ously, and a measurement of the energy is made. What is
the distribution (with respect to the choice of initial state)
of the probability that the measured energy is one of a
given fraction ��1 of the energy levels of the unperturbed
system? The answer is the distribution function in (8). If
134103-3



FIG. 3 (color online). The wave density of the 55th eigen-
function of the Šeba billiard, in position (left) and momentum
(right) space. Intensity plots are shown below the three-
dimensional plots; greater probability density is encoded as
darker points. In this example - � �

���
5

p
� 1�=2.
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the eigenfunctions of the billiard were asymptotically
equidistributed this probability distribution would be a
unit step function at R � 1=�.

Energy levels of a Šeba billiard interlace with energy
levels of the original unperturbed system in much the
same way that momenta of star graphs interlace with
poles of the function Z�k�. We consider a Neumann bil-
liard in a rectangle with aspect ratio -1=2, perturbed by a
point singularity at the origin. Eigenstates of this system
can be expanded as

j n�x�i � An
X
i;j

j �0�
i;j �x�i

E�0�
i;j � En

; (10)

where An is a normalization constant, the energy levels of
the Neumann billiard are E�0�

i;j � 4�2-�1=2�i2 � -j2�, and
j �0�

i;j i are the corresponding eigenfunctions. It is well
known that these unperturbed eigenfunctions are local-
ized in momentum space. We therefore expect to find
states of the Šeba billiard that exhibit structures analo-
gous to scars in momentum space when their energy is
between two closely spaced levels of the unperturbed
billiard. In fact such states will scar in two directions
in momentum space, corresponding to the two unper-
turbed eigenstates closest in energy to the state in ques-
tion. These scars are supported by families of orbits
134103-4
corresponding to tori in the unperturbed system. Note
however that torus quantization itself does not apply. It is
in this sense that the structures are analogous to scars.

Figure 3 shows the 55th state of the Šeba billiard
described above, with the scatterer placed at the origin.
Although there is no clear localization evident in position
representation, the momentum representation clearly
shows localization in two directions.
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