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We study the number of periodic solutions in two first-order non-autonomous differential
equations, both of which have been used to describe, among other things, the mean
magnetization of an Ising magnet in a time-varying external magnetic field. When the
amplitude of the external field is increased, the set of periodic solutions undergoes a
bifurcation in both equations. We prove that despite superficial similarities between the
equations, the character of the bifurcation can be very different. This results in a
different number of coexisting stable periodic solutions in the vicinity of the bifurcation.
As a consequence, in one of the models, the Suzuki–Kubo equation, one can effect a
discontinuous change in magnetization by adiabatically varying the amplitude of the
magnetic field.
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1. Introduction

In many lattice models, the mean field approximation leads to ordinary
differential equations with periodically time-dependent right-hand side. For
example, the Curie–Weiss model with Glauber spin dynamics in the
thermodynamic limit leads to the so-called Suzuki–Kubo equation (see the
derivation in Berglund (1998, ch. 3) or in Rao et al. (1990), Suzuki & Kubo
(1968), and a numerical study in Acharyya & Chakrabarti (1994)).

The Suzuki–Kubo equation is

e
dm

dt
ZKmCtanh½bðmC ~h cosð2ptÞÞ�; ð1:1Þ

where m is the average magnetization of a sample, e is the relaxation time, ~h is
the amplitude of the applied magnetic field, and b is 1/kT, with T the absolute
temperature.

A seemingly similar first-order non-autonomous equation,

e
dx

dt
Z axCbx3 Ch cosð2ptÞ; a;b2R; ð1:2Þ
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has been used as a simple generic model for switchable bistable systems. If aO0
and b!0, it describes the overdamped dynamics of a particle in a quadratic
potential with periodic forcing. Such equations have been studied in the context
of laser optics (longitudinal mode instabilities in a semiconductor laser); see Hohl
et al. (1995) and Jung et al. (1991) for analysis and references to the optics
literature.

The issue we want to address is the number of 1-periodic solutions for various
values of h and other parameters. In particular, we will use h as the bifurcation
parameter. This issue is of physical importance, since one wants to determine
whether it is possible, say, in the Suzuki–Kubo context, to effect a discontinuous
change in magnetization by continuously varying the amplitude of the applied
magnetic field h (i.e. a first-order phase transition).

To compare the two equations effectively, we rescale the variables in (1.1) in
the following way: set, in sequence,

x ZmC ~h cosð2ptÞ; h Z ~h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4p2e2

p
; t Z tC

1

2p
arccos

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4p2e2

p
� �

:

ð1:3Þ
Then, in the new variables we have

e
dx

dt
ZKxCtanh bxCh cosð2ptÞ: ð1:4Þ

Comparing the two equations, we see that the Taylor series expansion of
KxCtanh bx is

KxCtanh bx Z ðbK1ÞxKb3

3
x3 COðx5Þ: ð1:5Þ

Hence, superficially, it looks that the behaviour of solutions of (1.4) should be
similar to that of (1.2) with aZbK1 and bZKb3. In fact, this is the implicit
assumption in much of the physical literature. This assumption is incorrect. It
turns out that for certain values of b and h equation (1.4) has five periodic
solutions, a situation which is impossible for equation (1.2). The numerical
simulations confirming this were reported for example, by Berglund (1998, ch. 7).
Here, we aim to establish this fact analytically.

The structure of the paper is as follows. After collecting preliminaries below, in
§3 we perform the Lyapunov–Schmidt reduction of the general equation,

e
dx

dt
Z f ðxÞCh cosð2ptÞ; ð1:6Þ

assuming that f is a sufficiently smooth odd function (a property shared by both
(1.2) and (1.4)). The reduction is greatly complicated by the fact that we do not
know the bifurcating solution explicitly.

In §4, we use the results of the reduction to conclude that for small b
behaviour of (1.4) is similar to that of (1.2). Then, we consider the case of large b
in (1.4) by explicitly examining the case of bZN. The limiting equation is in fact
a differential inclusion which we analyse explicitly, finding the range of h for
which five solutions co-exist. Appealing to a continuation theorem (Aubin &
Cellina 1984), we conclude that such behaviour persists for large finite values of b
as well.
Proc. R. Soc. A (2006)
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Figure 1. The picture of the (stable) hysteresis loop for large h. In this case, we take f ðxÞZxKx3,
eZ0.05 and hZ2.0.
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Whenever we sketch the solutions of the equation, we do it in (x,h cos(2pt))
plane, i.e. we plot the curve (x(t),y(t)), where

e _x Z f ðxÞKy;

y ZKh cosð2ptÞ:

(
ð1:7Þ

This makes it easier to identify periodic solutions (they are closed curves) and
produces familiar hysteresis loop pictures for large h, figure 1. In our numerics,
we take e of the order of 0.05 which ‘slows down’ the time and results in nicer
plots.
2. Background information

The examples of function f(x) that we are going to consider here, f(x)Ztanh bxKx,
bO1 and f(x)ZgxKx3, gO0 share many important properties. Both are odd
functions and the equation f(x)Z0 has exactly three solutions. If we consider
equation (1.6) for hZ0, there will correspondingly be three stationary solutions.
The central stationary solution x(t)Z0 will be unstable and the other two are
locally asymptotically stable.

It follows from the implicit function theorem that for small h, there will be
three periodic solutions, two stable and one unstable. Below, we show that this
situation persists at least until h0ZmaxxO0 f(x). We will also show that for large
h, there is only one, stable, solution. The main aim of this paper is to clarify the
Proc. R. Soc. A (2006)
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Figure 2. Two possible minimal scenarios of the emergence of a single periodic solution. Stable
solutions are represented by solid lines, unstable are represented by dashed lines. In scenario (a),
three solutions merge in a subcritical pitchfork bifurcation. In scenario (b), the central solution first
undergoes a supercritical pitchfork bifurcation, emitting two unstable solutions. These unstable
solutions disappear in fold bifurcations upon meeting the stable solutions.
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bifurcation picture as h is increased. The simplest scenario, where three solutions
can merge into one, is a subcritical pitchfork as shown in figure 2a. There, for
simplicity, we sketch the mean of periodic solutions, �xZ

Ð 1
0 xðtÞdt, versus h.

Contrary to the above expectations, numerical investigations of the Suzuki–
Kubo equation (1.4) performed by Tomé & de Oliveira (1990) show that for large
values of b, there is an interval in h in which the equation has three stable
periodic solutions (and therefore five periodic solutions altogether). The
bifurcation diagram would then look like figure 2b. For small values of b,
Tomé & de Oliveira (1990) reported two stable periodic solutions at most, a
situation compatible with figure 2a. The critical value of b at which the
bifurcation picture changes is referred to as the tricritical point (TCP).

The existence of the TCP was confirmed by Acharyya & Chakrabarti (1994)
(see also Berglund (1998, ch. 3)) but disputed by Zimmer (1993) (see also Korniss
et al. (2002)), who studied equation (1.2) numerically and reported that,
although the stable non-symmetric solution changed fast in the vicinity of
bifurcation, it was not disappearing in a ‘blue-sky catastrophe’ as in figure 2b.

Our investigation concludes that, from a mathematical point of view, both
results are correct: there are at most three solutions in (1.2) and there is a TCP
in equation (1.4).

When looking for periodic solutions, it is convenient to think in terms of the
Poincaré map. Themap establishes a correspondence between x02R and the value
at tZ1 of the solution x($) of (1.6), which satisfies x(0)Zx0. For both functions f(x),
the Poincaré map is a continuous function defined on the whole of R. The periodic
solutions of (1.6) correspond to the fixed points of the Poincaré map and, most
importantly, stability properties are preserved by this correspondence.
(a ) Periodic solutions for small h

Theorem 2.1. Let f(x) be a continuously differentiable function satisfying

f 0ðxÞ!0; x2ða;bÞ and f ðaÞO0O f ðbÞ: ð2:1Þ
Proc. R. Soc. A (2006)



1005Multiplicity of periodic solutions
Put h0Zminðf ðaÞ;Kf ðbÞÞ. Then for any h!h0, there is a unique periodic solution
to equation (1.6) satisfying xðtÞ2ða;bÞ for all t. This solution is stable.

Proof. The idea of the proof is to show that the interval (a,b) is a trapping region:
any solution that enters it must stay there. Therefore, (a,b) is invariant under the
action of thePoincarémap.Then,we canappeal to theBrouwerfixedpoint theorem
to infer that there is a fixed point inside this interval, corresponding to a periodic
solution.Analysing stability of the periodic solutions in the trapping region, we find
that any periodic solution in the region must be stable. But the Poincaré map,
which is continuous, cannot have more than one stable fixed point without having
some unstable ones. Therefore, the solution we have found is unique.

For any t, x(t)Za implies ex 0ðtÞZ f ðaÞCh cosð2ptÞRh0KhO0, so that any
solution to the right of a will remain there. Similarly, solutions to the left of b will
never increase past b. Thus, (a,b) is a trapping region and there is at least one
periodic solution.

Linearizing equation (1.6) around a periodic solution x0(t) shows that it will be
stable if

lh
1

e

ð1
0

vf

vx
ðx0ðsÞÞds ð2:2Þ

is negative. But since f 0(x)!0 for all x2(a,b), every periodic solution is stable.&

Corollary 2.2. Let xm be such that f ðxmÞZmaxxO0 f ðxÞ, where f(x) is either
tanh bxKx or gxKx3. Then for h!f(xm), equation (1.6) has exactly three periodic
solutions, one in each of the intervals (KN,Kxm), (Kxm,xm) and (xm,N). The
solution in the interval (Kxm,xm) is unstable and the other two are stable.

Proof. The statement is a direct consequence of theorem 2.1. Indeed, starting
with the interval (xm,N), we apply theorem 2.1 with aZxm and bZy (where y is
large enough to ensure f(y)!0) to conclude there is a unique periodic solution in
the interval (xm,y). Since y was arbitrarily large, the uniqueness extends to
(xm,N).

The case of the interval (KN,Kxm) is completely analogous. For the middle
interval (Kxm,xm), we reverse the time t1Kt, which results in the change
f ðxÞ1Kf ðxÞ and apply theorem 2.1 with aZKxm and bZxm. &
(b ) Uniqueness of periodic solution for large h

For large h, we have the following general theorem, which, in particular, is
valid for both functions f(x) that are of interest to us.

Theorem 2.3. Let f(x) be a continuous almost everywhere differentiable
function. If its derivative satisfies

f 0ðxÞ!a!0; for jxjOx0 and f 0ðxÞ!g; for all x; ð2:3Þ

for some a, g and x0, then, for sufficiently large h, equation (1.6) has a unique
stable periodic solution.

Proof. We shall prove the theorem for eZ1, since taking any other value of e
results only in a trivial rescaling of the function f and constants a and g.
Proc. R. Soc. A (2006)
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Figure 3. Sketch of an orbit crossing [Kx0,x0] and the three regions dividing the strip.
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Existence. Property (2.3) implies that f ðxÞ/HN eventually monotonically
as x/GN. This means, in particular, that the equations f(x)Zh and f(x)ZKh
have exactly one solution each for sufficiently large h. Denoting these solutions
by xhK and xhC, we notice that the interval [xhK,xhC] is trapping for the
trajectories of (1.6). Hence, there must be at least one periodic solution.

Uniqueness. We will prove stability of every periodic solution which will imply
that there can be at most one (see the proof of theorem 2.1 for more
explanations). Let x̂ðtÞ be a periodic solution, which is stable if l, defined by
equation (2.2), is negative. Denoting the time spent by the solution inside
[Kx0,x0] by tC, we can estimate l by

l!gtCCað1KtCÞ: ð2:4Þ
We aim to show that the time tC satisfies tC/0 as h/N and hence, l!0.

To do that, we define three regions in the plane (x,h cos(2pt)), which add up to
the strip jxj!x0, see figure 3. Region A is defined by jh cosð2ptÞj%y0; region B,
byKh cosð2ptÞ!y0; and region B 0, byKh cosð2ptÞOy0. For now, we leave the
choice of y0 open.

From the definition of region A, the time spent by the solution in A is at most

tA Z 2
1

2p
arcsin

y0
h

� �
: ð2:5Þ

Let M be the maximum of jf(x)j on [Kx0,x0]. If the solution is in B or B0, then
jx 0ðtÞjO jh cosð2ptÞjKjf ðxÞjOy0KM . Therefore, the time spent by the solution
Proc. R. Soc. A (2006)



1007Multiplicity of periodic solutions
in B or B 0 during one visit is at most

tB Z
2x0

y0KM
: ð2:6Þ

It is easy to see that a periodic solution can visit B at most once during one
period. Indeed, by definition of B, a solution can be there only while
Kh cosð2ptÞ!y0. There is only one such interval of t during one period. To
visit B more than once during one period the solution must leave and then
re-enter B, while Kh cos(2pt) remains above y0. The solution then must leave
through the left boundary of B, see figure 3, and therefore it must re-enter
through the left boundary too. But the derivative x0(t) on the left boundary of B
is negative, making the re-entry impossible.

The same applies to region B0. Thus, we conclude that the total time spent in
the strip jxj!x0 is

tC!
1

p
arcsin

y0
h

� �
C

4x0
y0KM

: ð2:7Þ

Now, if we take y0 to be equal, for example, to
ffiffiffi
h

p
, the right-hand side will tend

to zero as h/N. &
(c ) Existence of symmetric solution when f is an odd function

In this section, we assume that function f(y) in equation (1.6) is odd. It
immediately follows that if x(t) is a solution of (1.6), then so is ~xðtÞZKxðtC1=2Þ.
We aim to show that there is always a ‘symmetric solution’ that satisfies
xðtÞZKxðtC1=2Þ (and is therefore periodic).

Theorem 2.4. Let f be a continuously differentiable odd function. Then for all h
equation (1.6) has a solution x(t) satisfying xðtÞZKxðtC1=2Þ.
Proof. First of all, if a solution x(t) satisfies xðt0ÞCxðt0C1=2ÞZ0 for some t0

then xðt0ÞZ ~xðt0Þ and by uniqueness theorem for ODEs xðtÞZ ~xðtÞ for all t. Now
assume that xðtÞCxðtC1=2Þ retains the same sign for all t. Then ~xðtÞC~xðtC1=2ÞZ
KxðtC1=2ÞKxðtC1Þ is of the opposite sign. By continuous dependence on the
initial condition, there exist y0 between x(0) and ~xð0Þ such that the corresponding
solution y(t) satisfies yð0ÞCyð1=2ÞZ0. This is the solution we seek.

In the above derivation, we implicitly assume that all solutions exist for
sufficiently large intervals of time. If f is unbounded, we can overcome this by
restricting our attention to a trapping region, and reversing time if necessary.
Such a region exists for every h precisely because f is unbounded: take a solution
xh of f(x)Zh and consider the interval [Kxh,xh]. &
3. The Lyapunov–Schmidt reduction

We shall perform the Lyapunov–Schmidt reduction (LSR) for equation (1.6)
with odd f aiming to determine the character of the bifurcation of the symmetric
solution as we change the parameter h. We shall denote by hcs (the subscript ‘cs’
stand for critical symmetric), the corresponding critical value of h.
Proc. R. Soc. A (2006)
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We start by defining the operator F by

Fðx; hÞZ e _xKf ðxÞKh cosð2ptÞ: ð3:1Þ
(Sometimes, when the value of h is of no importance, we drop it from the list of
arguments of F.) The periodic orbits are the zeros of this operator in the space
of continuously differentiable 1-periodic functions C1

pð½0;1�Þ contained in L2([0,1]).
The reduction, based on a particular solution x0(t), leads to the construction of a
reduced function g : R!R/R such that the solutions of g(x,h)Z0 are locally in
one-to-one correspondence with the solutions of F(x,h)Z0, with the solution
x0(t) corresponding to the zero solution of g(x,h)Z0. It is rarely possible to
compute g(x,h) explicitly, but one can examine the bifurcation picture by
computing the derivatives of g. For more details on the reduction, we refer the
reader to Golubitsky & Schaeffer (1985).
(a ) The bifurcation condition

To start, we describe the symmetric solution x0(t) at the critical point hZhcs.
The necessary bifurcation condition is that the differential of F has non-zero
kernel. This is because if KerðdFðx0ÞÞZf0g, the solution x0 of the equation
F(x0,hcs)Z0 can be uniquely continued by the implicit function theorem. In our
case, the differential of F, which we denote by L, is

dFðxÞðv1ÞZ
d

dx
FðxCxv1Þ

xZ0

Z e _v1K
vf

vx
ðxÞv1 hLv1:

���� ð3:2Þ

Therefore, the necessary condition for bifurcation at x0 hx0ðh; tÞ is that there is
a non-zero 1-periodic solution to

e _v Z
vf

vx
ðx0Þv: ð3:3Þ

The general solution of (3.3) is

vðtÞZC exp
1

e

ðt
0

vf

vx
ðx0ðsÞÞds

� �
: ð3:4Þ

This solution is 1-periodic, iff ð1
0

vf

vx
ðx0ðsÞÞdsZ 0; ð3:5Þ

which we will refer to as the bifurcation condition.
To proceed with the LSR, we need to find a basis for Ker L and (Range L)t.

The former is spanned by the function v(t) defined by (3.4) with, for example,
CZ1. The latter satisfies

0Z hv�;LyiZ Ke
d

dt
v�K

vf

vx
ðx0ðtÞÞv�; y

� �
; ð3:6Þ

for all y. Solving equation

e _v� ZK
vf

vx
ðx0Þv�; ð3:7Þ
Proc. R. Soc. A (2006)
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and again setting the arbitrary constant equal to one, we obtain

v�ðtÞZ exp K
1

e

ðt
0

vf

vx
ðx0ðsÞÞds

� �
: ð3:8Þ

Note that with our choice of arbitrary constants vðtÞv�ðtÞh1, which will be used
often in what follows.
(b ) Symmetries of the reduced function

The function g(x,h) inherits the symmetries of the original operator F(x). In
our case, the following proposition holds (Golubitsky & Schaeffer 1985,
proposition 4.3).

Proposition 3.1. Let dimðKer LÞZdimðRange LÞZ1 and let Ker LZspanfvg.
If there is a symmetry operator R : C1

pð½0;1�Þ/C1
pð½0;1�Þ which satisfies

R2x Z x; FðRxÞZRFðxÞ and Rx0ðtÞZ x0ðtÞ; ð3:9Þ

for all x2C1
pð½0;1�Þ then Rv(t) is equal to either v(t) or Kv(t). In the latter case,

the reduced function is odd in x: gðKx; hÞZKgðx; hÞ.
It is easy to check that the symmetry operator satisfying conditions (3.9) is

RfðtÞZKfðtC1=2Þ. Since, v(t) is an exponential (see (3.4)), its sign does not
change over [0,1] and RvðtÞZKvðtC1=2Þ must be equal to Kv(t). Therefore, our
reduced function is indeed odd.

As a consequence, we immediately get

gð0;hÞZ 0; ghð0;hÞZ 0; gxxð0;hÞZ 0; etc: ð3:10Þ

In addition, gx(0,hcs)Z0, since hcs is critical. Thus, to investigate the pitchfork
bifurcation of the symmetric solution of (1.6), if the bifurcation is indeed a
pitchfork, it suffices to study gxh(0,hcs) and gxxx(0,hcs).
(c ) Bifurcation function

To study the remaining derivatives of g(x,h) at (0,hcs), we compute higher
derivatives of the operator F (here v1; v2; v32C1

pð½0;1�Þ):

d2FðxÞðv1; v2ÞZK
v2f

vx2
ðxÞv1v2; ð3:11Þ

d3FðxÞðv1; v2; v3ÞZK
v3f

vx3
ðxÞv1v2v3; ð3:12Þ

v

vh
FZKcosð2ptÞ; ð3:13Þ

d
v

vh
F

� �
Z 0: ð3:14Þ
Proc. R. Soc. A (2006)
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We have already concluded that

gh Z v�;
v

vh
F

� �
Z 0; ð3:15Þ

gxx Z hv�;d2Fðv; vÞiZ 0: ð3:16Þ

These formulae will come in handy below.
The derivative ghx is given (see Golubitsky & Schaeffer 1985) by

ghx Z v�; d
v

vh
F

� �
vKd2F v;LK1E

v

vh
F

� �� �� �
; ð3:17Þ

where E is the projection to Range L,

Ey Z yKhv�; yi v�

kv�k : ð3:18Þ

In our case, we have dððv=vhÞFÞZ0 and, since hv�; ðv=vhÞFiZghZ0, the
projector E leaves ðv=vhÞF invariant. Taking into account that v�vh1, we get

ghx ZK v�;d2F v;LK1 v

vh
F

� �� �� �
Z

ð1
0

v2f

vx2
ðx0ðsÞÞuðsÞds; ð3:19Þ

where uðsÞZLK1ððv=vhÞFÞ is the solution of

e _uK
vf

vx
ðx0ðsÞÞu ZKcosð2ptÞ: ð3:20Þ

Differentiating the identity Fðx0ðh; tÞÞZ0 with respect to h, we notice that
uðsÞZKvx0ðh; sÞ=vh. Eventually, we get

ghxð0; hcsÞZK
v

vh

ð1
0

vf

vx
ðx0ðsÞÞds: ð3:21Þ

Comparing with (2.2), we conclude that at a stability-gaining bifurcation we
should have

ghxR0: ð3:22Þ

Remark 3.2. One consequence of the results of §2 is that the symmetric
solution has to undergo at least one bifurcation in which it turns from being
unstable to being stable. As of now, we are unable to prove that it undergoes
exactly one bifurcation which is equivalent to showing that ghx is strictly greater
than zero at all bifurcations.

The character of the stability-gaining bifurcation is determined by the sign
of gxxx,

Theorem 3.3. If gxxx(0,hcs) is positive (respectively, negative), the stability-
gaining bifurcation from the zero-mean (symmetric) solution is a subcritical
(respectively, supercritical) pitchfork.
Proc. R. Soc. A (2006)



1011Multiplicity of periodic solutions
Proof. We expand g(x,h) in Maclaurin series in x, taking into account that the
function is odd,

gðx; hÞZ gxð0;hÞxCgxxxð0;hÞ
x3

6
COðx5Þ: ð3:23Þ

To understand the bifurcation picture, it suffices to take into account only the
first two terms if gxxxð0;hÞs0. Since gxxxð0; hcsÞO0, it remains so in a small
neighbourhood of hZhcs. Therefore, the equation

gxð0;hÞxCgxxxð0;hÞ
x3

6
Z 0 ð3:24Þ

has three solutions if gx(0,h)!0 and one solution, otherwise. A result connecting
the sign of gx(x,h) with the stability of the corresponding solution of the original
equation is given in Golubitsky & Schaeffer (1985, theorem 4.1, ch. 1). In our
case, it means that the symmetric solution is stable (unstable) whenever gx(0,h)
is positive (corresp. negative). Since the bifurcation is stability-gaining, we get
three solutions for h!hcs and one solution for hOhcs. &

To study the sign of gxxx, we use the following formula

gxxx Z hv�;d3Fðv; v; vÞK3 d2Fðv;LK1E d2Fðv; vÞÞi: ð3:25Þ
From the definition of the projector E, see (3.18), and identity (3.16) we

conclude that E d2Fðv; vÞZd2Fðv; vÞ. Further, inverting L we get

LK1 d2Fðv; vÞZ vðtÞ
ðt
0
d2Fðv; vÞv�ðsÞdsZKvðtÞ

ðt
0

v2f

vx2
ðxðsÞÞvðsÞds: ð3:26Þ

First, we evaluate the second part of (3.25),

K3hv�;d2Fðv;LK1E d2Fðv; vÞÞiZK3

ð1
0
v�ðtÞ v

2f

vx2
ðxÞv2ðtÞ

ðt
0

v2f

vx2
ðxðsÞÞvðsÞds

� �
dt:

ð3:27Þ
Setting wðtÞZ

Ð t
0ðv2f =vx2ÞðxðsÞÞvðsÞds, (3.27) can be written as

K3

ð1
0
w 0ðtÞwðtÞdt Z K

3w2ðtÞ
2

	 
1
0

Z 0; ð3:28Þ

since wð1ÞZgxxZ0.
Thus, in our case,

gxxx Z hv�; d3Fðv; v; vÞiZK

ð1
0

v3f

vx3
ðx0ðsÞÞv2ðsÞds: ð3:29Þ

Corollary 3.4. The stability-gaining bifurcation of the zero-mean solution of
(1.6) with f(x)ZxKx3 is a subcritical pitchfork.

Proof. In this case, v3f =vx3hK6 and, since v2 is non-zero, gxxxO0. &

A different proof of this (local) theorem for cubic f is given by Byatt-Smith
(2002, unpublished). That in the optical bistability equation (1.2) one can never
have more than three 1-periodic solutions has been proved very elegantly by
Pliss (1966).
Proc. R. Soc. A (2006)



G. Berkolaiko and M. Grinfeld1012
The above results will be used in §4a to show that locally the situation in the
Suzuki–Kubo equation (1.4) is similar to (1.2) if b is sufficiently small.
4. The Suzuki–Kubo equation

In this section, we study the case

f ðxÞZKxCtanhðbxÞ ð4:1Þ
in detail.

We aim to demonstrate that for sufficiently large b there are values of h for
which there exist at least five periodic solutions of (1.4). We also show that for
small b the bifurcation of the zero-mean solution is a subcritical pitchfork
(figure 2a) which means that the maximum number of solutions is 3. The
boundary between these two regimes is known as the TCP.
(a ) The case of small b

Theorem 4.1. There exists b0 such that for all 1ObOb0 and the zero-mean
periodic solution x0(t) satisfying (3.5) we haveð1

0

v3f

vx3
ðx0ðsÞÞv2ðsÞds!0: ð4:2Þ

It is not hard to get the rough estimate b0Z4/3, which is sufficient for our
purposes.

Proof. Put tanhðbx0ðsÞÞZzðsÞ. From (3.3), we have for all nR1,ð1
0

vf

vx
ðx0ðsÞÞvnðsÞdsZ e

ð1
0
vnK1ðsÞ _vðsÞdsZ e

vnðsÞ
n

	 
sZ1

sZ0

Z 0; ð4:3Þ

since v(t) is 1-periodic. Differentiating (4.1),

vf

vx
ðx0ðsÞÞZ bK1Kbz2ðsÞ; ð4:4Þ

multiplying it by v2(s) and choosing nZ2 in (4.3), we haveð1
0
z2ðsÞv2ðsÞdsZ bK1

b

ð1
0
v2ðsÞds: ð4:5Þ

For the third derivative of f(x), we now getð1
0

v3f

vx3
ðx0ðsÞÞv2ðsÞdsZ

K2b3
ð1
0
v2ðsÞdsC8b3

ð1
0
v2ðsÞz2ðsÞdsK6b3

ð1
0
z4ðsÞv2ðsÞzds

%K2b3
ð1
0
v2ðsÞdsC8b3

ð1
0
z2ðsÞv2ðsÞdsZ 2b2ð3bK4Þ

ð1
0
v2ðsÞds; ð4:6Þ
Proc. R. Soc. A (2006)
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where we discarded the integral of a non-negative function and then used (4.5).
Thus, the integral on the left-hand side of (4.6) is negative if b!4/3. &

Remark 4.2. It is easy to improve the above estimate to 3/2 if, instead of
discarding the integral of z4v2 altogether, we deduce from (4.4)

z4 Z
bK1

b
K

1

b

vf

vx
ðx0Þ

� �2

R
bK1

b

� �2

K
2

b

vf

vx
ðx0Þ: ð4:7Þ

(b ) The bZN case

When we take bZN, instead of the ODE (1.4) we are left with the differential
inclusion

e
dx

dt
2KxCSgnðxÞCh cosð2ptÞ; ð4:8Þ

where Sgn(x) is the multivalued sign function,

SgnðxÞZ
K1; if x!0;

½K1; 1�; if x Z 0;

1; if x Z 1:

8><
>: ð4:9Þ

For this case, we have the following theorem:

Theorem 4.3. There are values hcs!hca such that for h satisfying hcsOhOhca,
the inclusion (4.8) has at least five 1-periodic solutions.

This assertion is verified by explicit computations, which involve constructing
solutions of piecewise-linear ODEs. We explain the main steps of the
constructions involved.

First of all, note that if a periodic solution x(t) has no internal zeroes, it solves
a simple linear ODE and can be computed explicitly. For example, for h
sufficiently small, a positive periodic solution is given by

xðtÞZ 1Ch
cosð2ptÞC2pe sinð2ptÞ

1C4p2e2
; ð4:10Þ

from which we conclude that this (asymmetric) solution touches zero when

h Z hcah
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4p2e2

p
: ð4:11Þ

For example, if eZ0.05, hcaZ1.048187027, to 10 d.p. Periodic solution (4.10), as
well as its negative counterpart, are clearly asymptotically stable. To verify
theorem 4.3 it is enough to show that there is another asymptotically stable
periodic solution for some values of h!hca. Indeed, three stable solutions would
mean five periodic solutions altogether. The key is lemma 4.4.

Lemma 4.4. Consider the differential equation

e
dx

dt
Z 1K xCh cosð2ptÞ: ð4:12Þ
Proc. R. Soc. A (2006)
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Figure 4. Evolution of the zero-mean solution of inclusion (4.8). (a) Solution is identically zero
when h!1. (b) Growth of nontrivial parts when 1!h!hcs. (c) The solution experiences a
bifurcation at hZhcs when the trivial parts, where x(t)Z0 on an open interval, disappear
completely. (d) The stable solution for hOhcs contains no trivial parts.
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If

hRhcsh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1C4p2e2Þðp2e2K2p2e2zCð1Cp2e2Þz2Þ

p
pð1CzÞe ; ð4:13Þ

where

z Z eK1=2e; ð4:14Þ
then equation (4.12) has a solution x0(t) satisfying, for some t0,

x0ðt0ÞZ x0ðt0K1=2ÞZ 0 ð4:15Þ
and

x0ðtÞO0; whenever t2ðt0K1=2; t0Þ: ð4:16Þ
Gluing two such solutions together, we obtain a symmetric periodic solution

similar to the one sketched in figure 4d. Both parts of this solution attract nearby
solutions, therefore it is asymptotically stable.
Proc. R. Soc. A (2006)
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The proof of the lemma is based on the explicit integration of (4.12) and
analysis of the solution satisfying the initial condition

xðt0ÞZ 0; where h cosð2pt0ÞZK1: ð4:17Þ
In appendix A, we explicitly compute the value of h for which this solution
satisfies condition (4.15); this value is the critical value hcs. It can then be shown
that when hOhcs the solution satisfying (4.17) has another zero at t1!t0K1/2
and remains positive on the interval (t1,t0). Existence of the solution of lemma
4.4 then follows from the continuous dependence on the initial conditions.

By studying h2caKh2cs, one concludes that hcs!hca for all e. Furthermore,
expanding this expression in z, we obtain

hcs Z hcaK2hcazCOðz2Þ; ð4:18Þ
from which it is clear that for small e (and hence for very small z) hcs and hca
are very close indeed. For example, if eZ0.05, hcsZ1.048091900 and therefore
hcaKhcsZO(10K4).

Figure 4 explains the bifurcation picture1 of the zero-mean solution. When
h!1, the zero-mean solution is identically zero and is unstable. After h crosses 1,
the solution gets two symmetric non-trivial parts, but there are still two intervals
in t on which x(t) is identically zero. The bifurcation happens when each of these
intervals collapses to a point.

When hZhcs, the zero mean solution becomes stable through a super-critical
pitchfork bifurcation. It emits two unstable solutions which disappear in a blue-
sky catastrophe, i.e. in a collision with the stable solutions (4.10). These unstable
solutions are sketched in figure 5 for various values of h, hcs!h%hca.
(c ) The case of large b

It is possible to extend the existence of five solutions from bZN case to the
case of large b by continuity. In our numerical experiments, we found that b
does not have to be very large. Figure 6 contains the plot of three stable
solutions of equation (1.4) with bZ3, eZ0.05, hZ0.544 and initial conditions
x(0)ZK0.413600598, K0.40456237, K1.491606074.

Theorem 4.5. For any h satisfying hcs!h!hca and sufficiently large (depending
on h) b equation (1.4) has at least five periodic solutions.

The proof of this theorem is based on an upper semi-continuity result for
differential inclusions (Aubin & Cellina 1984). To state it, we need to introduce
some notation. Let B be the unit ball in R

n with centre at the origin. Consider a
differential inclusion

x 0ðtÞ2Fðt; xðtÞ; lÞ; ð4:19Þ
ðt; x; lÞ2½0;T �!U!L, where U is a bounded subset of Rn, L3R and F is an
upper semi-continuous set-valued map with uniformly bounded compact images.
Assume that for all l2L and any x0 in some set Q2U the solutions of the
differential inclusion with x(0)Zx0 exist on the interval [0,T ] and remain in U.
1A complete bifurcation picture and animated periodic solutions described in this section are also
available at http://www.math.tamu.edu/wberko/bistable.
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Figure 5. The evolution of the right unstable solution until its annihilation at hZhca.
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The Poincaré map PT
l ðx0Þ : Q/R

n is the set-valued map defined by

PT
l ðx0ÞZ fxðTÞ : x 0ðtÞ2Fðt; xðtÞ; lÞ; xð0ÞZ x0g: ð4:20Þ

The following theorem is a slight variation of the continuity theorems in Aubin &
Cellina (1984, section 2.2).

Theorem 4.6 (Dependence on parameter). Let the map ðt; x; lÞ/Fðt; x; lÞ
satisfy the conditions of the previous paragraph. Then for any l02L and any open
set U3R

2n, 02U, there is a dO0 such that jlKl0j!d implies

graphðPT
l Þ3graphðPT

l0
ÞCU : ð4:21Þ

Proof of theorem 4.5. Clearly, F(t,x,b) defined by ðKxCtanh bxCh cos 2ptÞ=e
and viewed as a differential inclusion satisfies the conditions of theorem 4.6 since
all solutions of this inclusion are globally defined and remain bounded.

Fix h2(hcs,hca). By theorem 4.6, for sufficiently large b the graph of the
Poincaré map P1

b of the Suzuki–Kubo equation (1.4) is contained in a
neighbourhood of the graph of PN. By theorem 4.3, the graph of PN has five
intersections with the diagonal. Therefore, for sufficiently small neighbourhood,
i.e. for sufficiently large b, we get at least five 1-periodic solutions of (1.4). &
Proc. R. Soc. A (2006)
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Figure 6. Three coexisting stable solutions of the Suzuki–Kubo equation for bZ3, eZ0.05 and
hZ0.544.
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5. Conclusions

In this paper, we have resolved a controversy in the physical literature. In
particular, we have proved that for large values of b and certain values of the
parameter h there are three stable periodic solutions to the equation

e
dx

dt
ZKxCtanh bxCh cosð2ptÞ:

The width of the h-interval in which three stable solutions coexist is proportional
to exp(eK1/2), which makes it very hard to detect for small values of e. It is
remarkable that the numerical simulations of Tomé & de Oliveira 1990 and
Acharyya & Chakrabarti (1994) revealed this interval without a priori
knowledge about its existence.

However, some major mathematical questions still remain. One is to find
the conditions on f which would guarantee the existence of five periodic solutions
for some values of h. We would like to formulate another question as a
conjecture.

Conjecture 5.1. If the ODE dx/dtZf(x) has precisely two stable rest points, an
ODE of the form of (1.6) has at most five 1-periodic solutions.

The authors gratefully acknowledge fruitful discussions with J. Byatt-Smith, B. Duffy and J. Carr.
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Appendix A. Calculating hcs

The definition of hcs is the value of h for which there exists a periodic solution
xc(t) of equation

e
dx

dt
Z 1K xCh cosð2ptÞ; ðA 1Þ

with the property that it connects the points (0,K1) and (0,1) (see figure 4c). In
other words, the following equations are satisfied

h cosð2pt0ÞZ 1; ðA 2Þ

xcðt0ÞZ 0; ðA 3Þ

xcðt0C1=2ÞZ 0: ðA 4Þ
The general solution of equation (A 1) is

xðtÞZC1 e
Kt=eC

1C4p2e2 Ch cosð2ptÞC2hpe sinð2ptÞ
1C4p2e2

: ðA 5Þ

From (A 2), we get h sinð2pt0ÞZ
ffiffiffiffiffiffiffiffiffiffiffiffi
h2K1

p
. Equations (A 3) and (A 4) then read

C1 e
Kt 0=eC

2C4p2e2 C2pe
ffiffiffiffiffiffiffiffiffiffiffiffi
h2K1

p

1C4p2e2
Z 0; ðA 6Þ

C1 e
Kt 0=e eK1=2eC

4p2e2K2pe
ffiffiffiffiffiffiffiffiffiffiffiffi
h2K1

p

1C4p2e2
Z 0: ðA 7Þ

We eliminate C1 e
Kt=e to get

eK1=2e 2C4p2e2C2pe
ffiffiffiffiffiffiffiffiffiffiffiffi
h2K1

p� �
K4p2e2 C2pe

ffiffiffiffiffiffiffiffiffiffiffiffi
h2K1

p
Z 0: ðA 8Þ

Denoting eK1=2eZz, we finally obtain

hcs Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1C4p2e2Þðp2e2K2pe2zCð1Cp2e2Þz2Þ

p
peð1CzÞ : ðA 9Þ
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