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We study the number of periodic solutions in two first-order non-autonomous differential
equations, both of which have been used to describe, among other things, the mean
magnetization of an Ising magnet in a time-varying external magnetic field. When the
amplitude of the external field is increased, the set of periodic solutions undergoes a
bifurcation in both equations. We prove that despite superficial similarities between the
equations, the character of the bifurcation can be very different. This results in a
different number of coexisting stable periodic solutions in the vicinity of the bifurcation.
As a consequence, in one of the models, the Suzuki-Kubo equation, one can effect a
discontinuous change in magnetization by adiabatically varying the amplitude of the
magnetic field.
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1. Introduction

In many lattice models, the mean field approximation leads to ordinary
differential equations with periodically time-dependent right-hand side. For
example, the Curie-Weiss model with Glauber spin dynamics in the
thermodynamic limit leads to the so-called Suzuki-Kubo equation (see the
derivation in Berglund (1998, ch. 3) or in Rao et al. (1990), Suzuki & Kubo
(1968), and a numerical study in Acharyya & Chakrabarti (1994)).

The Suzuki-Kubo equation is

dm ~

€3 =™ + tanh[B(m + h cos(277))], (1.1)
where m is the average magnetization of a sample, € is the relaxation time, h is
the amplitude of the applied magnetic field, and 8 is 1/kT, with T the absolute
temperature.

A seemingly similar first-order non-autonomous equation,

e% = az + bz’ + hcos(2wt), a,bER, (1.2)
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has been used as a simple generic model for switchable bistable systems. If >0
and <0, it describes the overdamped dynamics of a particle in a quadratic
potential with periodic forcing. Such equations have been studied in the context
of laser optics (longitudinal mode instabilities in a semiconductor laser); see Hohl
et al. (1995) and Jung et al. (1991) for analysis and references to the optics
literature.

The issue we want to address is the number of 1-periodic solutions for various
values of h and other parameters. In particular, we will use h as the bifurcation
parameter. This issue is of physical importance, since one wants to determine
whether it is possible, say, in the Suzuki—-Kubo context, to effect a discontinuous
change in magnetization by continuously varying the amplitude of the applied
magnetic field h (i.e. a first-order phase transition).

To compare the two equations effectively, we rescale the variables in (1.1) in
the following way: set, in sequence,

- ~ 1 1
z=m+hcos(2n7), h=hV1+4n’&, t=r1 +2—arccos<—>.

™ V1 + 4n%e
(1.3)
Then, in the new variables we have
d
¢S2 =1 + tanh Bz + h cos(2mt). (1.4)

dt

Comparing the two equations, we see that the Taylor series expansion of
—x+ tanh fz is
3
—z + tanh Bz = (8 — 1)x—%x3 + 0(z"). (1.5)
Hence, superficially, it looks that the behaviour of solutions of (1.4) should be
similar to that of (1.2) with a=8—1 and b= —g> In fact, this is the implicit
assumption in much of the physical literature. This assumption is incorrect. It
turns out that for certain values of 8 and h equation (1.4) has five periodic
solutions, a situation which is impossible for equation (1.2). The numerical
simulations confirming this were reported for example, by Berglund (1998, ch. 7).
Here, we aim to establish this fact analytically.
The structure of the paper is as follows. After collecting preliminaries below, in
§3 we perform the Lyapunov—Schmidt reduction of the general equation,

e% = f(z) + h cos(2mt), (1.6)

assuming that fis a sufficiently smooth odd function (a property shared by both
(1.2) and (1.4)). The reduction is greatly complicated by the fact that we do not
know the bifurcating solution explicitly.

In §4, we use the results of the reduction to conclude that for small @
behaviour of (1.4) is similar to that of (1.2). Then, we consider the case of large 8
in (1.4) by explicitly examining the case of = . The limiting equation is in fact
a differential inclusion which we analyse explicitly, finding the range of h for
which five solutions co-exist. Appealing to a continuation theorem (Aubin &
Cellina 1984), we conclude that such behaviour persists for large finite values of §
as well.
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Multiplicity of periodic solutions 1003

Figure 1. The picture of the (stable) hysteresis loop for large h. In this case, we take f(z) =z —a3,

€=0.05 and h=2.0.

Whenever we sketch the solutions of the equation, we do it in (z,h cos(27t))
plane, i.e. we plot the curve (z(t),y(t)), where

{ ei = f(x) =y,

y = —h cos(2nt). .7

This makes it easier to identify periodic solutions (they are closed curves) and
produces familiar hysteresis loop pictures for large h, figure 1. In our numerics,
we take € of the order of 0.05 which ‘slows down’ the time and results in nicer
plots.

2. Background information

The examples of function f(z) that we are going to consider here, f(z)=tanh fz—z,
8>1 and f(z)=yz—2*, y>0 share many important properties. Both are odd
functions and the equation f(z)=0 has exactly three solutions. If we consider
equation (1.6) for h=0, there will correspondingly be three stationary solutions.
The central stationary solution z(t)=0 will be unstable and the other two are
locally asymptotically stable.

It follows from the implicit function theorem that for small A, there will be
three periodic solutions, two stable and one unstable. Below, we show that this
situation persists at least until ho=max,~ f(z). We will also show that for large
h, there is only one, stable, solution. The main aim of this paper is to clarify the
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(a) (b)

Figure 2. Two possible minimal scenarios of the emergence of a single periodic solution. Stable
solutions are represented by solid lines, unstable are represented by dashed lines. In scenario (a),
three solutions merge in a subcritical pitchfork bifurcation. In scenario (b), the central solution first
undergoes a supercritical pitchfork bifurcation, emitting two unstable solutions. These unstable
solutions disappear in fold bifurcations upon meeting the stable solutions.

bifurcation picture as h is increased. The simplest scenario, where three solutions
can merge into one, is a subcritical pitchfork as shown in figure 2a. There, for
simplicity, we sketch the mean of periodic solutions, Z= fol z(t)dt, versus h.

Contrary to the above expectations, numerical investigations of the Suzuki—
Kubo equation (1.4) performed by Tomé & de Oliveira (1990) show that for large
values of @, there is an interval in A in which the equation has three stable
periodic solutions (and therefore five periodic solutions altogether). The
bifurcation diagram would then look like figure 2b. For small values of @,
Tomé & de Oliveira (1990) reported two stable periodic solutions at most, a
situation compatible with figure 2a. The critical value of f at which the
bifurcation picture changes is referred to as the tricritical point (TCP).

The existence of the TCP was confirmed by Acharyya & Chakrabarti (1994)
(see also Berglund (1998, ch. 3)) but disputed by Zimmer (1993) (see also Korniss
et al. (2002)), who studied equation (1.2) numerically and reported that,
although the stable non-symmetric solution changed fast in the vicinity of
bifurcation, it was not disappearing in a ‘blue-sky catastrophe’ as in figure 2b.

Our investigation concludes that, from a mathematical point of view, both
results are correct: there are at most three solutions in (1.2) and there is a TCP
in equation (1.4).

When looking for periodic solutions, it is convenient to think in terms of the
Poincaré map. The map establishes a correspondence between z, € R and the value
at t=1 of the solution z(-) of (1.6), which satisfies z(0) = z,. For both functions f(z),
the Poincaré map is a continuous function defined on the whole of R. The periodic
solutions of (1.6) correspond to the fixed points of the Poincaré map and, most
importantly, stability properties are preserved by this correspondence.

(a) Periodic solutions for small h

Theorem 2.1. Let f(x) be a continuously differentiable function satisfying
fl(z)<0, z€(a,b) and f(a)>0> f(b). (2.1)
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Multiplicity of periodic solutions 1005

Put hg=min(f(a),—f(b)). Then for any h<hg, there is a unique periodic solution
to equation (1.6) satisfying z(t) € (a,b) for all t. This solution is stable.

Proof. Theidea of the proofis to show that the interval (a,b) is a trapping region:
any solution that enters it must stay there. Therefore, (a,b) is invariant under the
action of the Poincaré map. Then, we can appeal to the Brouwer fixed point theorem
to infer that there is a fixed point inside this interval, corresponding to a periodic
solution. Analysing stability of the periodic solutions in the trapping region, we find
that any periodic solution in the region must be stable. But the Poincaré map,
which is continuous, cannot have more than one stable fixed point without having
some unstable ones. Therefore, the solution we have found is unique.

For any ¢, z(t)=a implies ex'(t) = f(a) + h cos(2mt) > hy—h> 0, so that any
solution to the right of ¢ will remain there. Similarly, solutions to the left of b will
never increase past b. Thus, (a,b) is a trapping region and there is at least one
periodic solution.

Linearizing equation (1.6) around a periodic solution zy(#) shows that it will be
stable if

=l J O (3o(s))ds (2.2)

€ Jo Oz

is negative. But since f'(z) <0 for all z& (a,b), every periodic solution is stable. ll

Corollary 2.2. Let z,, be such that f(z,,) =max,q f(z), where f(x) is either
tanh Bz— z or ya—2°. Then for h<f(z,,), equation (1.6) has exactly three periodic
solutions, one in each of the intervals (— ©,—z,,), (—x,,z,) and (z,,,©). The
solution in the interval (— x,,,,,) is unstable and the other two are stable.

Proof. The statement is a direct consequence of theorem 2.1. Indeed, starting
with the interval (z,, %), we apply theorem 2.1 with a=z,, and b=y (where y is
large enough to ensure f(y) <0) to conclude there is a unique periodic solution in
the interval (x,,y). Since y was arbitrarily large, the uniqueness extends to
(T,0).

The case of the interval (— o, —u1,,) is completely analogous. For the middle
interval (—z,,,z,,), we reverse the time ¢+ —t, which results in the change
f(z) = —f(z) and apply theorem 2.1 with a= —z,, and b=z, [ |

(b) Uniqueness of periodic solution for large h

For large h, we have the following general theorem, which, in particular, is
valid for both functions f(z) that are of interest to us.

Theorem 2.3. Let f(x) be a continuous almost everywhere differentiable
function. If its derivative satisfies

fl(z)<a<0, for|z|>zy and f'(x)<7y, forallw, (2.3)

for some a, v and xy, then, for sufficiently large h, equation (1.6) has a unique
stable periodic solution.

Proof. We shall prove the theorem for e=1, since taking any other value of €
results only in a trivial rescaling of the function f and constants a and .
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—hcos 2mt)

Figure 3. Sketch of an orbit crossing [—z,z0] and the three regions dividing the strip.

Existence. Property (2.3) implies that f(z) —F © eventually monotonically
as £— £ o. This means, in particular, that the equations f(z)=h and f(z)=—h
have exactly one solution each for sufficiently large h. Denoting these solutions
by z,— and 4, we notice that the interval [zj,_,z;,+] is trapping for the
trajectories of (1.6). Hence, there must be at least one periodic solution.

Uniqueness. We will prove stability of every periodic solution which will imply
that there can be at most one (see the proof of theorem 2.1 for more
explanations). Let #(¢) be a periodic solution, which is stable if A, defined by
equation (2.2), is negative. Denoting the time spent by the solution inside
[— Z0,Z0] by t4, we can estimate A by

We aim to show that the time ¢, satisfies ¢, —0 as h— o« and hence, A <0.
To do that, we define three regions in the plane (x,hcos(27t)), which add up to
the strip |z| <z, see figure 3. Region A is defined by |h cos(27t)| < yy; region B,
by —h cos(2mt) < yy; and region B’, by —h cos(2nt) > y,. For now, we leave the
choice of 7, open.
From the definition of region A, the time spent by the solution in A is at most

1
th = Q%arcsin<%>. (2.5)
Let M be the maximum of |f(z)| on [—zg,xo). If the solution is in B or B’, then
|7’ (¢)| > |h cos(2mt)| —|f(z)| > yy — M. Therefore, the time spent by the solution
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in B or B’ during one visit is at most

2%0
ty = . (2.6)
b yo—M

It is easy to see that a periodic solution can visit B at most once during one
period. Indeed, by definition of B, a solution can be there only while
—h cos(2nwt) < yy. There is only one such interval of ¢ during one period. To
visit B more than once during one period the solution must leave and then
re-enter B, while —h cos(2wt) remains above y,. The solution then must leave
through the left boundary of B, see figure 3, and therefore it must re-enter
through the left boundary too. But the derivative 2/(f) on the left boundary of B
is negative, making the re-entry impossible.

The same applies to region B'. Thus, we conclude that the total time spent in
the strip |z| <z is

1 4
ty < p arcsin (y_h0> + m fOM . (2.7)
Now, if we take y, to be equal, for example, to v/h, the right-hand side will tend
to zero as h— «. [ ]

(¢) Ezistence of symmetric solution when fis an odd function

In this section, we assume that function f(y) in equation (1.6) is odd. It
immediately follows that if z(¢) is a solution of (1.6), then so is Z(t) = —xz(t+ 1/2).
We aim to show that there is always a ‘symmetric solution’ that satisfies
x(t)=—uz(t+ 1/2) (and is therefore periodic).

Theorem 2.4. Let f be a continuously differentiable odd function. Then for all h
equation (1.6) has a solution x(t) satisfying x(t)=—xz(t+ 1/2).

Proof. First of all, if a solution z(¢) satisfies z(ty) + x(ty + 1/2) = 0 for some ty
then z(ty) = Z(ty) and by uniqueness theorem for ODEs z(t) = Z(¢) for all t. Now
assume that z(¢) + z(¢ + 1/2) retains the same sign for all £. Then Z(¢) + (¢t + 1/2)=
—z(t+1/2) — z(t+1) is of the opposite sign. By continuous dependence on the
initial condition, there exist y, between x(0) and Z(0) such that the corresponding
solution y(t) satisfies y(0) + y(1/2) = 0. This is the solution we seek.

In the above derivation, we implicitly assume that all solutions exist for
sufficiently large intervals of time. If fis unbounded, we can overcome this by
restricting our attention to a trapping region, and reversing time if necessary.
Such a region exists for every h precisely because fis unbounded: take a solution
zy, of f(r)=h and consider the interval [— 1] [ |

3. The Lyapunov—Schmidt reduction

We shall perform the Lyapunov-Schmidt reduction (LSR) for equation (1.6)
with odd faiming to determine the character of the bifurcation of the symmetric
solution as we change the parameter h. We shall denote by h (the subscript ‘cs’
stand for critical symmetric), the corresponding critical value of h.

Proc. R. Soc. A (2006)
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We start by defining the operator @ by
&(z, h) = ez — f(z) —h cos(2mt). (3.1)

(Sometimes, when the value of & is of no importance, we drop it from the list of
arguments of @.) The periodic orbits are the zeros of this operator in the space
of continuously differentiable 1-periodic functions Cj([0,1]) contained in L*([0,1]).
The reduction, based on a particular solution zy(%), leads to the construction of a
reduced function g : R X R— R such that the solutions of g(z,h) =0 are locally in
one-to-one correspondence with the solutions of @(z,h)=0, with the solution
zo(t) corresponding to the zero solution of ¢(z,h)=0. It is rarely possible to
compute g(z,h) explicitly, but one can examine the bifurcation picture by
computing the derivatives of g. For more details on the reduction, we refer the
reader to Golubitsky & Schaeffer (1985).

(a) The bifurcation condition

To start, we describe the symmetric solution zy(t) at the critical point A= h.
The necessary bifurcation condition is that the differential of @ has non-zero
kernel. This is because if Ker(d®(zy))= {0}, the solution z, of the equation
&(x0,hes) =0 can be uniquely continued by the implicit function theorem. In our
case, the differential of @, which we denote by L, is

d 0
do(z)(v) = d—ggb(x +&vy) . = €l —%(m)vl = Lv,. (3.2)

Therefore, the necessary condition for bifurcation at x, = z,(h, t) is that there is
a non-zero l-periodic solution to

€ = %(mo)v. (3.3)

The general solution of (3.3) is
1 (tof
= - = . 4
)= e | - moas) (3.4)
This solution is 1-periodic, iff

J %(xo(s))ds =0, (3.5)

0 0z

which we will refer to as the bifurcation condition.

To proceed with the LSR, we need to find a basis for Ker L and (Range L)*.
The former is spanned by the function v(t) defined by (3.4) with, for example,
C=1. The latter satisfies

R d ., of *
= Ly) = {—e— v —=L .
0= (0 L) = (=g —g @D 0, (36)
for all y. Solving equation
” of )
€V = _a (Io)’l} , (37)
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and again setting the arbitrary constant equal to one, we obtain

V() = exp (—1 [ (950(5))015)- (35)

0 0z

Note that with our choice of arbitrary constants v(¢)v*(¢) = 1, which will be used
often in what follows.

(b) Symmetries of the reduced function

The function g(z,h) inherits the symmetries of the original operator @(z). In
our case, the following proposition holds (Golubitsky & Schaeffer 1985,
proposition 4.3).

Proposition 3.1. Let dim(Ker L) = dim(Range L) =1 and let Ker L= span{v}.
If there is a symmetry operator R : Cy([0,1]) = Cy([0,1]) which satisfies

R’z =1z, ®(Rz)=Rd(z) and Rxy(t) = zo(t), (3.9)

for all x € C3([0,1]) then Ru(t) is equal to either v(t) or —v(t). In the latter case,
the reduced function is odd in x: g(—z, h) =—g(x, h).

It is easy to check that the symmetry operator satisfying conditions (3.9) is
R¢(t)=—¢(t+ 1/2). Since, v(t) is an exponential (see (3.4)), its sign does not
change over [0,1] and Rv(t) = —v(t+ 1/2) must be equal to — v(¢). Therefore, our
reduced function is indeed odd.

As a consequence, we immediately get

g(oah’) = 0> gh(ovh’) = 07 gm(ovh) = 07 etc. (310)

In addition, g,(0,h.)=0, since h is critical. Thus, to investigate the pitchfork
bifurcation of the symmetric solution of (1.6), if the bifurcation is indeed a
pitchfork, it suffices to study ¢,,(0,hes) and ¢,..(0,hes)-

(¢) Bifurcation function

To study the remaining derivatives of g(z,h) at (0,h.), we compute higher
derivatives of the operator @ (here vy, vy, v3 € C3([0,1])):

2 0°f
d°®(z)(vy, 1) = mr (z) vy vy, (3.11)
3 0°f
d’°®(z) (v, vy, v3) = 9.8 (z)v vy 03, (3.12)
0
— & = —cos(27t), (3.13)

oh

d(% <1>> =0. (3.14)
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We have already concluded that

0
g, = <v*,%@> =0, (3.15)

G = (v°, d*®(v, v)) = 0. (3.16)

These formulae will come in handy below.
The derivative gy, is given (see Golubitsky & Schaeffer 1985) by

Ghe = <v*,d<%@)v—d2@<u, L_1E<%©)>>, (3.17)

where F is the projection to Range L,

Ey=y— (v y) R (3.18)

In our case, we have d((0/0h)®)=0 and, since (v*,(0/0h)®)= g, =0, the
projector E leaves (0/0h)@ invariant. Taking into account that v*v =1, we get

o = —<v*,d2@<v, I <% <p>>> — E%(ﬂﬁo(s))u(s)ds, (3.19)

where u(s)= L'((0/0h)®) is the solution of

_of

0z

Differentiating the identity @(zy(h,t)) =0 with respect to h, we notice that
u(s) =—0xy(h, s)/0h. Eventually, we get

o fu

oh Jo 0z

€U

(zo(s))u = —cos(2nt). (3.20)

glzz(()? hcs) = ($0(8>)d8. (321)

Comparing with (2.2), we conclude that at a stability-gaining bifurcation we
should have

Ghe = 0. (3.22)

Remark 3.2. One consequence of the results of §2 is that the symmetric
solution has to undergo at least one bifurcation in which it turns from being
unstable to being stable. As of now, we are unable to prove that it undergoes
exactly one bifurcation which is equivalent to showing that g, is strictly greater
than zero at all bifurcations.

The character of the stability-gaining bifurcation is determined by the sign
Of gxz:m

Theorem 3.3. If ¢...(0,h.) is positive (respectively, negative), the stability-
gaining bifurcation from the zero-mean (symmetric) solution is a subcritical
(respectively, supercritical) pitchfork.
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Proof. We expand g(z,h) in Maclaurin series in z, taking into account that the
function is odd,

9(z, h) = 9:(0,h) + gazr (0, h) + O(2”). (3.23)

To understand the bifurcation picture, it suﬂices to take into account only the
first two terms if g,,,(0,h) #0. Since g¢,,.(0, h)> 0, it remains so in a small
neighbourhood of h=h.,. Therefore, the equation

23
has three solutions if g,(0,h) <0 and one solution, otherwise. A result connecting
the sign of g,(z,h) with the stability of the corresponding solution of the original
equation is given in Golubitsky & Schaeffer (1985, theorem 4.1, ch. 1). In our
case, it means that the symmetric solution is stable (unstable) whenever g¢,(0,h)
is positive (corresp. negative). Since the bifurcation is stability-gaining, we get
three solutions for A< h., and one solution for h> h. [ ]

To study the sign of g¢,.,, we use the following formula
Guze = (v, &>D(v, v, v) =3 A*®(v, L' E d*®(v, v))). (3.25)

From the definition of the projector E, see (3.18), and identity (3.16) we
conclude that E d?®(v, v) = d?®(v, v). Further, inverting L we get

L d?®(v,v) = o(t) L d*®(v, v)v*(s)ds = —v(t)J gxf( (s))v(s)ds. (3.26)

First, we evaluate the second part of (3.25),

1 2 2
3", d20(v, IV E 2 0(0, v))) =—3J (0 2L @) (Laf( (5))0(s )ds)dt

0z’ 0z’
(3.27)
Setting w(t) = [;(0%f/02%)(2(s))v(s)ds, (3.27) can be written as
1
3 Jl ' (w(t)dt = [—37“”2“)] ~0, (3.28)
0 2 o
since w(1l) = g,, = 0.
Thus, in our case,
* 13 63f 2
g = 0 00, 00) == [ S (s, (329)

Corollary 3.4. The stability-gaining bifurcation of the zero-mean solution of
(1.6) with f(x)=x—2" is a subcritical pitchfork.

Proof. In this case, 0°f/92° =—6 and, since v* is non-zero, g,.,> 0. [ ]

A different proof of this (local) theorem for cubic fis given by Byatt-Smith
(2002, unpublished). That in the optical bistability equation (1.2) one can never
have more than three 1-periodic solutions has been proved very elegantly by
Pliss (1966).
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The above results will be used in §4a to show that locally the situation in the
Suzuki-Kubo equation (1.4) is similar to (1.2) if 8 is sufficiently small.

4. The Suzuki—-Kubo equation

In this section, we study the case
f(z) = —x + tanh(fx) (4.1)

in detail.

We aim to demonstrate that for sufficiently large 8 there are values of h for
which there exist at least five periodic solutions of (1.4). We also show that for
small # the bifurcation of the zero-mean solution is a subcritical pitchfork
(figure 2a) which means that the maximum number of solutions is 3. The
boundary between these two regimes is known as the TCP.

(a) The case of small B

Theorem 4.1. There exists By such that for all 1>6> 0y and the zero-mean
periodic solution xo(t) satisfying (3.5) we have

153
Jog—zé(xo(s))f(s)ds< 0. (4.2)

It is not hard to get the rough estimate §,=4/3, which is sufficient for our
purposes.

Proof. Put tanh(Bzy(s)) =Z(s). From (3.3), we have for all n>1,

0 0z . V" (s)i(s)ds = € {”n(s)] T 0, (4.3)

n s=0

[ ay(oportspas =],

since v(t) is 1-periodic. Differentiating (4.1),

o (auls) = 6125, (4.4

multiplying it by v°(s) and choosing n=2 in (4.3), we have

Yoo _B-1q
JOC (s)v°(s)ds = 5 Jo v (s)ds. (4.5)

For the third derivative of f(z), we now get
[1 an

i (a(9)v*(s)ds =
1

0

_og? J: o (s)ds + SﬁBJ ()2 (s)ds — 66° J: ¢ (s)0%(s)¢ds

1 1

1 c2(s)u2(s)ds=252(3ﬁ—4)J A(s)ds,  (4.6)
0 0 0

< —233J v*(s)ds + 863J
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where we discarded the integral of a non-negative function and then used (4.5).
Thus, the integral on the left-hand side of (4.6) is negative if §<4/3. [ |

Remark 4.2. It is easy to improve the above estimate to 3/2 if, instead of
discarding the integral of {*v* altogether, we deduce from (4.4)

o (B-1_10f N\ (B-1\*_209f
q —(T E@(%)) Z(T) E&(xo) (4.7)
(b) The B= o case

When we take = o, instead of the ODE (1.4) we are left with the differential
inclusion

d
ed—gtc €—x + Sgn(z) + h cos(2mt), (4.8)
where Sgn(z) is the multivalued sign function,
-1, if <0,
Sgn(z) = ¢ [-1,1], ifz =0, (4.9)
1, ifz=1.

For this case, we have the following theorem:

Theorem 4.3. There are values hes < he, such that for h satisfying hes> h> hga,
the inclusion (4.8) has at least five 1-periodic solutions.

This assertion is verified by explicit computations, which involve constructing
solutions of piecewise-linear ODEs. We explain the main steps of the
constructions involved.

First of all, note that if a periodic solution z(¢) has no internal zeroes, it solves
a simple linear ODE and can be computed explicitly. For example, for h
sufficiently small, a positive periodic solution is given by

cos(2mt) + 2me sin(27t)

tYy=1+h
=(?) 1 + 4m2e2 ’

(4.10)

from which we conclude that this (asymmetric) solution touches zero when

h = hg, =V1+4r’e. (4.11)

For example, if €¢=0.05, h.,=1.048187027, to 10 d.p. Periodic solution (4.10), as
well as its negative counterpart, are clearly asymptotically stable. To verify
theorem 4.3 it is enough to show that there is another asymptotically stable
periodic solution for some values of h<h,,. Indeed, three stable solutions would
mean five periodic solutions altogether. The key is lemma 4.4.

Lemma 4.4. Consider the differential equation

d
ed—f =1— z + hcos(2nt). (4.12)
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Figure 4. Evolution of the zero-mean solution of inclusion (4.8). (a) Solution is identically zero
when h<1. (b) Growth of nontrivial parts when 1<h<he. (c¢) The solution experiences a

bifurcation at h=h, when the trivial parts, where z(f)=0 on an open interval, disappear
completely. (d) The stable solution for hA> h., contains no trivial parts.

If
B .= V(1L +472) (m?& —2n2€ 2 + (1 + 12€%)2?) 7 (4.13)
(1 + 2)e
where
z=e L% (4.14)
then equation (4.12) has a solution xo(t) satisfying, for some t,
and
zo(t) >0, whenever t € (ty—1/2,t). (4.16)

Gluing two such solutions together, we obtain a symmetric periodic solution
similar to the one sketched in figure 4d. Both parts of this solution attract nearby
solutions, therefore it is asymptotically stable.
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The proof of the lemma is based on the explicit integration of (4.12) and
analysis of the solution satisfying the initial condition

z(ty) =0, where h cos(2mty) = —1. (4.17)

In appendix A, we explicitly compute the value of h for which this solution
satisfies condition (4.15); this value is the critical value hes. It can then be shown
that when h> h.s the solution satisfying (4.17) has another zero at t <t,—1/2
and remains positive on the interval (¢;,¢y). Existence of the solution of lemma
4.4 then follows from the continuous dependence on the initial conditions.

By studying h2, —h2, one concludes that h.<he, for all e. Furthermore,
expanding this expression in z, we obtain

hcs = hca _2hcaz + 0(22)’ (418)

from which it is clear that for small € (and hence for very small 2) h. and he,
are very close indeed. For example, if €=0.05, h.,=1.048091900 and therefore
Bea— hes= 0(10™%).

Figure 4 explains the bifurcation picture' of the zero-mean solution. When
h<1, the zero-mean solution is identically zero and is unstable. After A crosses 1,
the solution gets two symmetric non-trivial parts, but there are still two intervals
in t on which z(t) is identically zero. The bifurcation happens when each of these
intervals collapses to a point.

When h=h.,, the zero mean solution becomes stable through a super-critical
pitchfork bifurcation. It emits two unstable solutions which disappear in a blue-
sky catastrophe, i.e. in a collision with the stable solutions (4.10). These unstable
solutions are sketched in figure 5 for various values of h, h., <h<hg,.

(¢) The case of large B

It is possible to extend the existence of five solutions from = o case to the
case of large § by continuity. In our numerical experiments, we found that 3
does not have to be very large. Figure 6 contains the plot of three stable
solutions of equation (1.4) with =3, €=0.05, h=0.544 and initial conditions
z(0)= —0.413600598, —0.40456237, —1.491606074.

Theorem 4.5. For any h satisfying hes <h<he, and sufficiently large (depending
on h) B equation (1.4) has at least five periodic solutions.

The proof of this theorem is based on an upper semi-continuity result for
differential inclusions (Aubin & Cellina 1984). To state it, we need to introduce
some notation. Let B be the unit ball in R" with centre at the origin. Consider a
differential inclusion

7' (t) € F(t, (), A), (4.19)

(t,z,A) €[0, T| X 2 X A, where Q is a bounded subset of R", ACR and F is an
upper semi-continuous set-valued map with uniformly bounded compact images.
Assume that for all A€/ and any zy in some set QEQ the solutions of the
differential inclusion with z(0)=uz, exist on the interval [0,7] and remain in Q.

LA complete bifurcation picture and animated periodic solutions described in this section are also
available at http://www.math.tamu.edu/~berko/bistable.
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Figure 5. The evolution of the right unstable solution until its annihilation at A= hg,.

Z

g

The Poincaré map Pj (z,) : @ — R" is the set-valued map defined by
PL(z) = {2(T) : 2'(t) € F(t, 2(t), 1), 2(0) = z,}. (4.20)

The following theorem is a slight variation of the continuity theorems in Aubin &
Cellina (1984, section 2.2).

Theorem 4.6 (Dependence on parameter). Let the map (t,z,A)— F(t,z,1)
satisfy the conditions of the previous paragraph. Then for any Ag€ A and any open
set UCR®", 0€ U, there is a 6>0 such that |A— Ao| <0 implies

graph(P;}) C graph(P;,) + U. (4.21)

Proof of theorem 4.5. Clearly, F(t,z,8) defined by (—z + tanh Bz + h cos 27t) /€
and viewed as a differential inclusion satisfies the conditions of theorem 4.6 since
all solutions of this inclusion are globally defined and remain bounded.

Fix h€ (he,hea). By theorem 4.6, for sufficiently large 8 the graph of the
Poincaré map P, of the Suzuki-Kubo equation (1.4) is contained in a
neighbourhood of the graph of P.. By theorem 4.3, the graph of P has five
intersections with the diagonal. Therefore, for sufficiently small neighbourhood,
i.e. for sufficiently large 8, we get at least five 1-periodic solutions of (1.4).
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Figure 6. Three coexisting stable solutions of the Suzuki-Kubo equation for =3, ¢=0.05 and
h=0.544.

5. Conclusions

In this paper, we have resolved a controversy in the physical literature. In
particular, we have proved that for large values of § and certain values of the
parameter h there are three stable periodic solutions to the equation

e% = —z + tanh Bz + h cos(27t).

The width of the h-interval in which three stable solutions coexist is proportional
to exp(e”'/2), which makes it very hard to detect for small values of e. It is
remarkable that the numerical simulations of Tomé & de Oliveira 1990 and
Acharyya & Chakrabarti (1994) revealed this interval without a priori
knowledge about its existence.

However, some major mathematical questions still remain. One is to find
the conditions on fwhich would guarantee the existence of five periodic solutions
for some values of h. We would like to formulate another question as a
conjecture.

Conjecture 5.1. If the ODE dz/dt= f(x) has precisely two stable rest points, an
ODE of the form of (1.6) has at most five 1-periodic solutions.

The authors gratefully acknowledge fruitful discussions with J. Byatt-Smith, B. Duffy and J. Carr.
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Appendix A. Calculating h

The definition of h. is the value of h for which there exists a periodic solution
z.(t) of equation
d
ed—at:=1—a:+hcos(27rt), (A1)
with the property that it connects the points (0,—1) and (0,1) (see figure 4c). In
other words, the following equations are satisfied

h cos(2mty) = 1, (A 2)
7e(t) =0, (A 3)
z.(ty +1/2) = 0. (A4)

The general solution of equation (A 1) is

1 + 4n%€® + h cos(2mt) + 2hme sin(2nt)
1+ 4m%e
From (A 2), we get hsin(2nwt;) =V h?—1. Equations (A 3) and (A 4) then read

2 +4m%e® + 2meVhi—1

z(t) = Cy e+ : (A 5)

—tg/€ _

Oy el + i =0, (A 6)
e — 4*e® —2meV h? —1

Oy e /e T2 el (A7)

We eliminate C; 7€ to get

e 1/ (2 +47°€ + 27re\/m> — 4 + 2meV/h2—1 = 0. (A8)

Denoting e /% = z, we finally obtain
1 +4n2e?)(m?e? —2me? 2 + (1 + w2e?) 22
Y T+ ao)
mwe(1 + 2)
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