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Abstrat
We alulate the two-point spetral statistis for a lass of quantum graphs inthe limit as the number of verties tends to in�nity. This is done two ways.The �rst way uses the exat trae formula and a lassi�ation of the periodiorbits on the graph. The seond involves a diret study of the statistis of thezeros of a transendental eigenvalue equation. We show that these approahesprodue equivalent results. The �rst expression we derive takes the form ofa power series and is more eÆient for numerial omputations, while theseond involves an improper integral and is in a onvenient form to studythe singularities of the form fator (the Fourier transform of the two-pointorrelation funtion). We also �nd that the spetral statistis are the sameas those already found for the �Seba billiard and we disuss the reasons forthis oinidene. As an appliation of the ombinatorial methods developed inthis work we derive an exat expression for the quantum return probability onin�nite regular trees and analyse it numerially. We onlude that, for ertainvalues a parameter, the return probability tends to a non-zero limit, and, as aonsequene, that there exist loalised eigenstates.
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Chapter 1
Introdution
When studying a large lass of systems exhibiting a ertain property, it usu-ally helps to onsider, as an example, a smaller sublass of simpler systems.Then, after �nding out how the property arises in the simpler systems, onean hopefully gain some insight into what is happening in the general ase.This \lass | sublass" relation is the onnetion between the quantumhaos and quantum graphs and, to a lesser extent, between quantum graphsand quantum star graphs.So what is quantum haos? Naturally, it is the subjet studied by quantumhaology,the study of semilassial, but non-lassial, behaviour harateris-ti of systems whose lassial motion exhibits haos. `Semilassial'here means `as Plank's onstant tends to zero' [1℄.The present work is related to a part of quantum haology, the study of theeigenvalues of the quantum systems, their spetrum. The spetra, althoughdi�erent from system to system, have some universal features whih are statedin the onjetures:Conjeture 1 (Berry-Tabor Conjeture). If the lassial dynamis is in-tegrable then the statistial properties of the spetrum are generially the same2



as those of an unorrelated sequene of levels, in partiular the nearest neigh-bour spaings distribution is Poissonian [2℄.Conjeture 2 (Bohigas-Giannoni-Shmit Conjeture). If the lassialmotion of a quantum system is haoti then the statistial properties of thespetrum are generially the same as those of eigenvalues of a large randommatrix from the Gaussian Orthogonal Ensemble (GOE) if the system is invari-ant under time reversal and from the Gaussian Unitary Ensemble (GUE) if itis not [3℄.By the statistial properties we understand the funtions suh as the dis-tribution of the spaing between neighbouring eigenvalues, various orrelationfuntions of the sequene of the eigenvalues and assoiated funtions. TheGaussian Orthogonal (Unitary) Ensemble is de�ned as the probability spaeof real symmetri (Hermitian) matries with the statistially independent ma-trix elements endowed with the probability measure whih is invariant underany orthogonal (unitary) hange of basis. The study of the statistial proper-ties of suh random matries is a part of Random Matrix Theory (RMT).The above onjetures do not hold for all systems, there are known oun-terexamples to Berry-Tabor Conjeture (a good review of the ases in whihthe Conjeture an be proved or disproved rigorously is given in [4℄), andto Bohigas-Giannoni-Shmit Conjeture, e.g. the geodesi motion on ertainarithmeti surfaes of onstant negative urvature [5℄, and the at maps [6℄.The onjetures are expeted to hold for generi systems where the meaningof the word \generi" is the big open question of the �eld.There are several approahes whih allow one to study the statistial prop-erties of the eigenlevels. For example, the level dynamis, whih is the studyof the dependene of the eigenlevels on a parameter, makes it possible to traethe transitions from one type of statistial behaviour to another (for instane,the transition from GOE to GUE when the time-reversal symmetry is beingbroken). In this work, however, we will be mostly onerned with the approah3



whih originates from the following observation.For the onjetures to hold at all, the quantum system must know aboutthe haoti (or not) behaviour of its lassial ounterpart. And the haos isde�ned through the properties of the orbits of the system, e.g. one of therequirements is that almost all of the orbits explore the whole of the availablespae in their wanderings. Thus one an say that the quantum system mustknow about the orbits of the lassial system. This onnetion is provided bytrae formulae.A trae formula is a relation between the eigenvalues of the quantum systemand the periodi orbits of the underlying lassial system. In general it is anasymptoti formula, the so-alled Gutzwiller trae formula [7℄, but it beomesexat for ertain lasses of systems, suh as systems of onstant negative urva-ture, and then it is referred to as Selberg trae formula [8, 9℄. The informationabout the spetrum is oded in the form of the density funtion, a funtionwhih has Æ-peaks at the points of the real line orresponding to the eigenval-ues En. The periodi orbits provide the oeÆients of the deomposition ofthe density funtions into a sum of osines:d(E) � 1Xn=1 Æ(E � En) � d(E) + 2~1+� Xp 1Xk=1 Ap;k os�k~(Sp + �p)� :(1.0.1)Here p stands for periodi orbit, Sp is the ation of p, Ap;k is an amplituderelated to the stability of the kth repetition of p, and �p is its Maslov index;d(E) is the mean density, that is the average number of the eigenvalues Enper interval of unit length. The parameter � is equal to zero if the system islassially haoti and � = (n� 1)=2 if the system is integrable with n degreesof freedom.It is widely believed that the trae formula ontains all the informationneeded to verify the onjeture but extrating this information is an extremelydiÆult task. The ontributions from di�erent orbits balane very �nely andthere are a lot of orbits to aount for: their number inreases exponentially4



with the length of the orbits. It turns out, however, that it is possible toextrat some information about the density of the periodi orbits weightedwith A2p;k without having the detailed knowledge about the periodi orbits ofthe system. An important step in this diretion was made by Hannay andOzorio de Almeida [10℄ who disovered thatXp : jSpj<SA2p � 8><>:�S integrable;�S2 haoti (ergodi); (1.0.2)as S ! 1. As we see, there is a lear distintion between the asymp-toti behaviour of the sum in the integrable and haoti ases. The Hannay-Ozorio de Almeida sum rule was used by Berry in [11℄ where, among otherquantities, Berry onsidered the form fator whih is the Fourier transform ofthe spetral two-point orrelation funtionR2(x) = hd(E)d(E + x)i; (1.0.3)where h � i denotes an energy average (there are also other types of averages,and an average with respet to an ensemble of systems will be employed by uslater). Using the Gutzwiller trae formula one an obtain an approximationto R2(x) in the form of a sum over all pairs of periodi orbits. Applying theFourier transform K(�) = Z 1�1R2(x)eix�=~dx; (1.0.4)one obtains an expression for the form fator K(�) as a sum over pairs oforbits too. Berry's analysis was based mostly on the diagonal approximationwhih means that only the pairs of orbits whih are idential with respet tothe system's symmetries are kept. However the validity of the approximationis restrited to the range � � 2�~d and the alulation outside this rangeneessarily involves evaluation of the o�-diagonal terms assoiated with thepairs of the orbits not related by symmetry.The o�-diagonal terms are onneted with the orrelations between theations of di�erent orbits and in [12℄ it was shown that one an \reverse" the5



Bohigas-Giannoni-Shmit Conjeture: assuming that the spetral utuationfollow RMT, a universal expression for the lassial ation orrelation funtionwas derived, supported by some numerial evidene. But the breakthroughame from a slightly di�erent diretion, or rather from two diretions at thesame time. The leading order osillatory term in the RMT-predited R2(x)was reovered in [13℄ using supersymmetry approah (an aessible explanationof the supersymmetry tehnique is ontained, for example, in [14℄) and in[15℄ by relating the o�-diagonal terms in the periodi orbit expansion to thediagonal ones. Still the underlying assumption in [15℄ was, roughly speaking,that the orrelations between short periodi orbits anel eah other. Theunderstanding of how it happens (and when it does not, why not) ould notonly provide a base for the above assumption but to show the way to reover thehigher order terms too. To gain some intuition into suh balaning betweenthe o�-diagonal terms, it was neessary to �nd an easy example where theperiodi orbits and their orrelations ould be studied in detail.Enter the quantum graphs. The idea was to onsider the eigenvalues of aLaplaian on a metri graph. A graph is a olletion of verties and bondswhih onnet some of the verties. A graph beomes metri if we speify thelengths of the bonds. Exept at the verties, the graph is a one-dimensionalstruture so the di�erential equation is easily solvable. The boundary ondi-tions, imposed on the verties, would make �nding eigenvalues a nontrivial butstill a manageable task and would hopefully ensure that the RMT e�ets arepresent. The idea, it seems, was around for some time: the statistial prop-erties of the spetrum of disrete Laplaian were studied, for instane, in [16℄and the exat trae formula, this main ingredient of a relevant example, wasproved for ontinuous Laplaian in [17℄. It was independently redisovered in[19, 20℄, whih sparked a whole series of papers, reviewed below, and researhprojets, inluding this work.The results of numerial simulations reported in [19℄ showed good agree-ment with the preditions of the RMT, thus establishing validity of the quan-6



tum graphs as a toy model of the quantum haos. Indeed, the neessaryingredients suh as the ergodiity (in the Markov hain sense), the exponentialproliferation of the periodi orbits, and the trae formula were present. Thephenomenon, the aÆnity with RMT results, was shown to be there as well.There was a drawbak that the quantum graphs did not have deterministilassial ounterparts, only the probabilisti ones (Markov hains). But it wasan advantage at the same time: it was easier to haraterise the orbits.In the next, more detailed, study of the quantum graphs [20℄ the setup wasextended to inlude more general boundary onditions now depending on aparameter. It was shown numerially with an analytial justi�ation that fordi�erent values of the parameter, the statistis undergo a hange from beingRMT-like to Poissonian. It was also found that the statistis for star graphs(a partiular type of graphs, see Fig. 2.1 in the next Chapter; sometimes it isalso alled Hydra graphs) show systemati deviations from RMT behaviour.As the name suggests, a star graph onsists of a entral vertex (the bodyof the Hydra) onneted to many periphery verties (numerous heads of theHydra). The deviations in the statistis of star graphs beome apparent onlyfor suÆiently large number of the periphery verties.In was also found in [20℄ that the multiply onneted rings (another typeof graphs) have exponentially loalised eigenstates (Anderson loalisation).A thorough analytial treatment of the Anderson loalisation in terms of theperiodi orbits on in�nite hain graphs was presented in [21℄. The in�nite haingraph is a graph omposed from an in�nite number of sequentially onnetedverties. Thus, the valeny (the number of bonds ommening from a vertex)of eah vertex is 2. The quantity onsidered was the quantum probability toreturn to the origin: a spei�ed initial ondition was iterated using a quantumevolution operator and then the modulus squared of the resulting state wasomputed at the origin. The lassial ounterpart of the quantum returnprobability is the probability for a random walker to return to the origin aftern steps. It is well known that this probability deays with n. It turned out7



that the quantum return probability does not deay to zero as the number ofiterates n tends to in�nity, but saturates at a non-zero value. This e�et is aresult of the interferene between orbits of the same length.A work in a di�erent diretion [22℄ established that the quantum graphsan also be used to study the generi behaviour of haoti sattering systems.By onneting verties of a graph by leads to in�nity the graph was turned intoa sattering problem. It was shown that suh graphs display all features whihharaterise quantum haoti sattering and, when onsidered statistially,the ensemble of sattering matries reprodued quite well the preditions ofappropriately de�ned Random Matrix ensembles.In [23℄ an example of the quantum graph whose spetral two-point orrela-tion funtion reprodues the orresponding RMT expression exatly was found.The two-point orrelation funtion for 2-star graph (a star with only two rays)was omputed both diretly and through the periodi orbits approah. Uponsuitable averaging over the parameter spae the result would reprodue theorresponding RMT expression for 2 � 2 matries. To prove the equivaleneof two approahes, several new ombinatorial identities were derived. Theseidentities were later employed in [21℄ to derive a ompat form of the returnprobability.Another statisti, the form fator, was studied in detail for star graphswith large number of rays in [24℄. Basing on the periodi orbit theory, thefull (inluding the o�-diagonal terms!) power series expansion around zero ofthe form fator was obtained. Remarkably, the �rst four terms of the expan-sion were the same as those in the diagonal approximation derived in [20℄, butthe higher terms did not agree. The series obtained in [24℄, on its interval ofonvergene, perfetly �tted the numerial data of [20℄, whih was not RMTbut in ertain sense an intermediate between RMT and Poisson. The radiusof onvergene of the series was later extended using Pad�e method of improv-ing onvergene. The results of the paper [24℄ onstitute the major part ofChapter 3. 8



The form fator was also studied in [25℄, where the periodi orbits expan-sions were used to ompute it expliitly for several direted binary graphs. Theresults showed good agreement with the RMT and promised to show an evenbetter one if the graph size was inreased. Unfortunately ertain features inthe larger binary graphs made the appliation of exat ombinatorial methodsdeveloped in [25℄ impossible. Still, one of the important ontributions of [25℄was to �nd a simpler lass of graphs whih exhibit RMT e�ets.In the papers mentioned above di�erent types of averaging were appliedto the spetral statistis of the quantum graphs. The urrent work employs,in di�erent Chapters, spetrum averaging and averaging with respet to theindividual lengths of the bonds. Averaging over the boundary onditions isalso possible and in [26℄ it was demonstrated that these types of averaging areequivalent.Quantum graphs also attrated a lot of attention reently in onnetionwith the transport and thermodynami properties of weakly disordered andoherent ondutors. These properties an be related to the spetral determi-nant of the Laplaian on a graph [27℄. The various expression for the spetraldeterminant were studied in detail and an easy-to-use diagrammati methodof expansion of the spetral determinant in terms of a �nite number of periodiorbits was derived in [28℄ (see also referenes therein).A method to derive the level spaing distribution P (�) for the quantumgraphs without resorting to the periodi orbit theory was presented in [29℄.The authors express the eigenvalues of the system as the times at whih ahypersurfae, expliitly de�ned by the topology of the graph, is interseted byan ergodi ow on a torus. The level spaings are then expliitly related tothe time of �rst return to the hypersurfae. An exat representation of thelevel spaing distribution is obtained in the form of an integral over the hyper-surfae. The small � behaviour omes from the near the singularities of thehypersurfae and an be studied using an approximation of the hypersurfaenear the singularities. The analysis is performed for several simple graphs,9



inluding the star graph with 3 bonds for whih the RMT-like level repulsionis observed for small �.In the present work we try to advane the understanding of the \onstru-tive interferene" of the periodi orbits whih produes partiular statistis.In Chapter 2 we give the de�nitions of the graphs and periodi orbits, de�nethe Laplaian and the boundary onditions. It is possible to write an expliitsolution of the Laplaian and we obtain the eigenvalue ondition in the formof a determinant equation. Then we present a simple derivation of the traeformula for the quantum graphs. Having the trae formula at hand we moveon to de�ne the spetral statistis, suh as the average (mean) density of theeigenvalues, the two-point orrelation funtion and the form fator. We ex-press the latter two statistis as sums over pairs of periodi orbits and showthat only the pairs of orbits of the same lengths ontribute to the sums. Notethat the equality of the lengths of orbits p and p0 does not neessarily implythat the orbits are the same or related through some symmetry (e.g. reversingthe diretion of the orbit). The length of an orbit is simply the sum of lengthsof all the bonds it passes, therefore, in order to have the same lengths, twoorbits must pass through the same bonds the same number of times (althoughin a di�erent order), or, using the terminology introdued in [25℄, have thesame bond staying rates. This subjet is disussed in detail and illustratedwith examples in Chapter 2.The next Chapter, largely based on the material of [24℄, is devoted to thedetailed study of the star graphs. Here we assume the Neumann boundaryonditions and derive a power series expansion of the form fator in the limitas the number of bonds (rays) of the star tends to in�nity. To do so wederive an exat ombinatorial expression for the form fator for any �nitenumber of bonds and then take the limit whih simpli�es the ombinatorialsums. The expression we obtain, however, is still too ompliated to be studiedanalytially so we ompute exatly a large number of terms and then study10



them numerially. In partiular we �nd that the radius of onvergene ofthe series is �nite and that one an extend the onvergene by applying thePad�e approximation. Pad�e approximation to the form fator seems to apturesingularities lying in the omplex plane and, judging by the harater of theapproximation, the singularities are not poles but essential singularities.It turns out that the ombinatorial methods developed in Chapter 3 anbe applied to study the Anderson loalisation on in�nite regular trees (alsoalled Bethe latties in the literature). A graph is a tree if there are no yleson it and it is regular if the valeny of all verties is the same. The in�nite lineis a speial ase of the in�nite regular trees orresponding to the valeny 2.The Anderson loalisation in a similar model (but not idential) was alreadystudied in [31℄ using the onnetion between the loalisation of the eigenstatesand the probability distribution of �	(E)=�E, where the equation	(E) = 2�l (1.0.5)is satis�ed by the eigenvalues En. It was found that there are four ranges inthe parameter spae where di�erent types of eigenstates exist. In partiular,there is a range where the system has normalizable eigenstates and, therefore,there is a pure point omponent in the spetrum. In Chapter 4 we approahthe problem from a di�erent viewpoint. We study the quantum probability toreturn to the origin of the tree after n steps. Bringing together the methodsdeveloped in [21℄ and [24℄, we derive an exat ombinatorial reursion for thereturn probability. Again, it is too ompliated to be solved analytially butit gives a lear algorithm to analyse the problem numerially. Our algorithmis of polynomial omplexity as opposed to exponential omplexity if one isto expliitly ount all periodi orbits. Our numerial simulations show thatfor a ertain range of the parameter values the return probability tends to anon-zero limit as the number of steps goes to in�nity. This implies existeneof loalised eigenstates. Our result agrees with those presented in [31℄, eventhe ranges are in approximate agreement.11



In Chapter 5 we return to the star graphs but using a di�erent approah.As explained in Chapter 2, the ondition for En to be an eigenvalue is thata ertain determinant is equal to zero. This determinant takes a partiularlysimple form for the star graphs, due to their speial struture. Then theeigenvalues of the Laplaian are the zeros of a quasi-periodi meromorphifuntion. We apply the tehnique developed in [32℄ to derive the two-pointorrelation funtion of the zeros. The two-point orrelation funtion is relatedto the form fator of Chapter 3 through the Fourier transform and we show thatit is indeed the ase, that is the answers derived by two ompletely di�erentapproahes are the same. It provides us with another on�rmation of the fatthat the summation over the periodi orbits is possible and gives the rightanswer, although it might be diÆult to perform.Chapter 5 gives us a representation of the form fator in the form of anintegral. This integral ontains all the information about the form fator,in partiular the information about the singularities. Studying the integralwe �nd the partiular pair of the singularities whih aused the divergeneof the series of Chapter 3. As onluded earlier from the Pad�e analysis, thesingularities are not poles, in fat we �nd that they are logarithmi. Wealulate the dominant ontribution at the singularities and as a orollaryobtain the asymptotis of the oeÆients of the power series expansion of theform fator. We also notie that the resulting expression for the two-pointorrelation funtion is exatly the same as the expression obtained in [32℄for the two-point orrelation of the spetrum of the �Seba billiard [33, 34℄, anintegrable system perturbed by a delta-funtion. Heuristially, the reason forsuh aÆnity is that the wave dynamis in both systems is entred around thepoint satterer, the delta funtion in the billiard and the entral vertex in thestar graphs.The \heavy" ombinatorial derivations used in the text are deferred to theAppendix. The derivation of the number of permutations without liaisons, aombinatorial quantity used in Chapters 3 and 4, was signi�antly simpli�ed12



from its original form [24℄. The derivations are illustrated with several �guresso if the reader hooses to enter the Appendix he should not abandon all hope.To summarise, we present a derivation of the two-point spetral statistisfor a lass of quantum graphs in the limit as number of verties tends to in�nity.We derive it in two ways. The �rst way uses the exat trae formula and alassi�ation of the periodi orbits on the graph; to the best of our knowledgeit is the �rst exat derivation of its kind. The seond way studies the statistisof the zeros of the transendental eigenvalue equation diretly. We show thatthese approahes produe equivalent results whih omplement eah other: the�rst result obtained in the form of the power series expansion is more eÆientfor numerial omputations and the seond result is in a onvenient form tostudy the singularities of the statisti. We also �nd that the spetral statistisare the same as those already found for �Seba billiard and we disuss the reasonsfor this oinidene. As an appliation of the ombinatorial methods developedin the work we derive an exat expression for the quantum return probabilityon the in�nite regular trees and analyse it numerially. We onlude thatfor a ertain range of the parameter values the return probability tends to anon-zero limit, hene there are loalised eigenstates.

13



Chapter 2
De�nitions and preliminaries
2.1 De�nitionsLet G = (V;B) be a graph where V is a �nite set of verties and B is the setof bonds, B � V � V (2.1.1)The set B is symmetri in the sense that b = (i; j) 2 B i� b = (j; i) 2 B, wherei; j 2 V. We only onsider graphs without loops, that is (j; j) 62 B. The bondsb = (i; j), as we de�ned them, are direted: they have an initial vertex, thevertex i, and an end-vertex, the vertex j; b denotes the reversal of the bond b.When we refer to \the non-direted bond (i; j)", we mean the ouple of bonds,(i; j) and (i; j) = (j; i). The number of verties is denoted by V = jVj and thenumber of direted bonds is 2B = jBj. The verties are usually marked by theintegers starting from 0 thus the set V = (0; : : : ; V � 1).De�nition 1. Assoiated to every graph is its V �V onnetivity (adjaeny)matrix C. Its elements are given byCi;j = 8<: 1 if (i; j) 2 B0 otherwise ; i; j = 1; :::; V: (2.1.2)Sine the set B is symmetri, the matrix C is symmetri too.14



2.1. De�nitionsDe�nition 2. The valeny vi of the vertex i is the number of verties j whihare onneted to i, i.e. vi =Xj Ci;j: (2.1.3)De�nition 3. The bond onnetivity matrix is the 2B � 2B matrix B withthe elements B(i;j)(k;l) = Æjk; (2.1.4)where (i; j), (k; l) 2 B.Example 1. The omplete graph KV is the graph with V = f1; : : : ; V g andB = V � V. That is there is a bond (i; j) for any i and j from V. Theonnetivity matrix of suh a graph has zeros on the diagonal and ones as itso�-diagonal elements. The valeny is the same for eah vertex, it is equal toV � 1.De�nition 4. A sequene of bonds fbigni=1, suh that Bbi;bi+1 = 1 for all i, isalled a yle if Bbn;b1 = 1 and bi 6= bj, bi 6= bj for all i 6= j.Example 2. The tree is any onneted graph with V = B + 1. The primeproperty of a tree is the absene of yles.Example 3. The star graph (also alled Hydra graph) is a tree with V =f0; 1; : : : ; Bg and the set of edges B = f(0; i); (i; 0) : i = 1; : : : ; Bg. The va-leny of eah vertex is equal to 1 exept for the vertex 0 with the valenyB. Let ePn be the set of all sequenesp = [b1; b2; : : : ; bn℄; bi 2 B; n � 2 (2.1.5)ompatible with B in the sense that Bbibi+1 = 1 for i = 1; : : : ; n where by bn+1we understand b1. We denote by eP the union of all ePn,eP = 1[n=2 ePn; (2.1.6)15



2.1. De�nitions
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0Figure 2.1: Examples of a graph (a), a tree (b) and a star graph ().(sine there are no loops, eP1 = ;). De�ne the yli shift operator � on ePn by��[b1; b2; : : : ; bn℄� = [b2; b3; : : : ; bn; b1℄: (2.1.7)We denote by Pn = ePn=� the set of all equivalene lasses in ePn with respetto the shift �.De�nition 5. For any sequene of edges p 2 ePn, its equivalene lass withrespet to the yli shift operator � is alled the periodi orbit. The number nis alled the period of the orbit. Thus the set Pn is the set of all orbits of periodn and P = [1n=2Pn. The list of the bonds in the order they are traversed bythe orbit p, surrounded by the round brakets, is alled the symboli ode ofthe orbit.Remark 1. The main di�erene between the periodi orbits and yles is thata periodi orbit is allowed to pass a bond more than one.For some periodi orbits p there is a shorter orbit q = (q1; : : : ; qm) ofperiod m, n = mr, suh thatp = (q1; : : : ; qm; q1; : : : ; qm; : : : ; q1; : : : qm) (2.1.8)Then we say that p is a repetition of the orbit q. The smallest m for whihdeomposition (2.1.8) is possible is alled the prime period of p and the or-responding r = n=m is alled the repetition number. If r = 1 we say that16



2.1. De�nitionsthe orbit is primitive. In the above notation eah orbit p 2 P orresponds tom = n=r sequenes from eP.Example 4. If we denote � = (0; 1), � = (1; 2),  = (2; 0) for the graphs onFig. 2.1(a), the orbit (�; �; ; �; �; ) has the period 6, the prime period 3 andthe repetition 2. It orresponds to 3 di�erent sequenes,[�; �; ; �; �; ℄ (2.1.9)[�; ; �; �; ; �℄ (2.1.10)[; �; �; ; �; �℄: (2.1.11)The graphs we will be onsidering are metri, that is eah bond b has alength, Lb. Naturally, Lb = Lb. Note that we do not onsider whether it isgeometrially possible to have suh a graph, e.g. we do not enfore the triangleinequality.As a rule, we will be assuming that the di�erent lengths are inommensu-rate (rationally independent) whih means that there are no integers ai 6= 0,suh that Xi aiLbi = 0; (2.1.12)for some bonds fbig. The length of an orbit is de�ned as the sum of lengthsof the bonds it passes, lp = nXi=1 Lbi ; (2.1.13)where p = (b1; : : : ; bn).If individual lengths are inommensurate then two di�erent orbits havethe same length if and only if they pass through the same set of non-diretedbonds the same number of times (although in a di�erent order). An obviousonsequene of this is that suh orbits have the same period.The simplest example of two orbits of the same length is an orbit and its17



2.1. De�nitions

Figure 2.2: Two di�erent orbits with the same length.reversal: p = (b1; b2; : : : ; bn) (2.1.14)p = �bn; : : : ; b2; b1� :A less trivial example is shown on Fig. 2.2.More rigorously, we assoiate with eah orbit a B-dimensional integer ve-tor with nonnegative omponentsp 7! s 2 NB0 ; (2.1.15)where N0 = f0; 1; : : :g. Here the omponents si indiate the numbers of timesthe orbit passes through the nondireted bond bi. Following [25℄ we all si thebond staying rates. Then two orbits have the same length if and only if theyorrespond to the same vetor s. Sometimes to indiate that a vetor from NB0orresponds to the orbit p we will write s(p) instead of just s.De�nition 6. Two orbits belong to the same degeneray lass if they have thesame length or, equivalently, if they orrespond (2.1.15) to the same vetor s.In order to onsider funtions on the graph we identify eah direted bondb with the interval [0; Lb℄. This gives us a loal variable xb on the bond b; itsgeometrial meaning is the distane from the initial vertex. Note that if thebond �b is the reverse of the bond b then x�b = Lb � xb. The meaning of the18



2.1. De�nitionsequality sign is that both x�b and Lb�xb refer to the same geometrial positionon the bond. Now one an de�ne a funtion on a bond and, therefore, de�nea funtion on the whole graph as a olletion of funtions on all bonds of thegraph. To ensure that the funtion is well de�ned we impose the ondition	b(xb) = 	�b (Lb � xb) for all b 2 B; (2.1.16)where 	b and 	�b are the omponents of a funtion 	 on the whole graph,de�ned on the direted bonds b and �b orrespondingly. In this way we havethat the derivatives depend on the diretion of the bond,	0b(xb) = �	0�b (Lb � xb) for all b 2 B; (2.1.17)and the integrals do not,Z Lb0 	b(xb)dxb = Z Lb0 	�b(x�b)dxb: (2.1.18)One an also de�ne the salar produt of two integrable funtions 	 and� as the sum of the integralsZ Lb0 	(xb)�(xb)dxb (2.1.19)over all b 2 B. This salar produt de�nes the spae L2(G).The funtions 	 2 L2(G) whih will be of interest to us are those whihare twie di�erentiable on the bonds (on the endpoints the derivatives are one-sided) with their seond derivative being in L2(G) again. In addition theysatisfy the following onditions:	(i;j)(0) = 	(i;k)(0) for any i; j; k 2 V; (2.1.20)i.e. 	 is ontinuous on verties andXj : Ci;j=1 ddx	(i;j)(0) = 0; (2.1.21)the so-alled urrent onservation ondition. The spae of all funtions satis-fying all the above onditions on a graph G we denote by F(G).19



2.1. De�nitionsWe are interested in the eigenspetrum of the operator � d2dx2 ating on thefuntions from F(G), namely the numbers k > 0 for whih the equation� d2dx2	 = k2	; 	 2 F(G) (2.1.22)has a nontrivial solution. We will show that there is a disrete (no aumulationpoints) unbounded set fkig1i=0 2 R satisfying this ondition.De�nition 7. The set of values fkig1i=0 for whih Eq. (2.1.22) has a solutionis alled the quantum spetrum of the graph G. To underline that we areonsidering the properties of the quantum spetrum we will sometimes referto G as quantum graph.It is important to verify that the operator � d2dx2 is self-adjoint. Indeed, ona bond b one hasZ Lb0 d2dx2b	b(xb)�b(xb)dxb = �d	bdxb �b �	bd�bdxb �Lb0 + Z Lb0 	b(xb) d2dx2b�b(xb)dxb:(2.1.23)Substituting the boundary values into the �rst summand on the right-handside and remembering Eq. (2.1.17) we obtain�d	bdxb �b�Lb0 = �d	bdxb (0)�b(0)� d	�bdx�b (0)��b(0): (2.1.24)When we sum suh expressions over all bonds they anel due to the ondi-tions (2.1.20) and (2.1.21), for exampleXb2B d	bdxb (0)�b(0) = X(i;j)2B d	(i;j)dx(i;j) (0)�(i;j)(0)=Xi2V �(i;j)(0) Xj : (i;j)2B d	(i;j)dx(i;j) (0) =Xi2V �(i;j)(0)� 0 = 0; (2.1.25)where we took out the fator �(i;j)(0) sine it does not depend on j due toondition (2.1.20). Contributions of the seond summand of the right-handside of Eq. (2.1.23) disappear in exatly the same manner. This shows thatthe operator � d2dx2 is symmetri. 20



2.2. Derivation of the quantization onditionIt is also lear that in order to haveXb2B �d	bdxb �b � 	bd�bdxb �Lb0 = 0 (2.1.26)for a �xed � and any 	 satisfying the onditions (2.1.20) and (2.1.21), thefuntions � must satisfy these onditions as well1 whih means that the do-main of the de�nition of the adjoint operator oinides with F(G). Thus theoperator � d2dx2 is self-adjoint.Proposition 1. The set fkig1i=0 is real, unbounded and disrete.Proof. The above statement follows from the fat that the operator � d2dx2 isself-adjoint and the graph (as the domain of de�nition of funtions from F(G))is ompat (see, for example, [35℄).2.2 Derivation of the quantization onditionThe general solution to Eq. (2.1.22) reads	(i;j)(x) = A(i;j) exp f�ikxg +B(i;j) exp fikxg ; (2.2.1)where A(i;j) and B(i;j) are arbitrary oeÆients that are to be �xed when weapply the boundary onditions, Eqs. (2.1.20) and (2.1.21).First of all, imposing ondition (2.1.16) we obtain the following relation,B(i;j) = A(j;i) exp ��ikL(i;j)	 : (2.2.2)Then, the urrent onservation ondition at the vertex i, Eq. (2.1.21), gives�ik Xj A(i;j) �Xj B(i;j)! = 0: (2.2.3)On the other hand we have the ontinuity ondition, Eq. (2.1.20), whih givesA(i;j) +B(i;j) = A(i;n) +B(i;n) (2.2.4)1This statement easily follows from the fat that it is possible to onstrut 	 2 F(G)satisfying 	(i;j)(0) = �i and d	bdxb (0) = �b for any given numbers f�ig and f�bg.21



2.2. Derivation of the quantization onditionfor any verties j and n adjoint to the vertex i.For a �xed n we sum equations (2.2.4) over all j adjoint to i:Xj A(i;j) +Xj B(i;j) = �A(i;n) +B(i;n)� vi; (2.2.5)where vi is the valeny of the vertex i. Together with Eq.(2.2.3) it gives2Xj A(i;j) = �A(i;n) +B(i;n)� vi: (2.2.6)Now we use relation (2.2.2) to eliminate the oeÆients B(i;n). Thus we arriveto the equation2Xj A(i;j) = vi �A(i;n) + A(n;i) exp ��ikL(i;n)	� (2.2.7)and, therefore,A(n;i) = exp �ikL(n;i)	 2vi Xj A(i;j) � A(i;n)! = D(n;i)(n;i)X(i;j) S(n;i)(i;j)A(i;j):(2.2.8)Here we denoted S(n;i)(i;j) = 2vi � Æj;n; (2.2.9)where Æj;n is the Kroneker delta, andD(n;i)(n;i) = exp �ikL(n;i)	 : (2.2.10)Thus we have a set of linear autonomous equations with respet to the oef-�ients A(i;j) and we are looking for its nonzero solutions. Equations (2.2.8)an be rewritten as the matrix equationa = DSa; (2.2.11)where a is the vetor of the oeÆients A(i;j) and 2B � 2B matries S andD(k) are formed out of the matrix elements D(n;i)(n;i) and S(n;i)(i;j) spei�edby Eqs. (2.2.9) and (2.2.10). The elements of the matries S and D(k) thatare not spei�ed are assumed to be zero. Thus we obtain the following matrixondition on k 22



2.3. Properties of the matrix DS. Trae formula.Theorem 1. The system of equations (2.1.20){(2.1.22) has nontrivial solu-tions if and only if k is a solution of the equationdet (I�DS) = 0; (2.2.12)where the matrixD is diagonal with k-dependent elements given by Eq. (2.2.10)and the matrix S, with the elements given by Eq. (2.2.9), does not depend onk.2.3 Properties of the matrix DS. Trae for-mula.The foremost property of the matrix DS is unitarity. Indeed, the matrixD = eikL, where L is the diagonal matrix 2B � 2B of lengths Lb, is unitaryand the matrix S is real and an have nonzero elements only in the plaesorresponding to 1s of the matrix B. Thus the salar produt of (n; i)-th rowwith (k; l)-th row is always zero if i 6= l. Further, the matrix S has vi � 1elements 2=vi and one element 2=vi � 1 in the row (n; i). The number ofnonzero elements is independent of n but the position of the element 2=vi � 1does depend on n. Therefore if l = i but k 6= n then the orresponding salarprodut is equal toX(l;m)2B S(n;i)(l;m)S(k;i)(l;m) = 2� 2vi � 2vi � 1�+ (vi � 2)� � 2vi�2 = 0: (2.3.1)If both l = i and k = n, one getsX(l;m)2B S2(n;i)(l;m) = � 2vi � 1�2 + (vi � 1)� � 2vi�2 = 1; (2.3.2)whih proves the unitarity of the matrix S.Sine the matrix DS is unitary, its eigenvalues have the form �ei�l(k)	2Bl=1.We would like to prove the estimate0 < minb2B Lb � d�ldk � maxb2B Lb for all l = 1; : : : ; 2B: (2.3.3)23



2.3. Properties of the matrix DS. Trae formula.Let jv(k)i be the unit eigenvetor orresponding to the eigenvalue ei�l(k) (inwhat follows we omit the subsript l). Di�erentiating the equationD(k)Sjv(k)i = ei�(k)jv(k)i (2.3.4)with respet to k we obtaindDdk Sjv(k)i+DSjv0(k)i = i d�dkei�jv(k)i+ ei�jv0(k)i; (2.3.5)where dDdk = iLD. Sine v is orthogonal to its derivative (v(k) belongs to theunit sphere for all k) and sine hvjDS = e�i�hvj , by multiplying Eq. (2.3.5)by hvj we arrive to hvjiLDSjvi = hvjiei� d�dkvi; (2.3.6)whih together with Eq. (2.3.4) leads tod�dk = hvjLjvi =Xb2B Lbjvbj2: (2.3.7)The estimate of Eq. (2.3.3) now easily follows.Theorem 1 tells us that we should be looking for the zeros of the determi-nant det (I�DS). The determinant is zero if and only if one of the eigenvaluesof DS is equal to 1 or, in other terms, �l(k) = 0 modulus 2� for some l. Thuswe an write d(k) �Xn Æ(k � kn) = 2BXl=1 Æ2�(�l(k)) ����d�ldk ���� ; (2.3.8)where Æ is the Dira delta funtion and Æ2� is the 2�-periodi Dira delta:Æ2�(x) = P1k=�1 Æ(x � 2�k). The funtion d(k) de�ned above is alled thespetral density funtion. It has the delta peaks at the values of k that we areinterested in. Expanding the funtion Æ2� as the Fourier seriesÆ2�(x) = 12� 1Xn=�1 eixn; (2.3.9)
24



2.3. Properties of the matrix DS. Trae formula.and notiing that the estimate (2.3.3) allows us to remove the modulus sign,we ontinued(k) = 12� 2BXl=1 1Xn=�1 ei�l(k)nd�ldk= 12� ddk 2BXl=1 �l(k) + 12� ddk 1Xn=1 1in 2BXl=1 �ei�l(k)n � e�i�l(k)n�= 12� ddk 2BXl=1 �l(k) + 1�= ddk 1Xn=1 1n 2BXl=1 ei�l(k)n= 12� ddk 2BXl=1 �l(k) + 1�= ddk 1Xn=1 1nTr(DS)n: (2.3.10)To simplify the �rst summand we notie that the determinant of the matrixDS is given by detDS = eikP2Bb=1 Lb detS = �eikP2Bb=1 Lb: (2.3.11)Alternatively, using the de�nition of the eigenphases f�lg2Bl=1,detDS = eiP2Bl=1 �l(k) (2.3.12)whih leads to ddk 2BXl=1 �l(k) = 2BXb=1 Lb � L: (2.3.13)Now we an expand the traes in the seond summand of Eq. (2.3.10) in termsof the matrix elements,Tr(DS)n = Xb1;::: ;bn(DS)b1b2(DS)b2b3 � � � (DS)bnb1= Xb1;::: ;bn eik(Lb1+Lb2+:::+Lbn )Sb1b2Sb2b3 � � �Sbnb1 ; (2.3.14)where [b1; b2; : : : ; bn℄ are all possible sequenes of edges. However sine Sbkbk+1is nonzero only if Bbkbk+1 6= 0, the only nonzero terms in the sum (2.3.14)orrespond to [b1; b2; : : : ; bn℄ 2 fPn. Introduing the notationAp � nYi=1 Sbibi+1; where p = [b1; b2; : : : ; bn℄ and bn+1 = b1; (2.3.15)25



2.4. Geometri meaning of the matrix Swe write Tr(DS)n = Xp2fPn Apeiklp = Xp2Pn nrpApeiklp ; (2.3.16)where the summation now is over the periodi orbits, lp is the length of theorbit p, Eq. (2.1.13), and rp is the repetition number of the orbit p.Substituting this expression for the trae into Eq. (2.3.10) we arrive to whatwe will refer to as the trae formulad(k) �Xn Æ(k � kn) = L2� + 1�Xp2P lprpAp os(klp): (2.3.17)It will provide the basis for our analysis sine it establishes a link betweenthe periodi orbits of the graph and its quantum spetrum. To the best ofour knowledge, this trae formula was �rst disovered by Roth [17℄. It wasthen independently derived by Kottos and Smilansky [19, 20℄ who proeededto analyse the statistis of the spetrum.2.4 Geometri meaning of the matrix STo understand the geometri meaning of the matrix S it is helpful to representthe general solution to Eq. (2.1.22) in the form	(i;j)(x) = A(i;j) exp ��ikx(i;j)	 + A(j;i) exp��ikx(j;i)	 ; (2.4.1)whih is obtained by substitution of Eq. (2.2.2) into Eq. (2.2.1). Thus one anonsider the wave on the nondireted bond (i; j) as the superposition of thewave travelling from j to i with the amplitude A(i;j) and the wave travellingfrom i to j with the amplitude A(j;i).The wave dynamis is realised through the matrix DS: all the waves A(i;j)arriving to the vertex i ontribute to the outgoing amplitude A(n;i) with theweights S(n;i)(i;j). Then, as the wave travels along the bond (i; n), it aquiresthe phase shift D(n;i)(n;i). The eigenfuntions of the operator � d2dx2 are those26



2.4. Geometri meaning of the matrix Sfuntions 	 (or indeed the vetors of amplitudes A(i;j)) whih are invariantunder the wave dynamis de�ned above.If we square the matrix elements of S, i.e. onsider the matrixM with theelements de�ned by M(i;j)(n;i) = ��S(n;i)(i;j)��2 ; (2.4.2)it is easy to see that the matrixM is stohasti, that is the sum of the elementsin eah row is equal to 1. Suh matrix de�nes a Markov proess on the graphG with ��S(n;i)(i;j)��2 being the probability to go from the bond (i; j) to thebond (n; i). One an onsider this proess as a lassial analogue of our wavedynamis.It is possible to generalise the matrix S in the view of the above onsidera-tions. Assume without loss of generality that the bonds numbered b1, b2, : : : ,bvi lead to the vertex i. Let S(i) be a vi � vi unitary matrix. Then we an putthe elements of the matrix S(i) instead of some elements of S in the followingmanner Sbkbn = S(i)kn: (2.4.3)This substitution will not hange the unitarity of S and we an onsiderthe generalised problem [23℄det (I�D(k)S) = 0; (2.4.4)where S is now the hanged matrix. The matrix S(i) is then alled the satteringmatrix at the vertex i. The diagonal elements of the matrix S(i) will be alledreetion (or baksattering) amplitudes and will be often denoted by r. Theo�-diagonal will be alled transmission (or normal sattering) amplitudes andwill be denoted by t.It an be shown that hanging the matrix S(i) orresponds to hoosingdi�erent boundary onditions at the vertex i.27



2.5. Smoothed trae formula2.5 Smoothed trae formulaThe trae formula as shown in Eq. (2.3.17) is exat: the right-hand side isa onvergent, in the sense of distributions, series whose sum is equal to thespetral density. However for some mathematial proofs it is more onvenientto onsider an approximation to the spetral density funtion whih is obtainedby smoothing the delta-peaks of the density funtion.Let ��(k) be a family of ontinuous funtions onvergent to the Dira deltafuntion in the sense of distributions as �! 0. Then the approximate spetraldensity d�(k) is equal to the onvolution of the density d(k) with the funtion��(k). As an example we an take��(k) = 1p��e�k2=�2 (2.5.1)so that d�(k) =Xn 1p��e�(k�kn)2=�2: (2.5.2)Now the orresponding approximation of the trae formula is also given bythe onvolution with ��(k),d�(k) = L2� + 1�Xp lprpAp Z 1�1 1p�� os (lp�) e�(k��)2=�2d�= L2� + 1�Xp lprpAp os (lpk) e�l2p�2=4: (2.5.3)Eq. (2.5.3) is easier to handle beause the fators e�l2p�2=4 improve the onver-gene of the series. From the weak onvergene (onvergene in the sense ofdistributions) of Eq. (2.3.17) we now move to the uniform onvergene for any� > 0.
28



2.6. Spetral statistisTo see it we write����� 1Xn=N Xp2Pn lprpAp os (lpk) e�l2p�2=4������ 1Xn=N X̀ �������Xp2Pnlp=` lprpAp os (lpk) e�l2p�2=4�������� 1Xn=N X̀ ` os (`k) e�`2�2=4 Xp2Pnlp=` ����Aprp ����� 1Xn=N nLmaxb e�(nLminb )2�2=4X̀ Xp2Pnlp=` ����Aprp ����/ 1Xn=N nLmaxb e�(nLminb )2�2=4nB�1; (2.5.4)where we sorted the orbits aording to their lengths (i.e. degeneray lasses)and then used the estimates from Appendix A.1 in the last line.2.6 Spetral statistisHere we introdue the main objets of our study: the spetral statistis asso-iated with the spetrum of the quantum graphs. The aim of this Setion is toexpress the spetral statistis in the form of sums over periodi orbits with theaid of the trae formula (2.3.17). Although for ompleteness we inlude disus-sions of onvergene of the spetral statistis, the material diretly relevant tothe subsequent investigations is wholly ontained in equations (2.6.1), (2.6.5),(2.6.6), (2.6.22), and (2.6.26), (2.6.30). These equations give the de�nitionsand the periodi orbit expansions of the mean density, two-point orrelationfuntion and the form fator orrespondingly.
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2.6. Spetral statistis2.6.1 Average densityThe average (mean) density of the eigenspetrum is de�ned byd � hd(k)ik � limT!1 1T Z T0 d(k)dk (2.6.1)and its meaning is the average number of the eigenvalues kn per interval ofunit length.De�ne d(T ) = 1T Z T0 d(k)dk (2.6.2)d�(T ) = 1T Z T0 d�(k)dk: (2.6.3)We inlude the following Proposition without proof.Proposition 2. If the funtion �� is suh that R ��(x)dx = 1 and ��(x) > 0for all x then for the orresponding d�,limT!1 d�(T ) = limT!1d(T ): (2.6.4)The equality of the limits here means that the limits either both do not exist orboth exist and are equal.Now we an integrate the series (2.5.3) and take the limit termwise (we ando it sine the series is uniformly onvergent) to obtaind = L2� ; (2.6.5)where L = Pb2B Lb. In the following we will usually resale the spetraldensity, i.e. onsider 1dd�kd�. The mean spaing between two eigenvalues ofsuh resaled density is equal to one.2.6.2 Two-point orrelation funtionThe two-point orrelation funtion is de�ned byR2(x) � �2�L �2�d(k)d�k + 2�xL ��k (2.6.6)� �2�L �2 limT!1 1T Z T0 d(k)d�k + 2�xL � dk:30



2.6. Spetral statistisAs it an easily be shown from the de�nition, the funtion R2 is even.If we assume, for simpliity, that L = 2� then the two-point orrelationfuntion R2(x) an be also expressed asR2(x) = limM!1 1M MXm=0 1Xn=0 Æ�x� (kn � km)�; (2.6.7)or it an be de�ned by its ation on a test funtion h(x),hh;R2i = limM!1 1M MXm=0 1Xn=0 h(kn � km): (2.6.8)From these equalities the meaning of the funtion R2(x) an be easily under-stood. For example, if we take h(x) to be normalised harateristi funtionof an interval2, one an see that hh;R2i ounts the average number of ouplesof eigenvalues whose di�erene lies in the interval. Basing on Eq. (2.6.7) onean also say that R2(x) is the density funtion of all possible di�erenes ofeigenvalues.We de�ne the smoothed two-point orrelation funtion byR2;�(x) � �2�L �2 limT!1 1T Z T0 d�(k)d��k + 2�xL � dk (2.6.9)where d�(k) =Pn ��(k � kn) with ��(k)! Æ(k) as �! 0.A proposition similar to Proposition 2 an be formulated for the two-pointorrelation funtion.Proposition 3. Let Æ(k) = lim�!0 ��(k), with ��(k) ontinuous and nonnega-tive. If there exists the average density d and if the funtion R2;�(x), as de�nedby Eq. (2.6.9), exists for some �0 then it exists for all � andlim�!0 (R2;�(x)�R2(x)) = 0 (2.6.10)in the weak sense.2although it is not a test funtion, under ertain onditions Eq. (2.6.8) will still makesense 31



2.6. Spetral statistisProof. We will give a shemati proof for the ase when the approximatingfuntions �� have ompat support. If we additionally require that �� arefrom C1 than their onvolution with os(lpk) will produe fators deayingexpronentially fast with lp. Suh fators will play the role of e�l2p�2=4 in a prooflike in Eq. (2.5.4).Let the funtions �� have their support inside the interval [�a; a℄. We alsoassume, for simpliity, that L = 2�.Then for a �xed x and � we an estimate1T Xa<km<T�aa<x+kn<T�a��(x� (kn � km)) � 1T Z T0 d�(k)d�(k + x)dk (2.6.11)� 1T X�a<km<T+a�a<x+kn<T+a��(x� (kn � km));where ��(k) = Z 1�1 ��(�)��(�+ k)d�: (2.6.12)The funtion �� is bounded thus the di�erene between the left and the rightestimate in Eq. (2.6.11) is in the number of the eigenvalues in two intervals,[�a; a℄ and [T � a; T + a℄. Suh number, divided by T , must derease to zeroas T !1 (otherwise the average density d would not exist). Thus we haveR2;�(x) = limM!1 1M MXm=0 1Xn=0 �� (x� (kn � km)) ; (2.6.13)The funtions ��(k) have support in the interval [�2a; 2a℄ and also onvergeto delta funtions as �! 0.Introdue the notationF�(M;x) = MXm=0 1Xn=0 �� (x� (kn � km)) ; (2.6.14)F (M;x) = MXm=0 1Xn=0 Æ (x� (kn � km)) : (2.6.15)We would like to prove that for any test funtion h(x) with support in [�b; b℄,lim�!0 � limM!1 1M DF (M;x)� F�(M;x); h(x)E� = 0: (2.6.16)32



2.6. Spetral statistisSine the funtions ��(k) approximate Æ(k), we havejhÆ(x� k)� ��(x� k); h(x)ij � �(�)! 0; (2.6.17)as �! 0 for any �xed h(x) and for all values of the shift k.Now we an estimate���DF (M;x)� F�(M;x); h(x)E��� < N(M)�(�); (2.6.18)where N(M) is the number of pairs kn, km suh that the support of the funtion�� (x� (kn � km)) overlaps with support of h(x). In other words, it is numberof pairs of eigenvalues kn, km suh that m < M and kn�km 2 [�2a�b; 2a+b℄.The existene of R�0(x) for some �0 implies that limM!1N(M)=M is bounded.This remark proves Eq. (2.6.16).Using Proposition 3, we substitute Eq. (2.5.3) into de�nition (2.6.9) toobtainR2;�(x) = �2�L �2 limT!1 1T Z T0 " L2� �d�(k) + d��k + 2�xL �� L2�� (2.6.19)+ 1�2 Xp;q lplqrprqApAq os (lpk) os�lqk + lq L2�� e�(l2p+l2q)�2=4#dk;where the double series in the seond line is uniformly onvergent with re-spet to k. The integration of the summand in the �rst line produes (.f.Subsetion 2.6.1) 2�L �d+ d� L2�� = 1; (2.6.20)while in the seond line we expand the produt of osinesos (lpk) os�lqk + lq 2�xL � = 12 �os�(lq � lp)k + lq2�xL �+ os�(lp + lq)k + lq2�xL �� : (2.6.21)Now when we integrate and take the termwise limit, the only terms left willbe those whih had the oeÆient of k in the osine being equal to zero. Thus33



2.6. Spetral statistisfrom the double sum only the pairs of periodi orbits with equal length willsurvive,R2;�(x) = 1 + 2L2 Xp;q2P lplqrprqApAq os�lq2�xL � e�(l2p+l2q)�2=4Ælp;lq= 1 + 2L2 Xs `2 os�lq2�xL � e�`2�2=20� Xs(p)=s Aprp 1A2 ; (2.6.22)where ` is the length of the periodi orbits from the degeneray lass s and thesymbol Ælp;lq is equal to 1 if lp = lq and is 0 otherwise. Using Theorems 3 and4 from Appendix A.1 one an show that the series in Eq. (2.6.22) is onvergentuniformly in x for any value of � > 0. Thus R2;�(x) exists and onverges toR2(x) as �! 0.Remark 2. The main (and only) e�et of the averaginglimT!1 1T Z T0 � dk; (2.6.23)was to remove the osines, as in Eq. (2.6.21), when lp 6= lq and thus restritthe summation in (2.6.22) to the pairs of orbits of the same length. Anotherway to ahieve this is to average with respet to individual bond lengths andthen send k to in�nity,limk!1Z L0+�LL0 � � �Z L0+�LL0 os ((lq � lp)k + �) dL1�L � � � dLB�L = Ælp;lq os�: (2.6.24)The above follows from the representationslp = BXi=0 si(p)Li; lq = BXi=0 si(q)Li; (2.6.25)where si(p) is the staying rate of the orbit p on the ith bond, and the fatthat unless si(p) = si(q), the integration with respet to Li will produe afator of order k�1. Thus the averaging de�ned in (2.6.24) is formally equiv-alent to averaging (2.6.23), although it is hard to justify it more rigorously.Averaging (2.6.24) will be employed in Chapter 5.34



2.6. Spetral statistis2.6.3 The form fatorAnother funtion assoiated with the spetrum is the form fator K(�). Theform fator K(�) is the Fourier transform (in the generalised sense) of thetwo-point orrelation funtionK(�) � Z 1�1(R2(x)� 1) exp(2�ix�)dx: (2.6.26)Sine the Fourier transform is ontinuous, we an write K(�) = lim�!0K�(�),where K�(�) � Z 1�1(R2;�(x)� 1) exp(2�ix�)dx: (2.6.27)Taking the Fourier transform termwise usingZ 1�1 e2�ix� os�2�xlpL � dx = 12Æ�� + lpL� + 12Æ�� � lpL� ; (2.6.28)we arrive toK�(�) = 1L2 Xp;q2P lprp lqrqApAqÆ�� � lpL� e�(l2p)�2=2Ælp;lq ; (2.6.29)for � > 0 (the form fator is even: K(��) = K(�)). Now we an take thelimit �! 0 termwise to �nally obtain the periodi orbit expansion of the formfator, K(�) = 1L2 Xp;q2P lprp lqrqApAqÆ�� � lpL� Ælp;lq: (2.6.30)In the next hapter we derive an expansion for the form-fator for star-graphs (see Example 3) starting with Eq. (2.6.30) and then \enumerating" theperiodi orbits and the degeneray lasses.
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Chapter 3
Form-fator for the star graphs
In this hapter we study the form-fator K(�) (de�ned by Eqs. (2.6.26-2.6.30))in the limit B ! 1 for a speial family of graphs, known as star graphs.These are graphs with B+1 verties marked 0 to B and with the set of bondsB = f(0; i); (i; 0) : i = 1 : : : Bg; see Fig. 2.1. For simpliity we shall numberthe (nondireted) bonds by the number of their outward endvertex. For stargraphs the valeny of the vertex 0 is B and the valeny of the other verties is1 whih signi�antly simpli�es the matrix S; for example, the baksatteringfrom the verties 1 : : : v has the weight 1. We shall all suh baksatteringstrivial. As for the transitions through the vertex 0, the baksattering hasthe weight r = B�2B while normal sattering has the weight t = 2=B. Thus itis lear that in the limit B ! 1 the leading-order ontributions ome fromorbits with the maximum number of nontrivial baksatterings. This will formthe basis of our analysis.
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3.1. Expansion of the form fator3.1 Expansion of the form fator3.1.1 General formulaeIn Setion 2.6.3 we derived an expansion of the form-fator in terms of theperiodi orbits,K(�) = 1L2 1Xn=2 Xp;q2Pn lprp lqrqApAqÆ�� � lpL� Ælp;lq ; (3.1.1)when � > 0 (K is an even funtion). Loosely speaking, the form fator isa sum of delta-funtions positioned at the lengths of the periodi orbits andweighted by the fators Ap. A very important fator in Eq. (3.1.1) is theoupling between di�erent orbits of the same length whih is present due tothe Kroneker delta. It shows that the ontribution omes only from theouples of orbits p and q whih belong to the same degeneray lass.Let us onsider the ontribution of a partiular degeneray lass hara-terised by the length ` of its orbits,Xp;q : lp=lq=` r̀p r̀qApAqÆ�� � L̀� = `2Æ�� � L̀�0� Xp2Pn : lp=` Aprp 1A2 : (3.1.2)This allows us to writeK(�) = 1L2 1Xn=2 X̀ `2Æ�� � L̀�0� Xp2Pn; lp=` Aprp 1A2 ; (3.1.3)where the �rst (outmost) sum is over all periods, the seond is over all degen-eray lasses, parametrised here by the length `, and the last is over the orbitswithin the degeneray lass.In this Chapter we aim to alulate the weak limit of K(�) as B !1 andour approah is best desribed with the aid of Fig. (3.1). On the shematidrawing of the form fator for a B = 3 star graph the individual lengths of thebonds are hosen in suh a way that the delta funtions orresponding to thedegeneray lasses of the period 2k (on star graphs all orbits have even period)37



3.1. Expansion of the form fator
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Figure 3.1: Shemati plot of the form fatorK(�) and its approximation eK(�)for a 3-star graph. The delta funtions are denoted by arrows pointing up.are lustered around the point k=B. Then we an integrate K(�) against theharateristi funtions of the intervals of the size 1=B around these pointsobtaining the stairase approximation to the form fator whih we denote byeK(�). Eah step in eK(�) ollets in itself all ontributions from orbits of thesame period. It is easy to see that eK(�) and K(�) have the same weak limitas B ! 1, therefore it is enough to study the approximation eK(�). Theondition on the bonds lengths and the details of the integration are desribedbelow.We assume that the individual lengths of the edges are densely distributedaround their average, whih, without loss of generality, we take to be unity.Piking the lengths at random does not ontradit our usual ondition thatthe lengths should be inommensurate. In fat, having ommensurate lengthsis an event of zero probability.For example, we an use the uniform distribution on the interval [1 �1=(2B); 1 + 1=(2B)℄ in suh a way that L = 2B. Note that the distributionhanges with the valeny B. This is done in suh a way that the orbits of period38



3.1. Expansion of the form fator2k have their lengths distributed in the interval [2k � k=B; 2k + k=B℄ and,therefore, when k=B � 1 the orresponding delta funtions are onentratedin the interval � kB � k2B2 ; kB + k2B2� � � kB � 12B; kB + 12B� : (3.1.4)Thus the ontribution from orbits of di�erent period will be on�ned to non-interseting intervals if k < B. To approximate the form fator around k=Bwe integrate it against the harateristi funtion of the orresponding interval� kB � 12B ; kB + 12B � and divide by the length 1=B of the interval. This ontri-bution is equal to eK(�) = BL2 X̀ `20� Xp2P2k; lp=` Aprp 1A2 (3.1.5)for � 2 � kB � 12B ; kB + 12B �. As mentioned above, eK(�) and K(�) have the sameweak limitK lim(�) as B !1 in the sense of distributions. In what will follow,to determine the value of the form fator K at a point � we will send both Band k to in�nity in suh a way that limk=B = � .Under the above onditions on the distribution of the lengths, the formfator K(k=B) is well approximated by another quantity, hjTrS2kj2i=(2L), theperiodi orbit expansion for whih an be obtained from (3.1.5) by substituting` = 2k. In what follows we make the approximation ` � 2k (i.e. onsiderhjTrS2kj2i=(2L) instead of K(k=B)) but still refer to the resulting expressionas the form fator.Sine the star graphs are speial we will have to hange the onventionswe introdued in Chapter 2, in order to simplify notation. For eah orbit thenumber of traversals of a given bond is even so throughout this Chapter we willount the traversals in one diretion only, e.g. from the entre to periphery.As before, eah degeneray lass will be marked by a vetor s. However nowthe omponent si of the vetor s is the number of traversals of the bond i inthe outward diretion. When we write a symboli ode for an orbit p, we also39



3.1. Expansion of the form fator
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Figure 3.2: An example of simpli�ed notation for the periodi orbit and theorresponding degeneray lass.list only traversals of a bond in the outward diretion. For example to denotethe orbit passing through the bonds (0; 1), (1; 0), (0; 3), (3; 0), (0; 4) and (4; 0)suessively, as depited in Fig. 3.2, we will use the simpli�ed notation (1; 3; 4).Clearly this information is suÆient to identify the orbit.We start by dividing all orbits into B groups, based on the number j ofdi�erent edges the orbit traverses. This number is an invariant of the degen-eray lass; thus the sums over the degeneray lasses will remain intat. Wewill be interested in the degeneray lasses with exatly j nonzero omponentsin their vetor s and with jsj = Pvi=1 si = k, the half-period. Thus, writingthe symboli ode for an orbit p from suh a degeneray lass, we get a se-quene of k symbols of j di�erent types. When we alulate the weight Apof the orbit, Eq. (2.3.15), eah pair of di�erent symbols standing next to eahother ontributes the fator t = 2=B to Ap and eah pair of idential symbolsgives r = 2=B � 1. These ontributions multiply together to produe Ap, forexample the orbit (1; 1; 2; 2; 1; 3) givesAp = t4r2 = � 2B�4� 2B � 1�2 : (3.1.6)Note that the transition between last 3 and �rst 1 is also ontributing. Avery important feature of an orbit is the number of groups of idential symbolsstanding next to eah other. For example, the orbit (1; 1; 2; 2; 1; 3) has two40



3.1. Expansion of the form fatorgroups of \1"s, one group of \2"s and one of \3"s. On the other hand, dueto the yliity, the orbit (1; 2; 2; 1) has only one group of \1"s. It is learthat the number of transitions of the orbit through the entral vertex (thusontributing the fator t) is given by the total number of the groups1. Thus toalulate the ontribution from a degeneray lass, it is neessary to know thenumber of orbits in this degeneray lass that have gi groups of the symbol\i" in their representation, i = 1; : : : ; j. We denote suh number by N g1;::: ;gjs1;::: ;sj .Then we an write for the ontribution of a degeneray lass s0Xs(p)=s0 Aprp = s1Xg1=1 � � � sjXgj=1N g1;::: ;gjs1;::: ;sj tGrk�G; (3.1.7)where G =Pji=1 gi is the total number of groups. In order for Eq. (3.1.7) to beexat, the number N g1;::: ;gjs1;::: ;sj should take into aount the repetitions, i.e. ountan orbit whih is a repetition of another orbit not as 1 but as 1=rp.We now rewrite the ontribution of the degeneray lass s in the formXs(p)=s Aprp = rk(t=r)j s1Xg1=1 � � � sjXgj=1N g1;::: ;gjs1;::: ;sj (t=r)G�j = rk(t=r)jDs(B) (3.1.8)and thus obtain from Eq. (3.1.5)K lim(�) = limB!1 eK(�) = limB!1 BL2 Xs (2k)2r2k(t=r)2jD2s(B)= K1(�) + limB!1 BL2 1Xj=2(2k)2�Bj ��B � 2B �2k � 2B � 2�2jHj(B)� 1Xj=1 Kj(�); (3.1.9)where� the term for j = 1 is slightly di�erent and has to be treated separately,� L = 2B is the total length of the graph,� (2k)2 is the approximate squared length of the orbits,1The only exeption to this rule are the orbits whih have 1 group in total, that is theorbits that are on�ned to one edge. Suh orbits do not have fators t in their oeÆient Ap41



3.1. Expansion of the form fator� the binomial oeÆient �Bj � is the number of ways to hoose j traversededges out of the available B,� and Hj(B) = Xjsj=kD2s(B) (3.1.10)is the sum over all degeneray lasses s 2 N j with all j omponentsnonzero.Taking the limit as B ! 1 in Eq. (3.1.9) termwise and with � = k=B�xed, we �ndK lim(�) = limB!1 eK(�) = K1(�) + 1Xj=2 4jj!Hj� 2 exp(�4�); (3.1.11)where Hj = limB!1B1�jHj(B) and the limitlimB!1�B � 2B �2k = limB!1�1� 1B=2�4�B=2 = exp(�4�) (3.1.12)was used.3.1.2 Calulation of K1(�)K1(�) is the ontribution from the orbits whih are on�ned to only one edge.All fators in K1(�) are the same as for general j, with the exeption thatthe fator � 2B�2�2j disappears altogether. Indeed, the weight of an orbit whihpasses through only one bond is rk, not rk�1t. The number of orbits in adegeneray lass is obvious for j = 1, it is N g1s1 = 1=k for g1 = 1 and 0 otherwise(here s1 = k). This number takes into aount the repetitions: there is onlyone orbit and it has rp = k.Adjusting the formula in Eq. (3.1.9) we obtainK1(�) = limB!1" BL2 (2k)2B�B � 2B �2k �1k�2# = exp (�4�) ; (3.1.13)where � = k=B was held �xed. 42



3.1. Expansion of the form fatorAs we shall see later this is the dominant ontribution for small � : the nextontribution oming form the orbits whih traverse only 2 di�erent bonds is oforder � 3 as � ! 0.3.1.3 The j = 2 ontributionThe j = 2 ontribution is relatively simple and an be onsidered separatelyto illustrate our approah. It has the formK2(�) = 422! � 2 exp(�4�)H2 (3.1.14)where H2 = limB!1 H2(B)B is the quantity we now want to alulate. Writingout the formula for H2(B) we arrive toH2 = limB!1 1B k�1Xs1=1D2(s1;k�s1); (3.1.15)with D(s1;s2)(B) being the ontribution from orbits whih traverses only twoedges s1 and s2 times respetively. Now we make use of the fat that as B !1the sum an be replaed by an integral, so thatH2 = Z �0 D2(q1; � � q1)dq1; (3.1.16)where D(q1; q2) is the B !1 limit of D(s1;s2)(B), qi = si=B and � = k=B, asbefore. D(s1;s2)(B) an be expanded asD(s1;s2)(B)= 1 + 12b(s1; 2)b(s2; 2)� 2B � 2�2 + 13b(s1; 3)b(s2; 3)� 2B � 2�4 + : : := 1Xg=1 1gb(s1; g)b(s2; g)� 2B � 2�2g�2 ; (3.1.17)where 2=(B � 2) = �t=r and b(s; g) = �s�1g�1� is the number of partitions of aninterval of length s into g non-interseting subintervals of integer length (seeSetion A.2 for the derivation). The idea of the deomposition is based on the43



3.1. Expansion of the form fatorfat that a j = 2 orbit may be represented in general as(1; : : : ; 1| {z }a1 ; b1z }| {2; : : : ; 2; 1; : : : ; 1| {z }a2 ; : : : ; 1; : : : ; 1| {z }ag ; bgz }| {2; : : : ; 2); (3.1.18)orresponding to a1 traversals of the �rst edge, then b1 traversals of the seond,then another a2 of the �rst, and so on. Thus, as we see, g1 = g2 = g. Thesum Pgi=1 ai is equal to s1 and Pgi=1 bi = s2. In the general term in (3.1.17),b(s1; g) is the number of ways to deompose s1 into a sum of ai's, b(s2; g) is thenumber of ways to deompose s2 into a sum of bi's multiplied by the weightfator (t=r)g1+g2�j and divided by g, whih orresponds to the yli symmetryand takes are of the repetitions at the same time (as will be explained in detailin the next setion). There is no approximation involved in (3.1.17).Taking the limit B !1 of D(s1;s2)(B) termwise while keeping q1 = s1=B,q2 = s2=B �xed, we obtain2D(q1; q2) = 1 + 12q1q222 + 13 12!q21 12!q2224 + : : : (3.1.19)= 1Xg=1 (4q1q2)g�1g!(g � 1)! = I1 �4pq1q2�2pq1q2 ;where I1(x) is a Bessel funtion, and so, using the substitution q1 = (� +� os�)=2 we evaluateH2 = Z �0 I21 (4pq1(� � q1))4q1(� � q1) dq1 = 12� Z �0 I21 (2� sin�)sin� d�= 14� 2 (I1(4�)� 2�) : (3.1.20)Thus, K2(�) = 2 exp (�4�) (I1(4�)� 2�) : (3.1.21)Sine I1(4�) = 2� + 4� 3 +O(� 5), K2(�) is of order � 3 as � ! 0.2In this partiular ase it is possible to justify the validity of the termwise limit: individ-ual terms in D(s1;s2)(B) are inreasing with B and the whole sum is bounded from abovebyD(3�; 3�). 44



3.1. Expansion of the form fator3.1.4 Kj(�) for general jWe now proeed to alulate the degeneray fator Ds(B) of (3.1.8) for generalj. Without loss of generality we assume that the edges numbered 1 to j aretraversed. We are looking for the number N g1;::: ;gjs1;::: ;sj of all orbits whih passthrough the bond i si times in suh a way that these traversals grouped intogi groups.Let us onsider a slightly di�erent problem. We want to ount the numberof all sequenes of symbols, si symbols of the type i grouped into gi groups.We require the sequenes to start with a group of 1s and to end with a groupof symbols di�erent from 1. The di�erene from the orbits is that we do notidentify the sequenes obtained from one another by a shift. Eah orbit pwill then orrespond to g1=rp suh sequenes whih is best illustrated with anexample.Example 5. The orbit (1; 2; 1; 1; 3; 3; 1; 4) orresponds to 3=1 = 3 sequenes[1; 2; 1; 1; 3; 3; 1; 4℄; [1; 1; 3; 3; 1; 4; 1; 2℄ and [1; 4; 1; 2; 1; 1; 3; 3℄: (3.1.22)The orbit (1; 2; 1; 1; 3; 1; 2; 1; 1; 3) with rp = 2 will orrespond to 4=2 = 2sequenes [1; 2; 1; 1; 3; 1; 2; 1; 1; 3℄ and [1; 1; 3; 1; 2; 1; 1; 3; 1; 2℄: (3.1.23)Thus if we divide the number of all sequenes, haraterised by s1; : : : ; sjand g1; : : : ; gj, by g1 then we will obtain the number of all periodi orbits withthe repetitions already taken into aount. In fat, this is what was done inthe previous setion: we divided the number of all sequenes, b(s1; g)b(s2; g),by the number of groups g1 = g.To obtain all possible sequenes we follow the following algorithm. Firstwe divide the symbols i into gi groups. Then we mix the groups in suh away that: (a) the order of the groups of the same symbol is preserved, (b) the�rst group of 1s omes �rst, () the last group is not a group of 1s and (d) no45



3.1. Expansion of the form fator
11 − 1 − 11 222 333 − 3
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Figure 3.3: An example of produing sequenes satisfying onditions (a)-(d)for s1 = 5, s2 = 3, s3 = 4, g1 = 3, g2 = 1 and g3 = 2.two groups of the same symbols stand next to eah other. This algorithm isillustrated in Fig. (3.3).The number of possible sequenes of the given struture is thus given bythe produt of the available hoies at eah step,Rg1;::: ;gj jYi=1 �si � 1gi � 1�: (3.1.24)The �rst step produes the fators b(si; gi) = �si�1gi�1�, where b(s; g) is the numberof deompositions of the integer s into a sum of g nonzero summands, seeSetion A.2. The seond step gives the fator Rg1;::: ;gj whih is the number ofways to mix g1; : : : ; gj groups in suh a way that onditions (a)-(d) are satis�edand whih is disussed in detail in Setion A.3. This fator, alled the numberof permutation without liaisons is equal toRg1;::: ;gj = (�1)Gg1 Xk1;::: ;kj (�1)k1+:::+kjk1 + : : :+ kj�k1 + : : :+ kjk1; : : : ; kj � jYi=1 �gi � 1ki � 1�;(3.1.25)Thus the number we are looking for, N g1;::: ;gjs1;::: ;sj , is given byN g1;::: ;gjs1;::: ;sj = (�1)G Xk1;::: ;kj (�1)KK � Kk1; : : : ; kj� jYi=1 �gi � 1ki � 1��si � 1gi � 1�; (3.1.26)46



3.1. Expansion of the form fatorwhere we denoted K = k1 + : : :+ kj.Going bak to Ds(B) we obtain with the aid of Eq. (3.1.26)Ds(B) = s1Xg1=1 � � � sjXgj=1N g1;::: ;gjs1;::: ;sj � tr�G�j (3.1.27)= Xg1;::: ;gj �� tr�G�j (�1)j Xk1;::: ;kj (�1)KK � Kk1; : : : ; kj�� jYi=1 �gi � 1ki � 1��si � 1gi � 1�= (�1)j Xg1;::: ;gj Xk1;::: ;kj (�1)KK � Kk1; : : : ; kj�� jYi=1 �� tr�gi�1�gi � 1ki � 1��si � 1gi � 1�where, as before, G = Pji=1 gi and K = Pji=1 ki. Now we take the limitB !1 termwise keeping si=B = qi �xed�� tr�gi�1�si � 1gi � 1� = � 2B � 2�gi�1�si � 1gi � 1�! (2qi)gi�1(gi � 1)! : (3.1.28)We obtainD(q1; : : : ; qj) = Xg1;::: ;gj Xk1;::: ;kj (�1)KK � Kk1; : : : ; kj� jYi=1 (2qi)gi�1(gi � 1)!�gi � 1ki � 1�;(3.1.29)where the summation over gi goes from 1 to in�nity, ki goes from 1 to gi andwe dropped the fator (�1)j beause D(q1; : : : ; qj) is going to be squared.Interhanging the summation signs and rearranging the general term in theprodut givesD(q1; : : : ; qj) = Xk1;::: ;kj Xg1;::: ;gj (�1)KK � Kk1; : : : ; kj� jYi=1 (2qi)gi�ki(gi � ki)! (2qi)ki�1(ki � 1)!= Xk1;::: ;kj (�1)KK � Kk1; : : : ; kj� jYi=1 (2qi)ki�1(ki � 1)! Xg1;::: ;gj jYi=1 (2qi)gi�ki(gi � ki)! ; (3.1.30)where now the summation over ki goes from 1 to in�nity and gi goes from ki toin�nity. Performing the summations over gis we get Qji=1 exp (2qi) and, sine47



3.1. Expansion of the form fatorq1+ : : :+ qj = � and exp (q1 + : : :+ qj) � exp (q1)+ : : :+exp (qj), we arrive atD(q1; : : : ; qj) = exp(2�) Xk1;::: ;kj (�1)KK � Kk1; : : : ; kj� jYi=1 (2qi)ki�1(ki � 1)! ; (3.1.31)where the summation over ki goes from 1 to in�nity.For onveniene we shift the summation, ni = ki � 1,D(q1; : : : ; qj) = exp(2�) 1Xn1;::: ;nj=0(�2)N (N + j � 1)! jYi=1 qniini!(ni + 1)! ; (3.1.32)where N =Pji=1 ni. Using the fat one again that as B !1 the summationin (3.1.10) an be replaed by the integralHj = ZPji=1 qi=� D2(q1; : : : ; qj)dq1 : : : dqj�1; (3.1.33)where the integration is performed over j � 1 variables. It is lear that toperform the integration we need to do the integrals of the typeZPji=1 qi=� qm11 � � � qmjj dq1 : : : dqj�1: (3.1.34)For ompleteness we inlude the derivation of this integral for j = 3. We haveZq1+q2+q3=� qm11 qm22 qm33 dq1dq2dq3 = Z �0 qm22 dq2 Z ��q20 qm11 (� � q2 � q1)m3dq1:(3.1.35)Thus �rst we need to evaluate the integral of the formZ y0 xa(y � x)bdx; (3.1.36)whih is exatly (3.1.34) for j = 2. Repeatedly integrating by parts we obtainZ y0 xa(y � x)bdx = ba+ 1 Z y0 xa+1(y � x)b�1dx = : : :: : : = b!(a+ 1) � � � (a+ b) Z y0 xa+bdx= a!b!(a+ b + 1)!ya+b+1: (3.1.37)48



3.1. Expansion of the form fatorSubstituting this result into Eq. (3.1.35) produesZq1+q2+q3=� qm11 qm22 qm33 dq1dq2dq3 = m1!m3!(m1 +m3 + 1)! Z �0 qm22 (��q2)m1+m3+1dq2= m1!m3!(m1 +m3 + 1)! m2!(m1 +m3 + 1)!(m1 +m2 +m3 + 1)!�m1+m2+m3= m1!m2!m3!(m1 +m2 +m3 + 1)!�m1+m2+m3 : (3.1.38)It is straightforward to derive the formula for general j,ZPji=1 qi=� qm11 � � � qmjj dq1 : : : dqj�1 = m1! � � �mj!(M + j � 1)!�M+j�1; (3.1.39)where M =Pji=1mi.Now we expand the square in Eq. (3.1.33) and apply Eq. (3.1.39) to obtainHj = exp(4�) 1Xk1;::: ;kj=0n1;::: ;nj=0(�2)N+K�N+K+j�1 (N + j � 1)!(K + j � 1)!(N +K + j � 1)!� jYi=1 (ni + ki)!ni!ki!(ni + 1)!(ki + 1)! ; (3.1.40)where K =Pji=1 ki and N =Pji=1 ni. Therefore, the �nal result for Kj(�) isKj(�) = 4jj! 1XM=0CM�M+j+1 (3.1.41)and so K lim(�) = K1(�) + 1Xj=2 1XM=0 4jj!CM�M+j+1; (3.1.42)whereCM = (�2)M Xk1+:::+kj+n1+:::+nj=M(K + j � 1)!(N + j � 1)!(M + j � 1)! jYi=1 �ni+kini �(ni + 1)!(ki + 1)!(3.1.43)with K =Pji=1 ki, N =Pji=1 ni, and the sum being performed over the 2j�1variables ki and ni (i.e. 2j variables minus one onstraint).This is the main result of the hapter. It onstitutes a general formulafor omputing the oeÆients in the expansion of K(�) (from now on we will49



3.1. Expansion of the form fatoralways omit the oversrip lim when talking about K lim(�)) in powers of �around � = 0. Note that as � ! 0, the sum in (3.1.42) tends to zero as � 3,and so it follows from (3.1.13) that K(�) ! 1 in this limit. This is the sameas for the Poisson form fator, and unlike the random-matrix results, whih allapproah zero linearly in � . However, the Poisson form fator is independentof � , and K(�) here learly is not: after an initial derease as � inreases, iteventually rises to the limiting value of one[11℄. In this sense, the result isintermediate between the Poisson and random-matrix forms.The expression for CM an be written in another form that is more suitablefor numerial omputation. De�ningF1(K;N) = �K+NN �(N + 1)!(K + 1)! (3.1.44)and usingXk1+:::+kj+n1+:::+nj=M (K + j � 1)!(N + j � 1)!(M + j � 1)! jYi=1 �ni+kini �(ni + 1)!(ki + 1)!= XK+N=M (K + j � 1)!(N + j � 1)!(M + j � 1)! Xk1+:::+kj=Kn1+:::+nj=N jYi=1 �ni+kini �(ni + 1)!(ki + 1)! (3.1.45)it follows thatCM = (�2)M MXK=0 (K + j � 1)!(M �K + j � 1)!(M + j � 1)! Fj(K;M �K); (3.1.46)where Fj(K;N) = KXk=0 NXn=0 F1(k; n)Fj�1(K � k;N � n); (3.1.47)whih is a form of onvolution. The expression (3.1.46) for the oeÆients CMis omputationally more onvenient beause there is a lear reursive relationfor the oeÆients Fj(K;N) whih an be further failitated using the disreteFourier transform. The results of numerial omputations with the �rst fewoeÆients of the expansion are shown in Fig. 3.4. Even few �rst terms of theexpansion give a reasonable agreement with the numerial data up to around50



3.2. A summable approximation
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Figure 3.4: The �rst 11 terms (solid line) and the �rst 7 terms (dashed line) inthe expansion for K(�), ompared with data from the numerial simulation byKottos and Smilansky [20℄ for hjTrS2kj2i=(4B), B = 50 (irles). The dottedline orresponds to the diagonal approximation (3.2.3)0:6. However it seems that after 0:6 the series might diverge. In Setion 3.3we will see that it is indeed the ase and we will study the possible ways toimprove the onvergene.3.2 A summable approximationOne possible approximation to eK(�) an be made by ignoring two ontribu-tions:1. the o�-diagonal terms in (3.1.1). We all a term in the summation in(3.1.1) diagonal if it orresponds to p = q, otherwise we all it o�-diagonal. In symboli form, the diagonal approximation isK(�) � Kdiag(�) = 1L2 1Xn=2 Xp2Pn� lprp�2A2pÆ�� � lpL� : (3.2.1)
51



3.2. A summable approximation2. all orbits for whih the number of baksatterings is less than the maxi-mum in their degeneray lass or, in other terms, orbits whih have a gigreater than one. For example, the orbits (1,1,4,6,6,6) and (1,1,6,4,6,6)belong to the same degeneray lass. The �rst orbit gives the ontri-bution of t3r3 whih, in the limit B ! 1 is more substantial than theseond orbit's ontribution of t4r2. It is not hard to see that out of eahdegeneray lass only (j � 1)! orbits will survive this approximation,where j, as before, is the number of distint edges traversed by the orbit.The result of the above approximations is that the ontribution Ej of thedegeneray lasses in (3.1.9) is redued to a fator of (j� 1)!, the ontributionof one degeneray lass, multiplied by the number of degeneray lasses, �k�1j�1�:Kdiag(�) � K1(�)+ limB!1 (2k)2BL2 1Xj=2 �Bj �� 2B�2j �B � 2B �2k�2j (j � 1)!�k � 1j � 1�: (3.2.2)Taking the limit B !1 termwise, with � = k=B �xed, we arrive atKdiag(�) � K1(�) + � 2 1Xj=2 22j exp(�4�)� j�1j!= exp(�4�) + � exp(�4�) 1Xj=2 (4�)jj!= exp(�4�) + � exp(�4�)(exp(4�)� 1� 4�)= � + exp(�4�)(1� � � 4� 2); (3.2.3)whih, in the limit of large B with � = k=B �xed, is exatly equal to anapproximation to hjTrS2kj2i=(4B) obtained in [20℄ using a di�erent approahdetailed below. Interestingly, the �rst four terms in the expansion of Kdiag inpowers of � agree with those of K omputed in the last setion. The rest donot.It is worth remarking that one an get exatly the same asymptoti formulafor Kdiag(�) using only assumption 1. Following [20℄, we obtain from (3.2.1)52



3.2. A summable approximation(n = 2k)Kdiag(�) = limB!1 4kBL2 Xp2P2k kr2pA2p (3.2.4)= K1(�) + limB!1 4kBL2  Xp2P2k kr2pA2p �B �B � 2B �2k!� K1(�) + limB!1 4kBL2  Xp2P2k krpA2p �B �B � 2B �2k! ;where in the seond line we have split Kdiag(�) into K1(�) and \the rest", asbefore. The only di�erene between the seond and the third line is in thepower of rp, i.e. in the third line we partly ignored the repetitions. We ando that sine the orbits without the repetitions are exponentially dominant (itan be expliitly shown using M�obius inversion theorem). But to do it we �rsthave to separate a speial lass of orbits, the one restrited to one edge, out ofthe sum.Now we are going to evaluate \the rest" using a sum rule. We note thatPp2P2k krpA2p = TrAk, where the B � B matrix A is given byAb1;b2 = � 2B � Æb1;b2�2 ; (3.2.5)where b1 and b2 are nondireted bonds. To evaluate the trae of any power ofthe matrix A we need to know its eigenvalues. First of all, 1 is an eigenvaluewhih orresponds to the eigenvetor onsisting of all ones: the sum of elementsin any row of the matrix A is (2=B � 1)2 + 4(B � 1)=B2 = 1. Let us nowonsider the eigenvalue equation for B = 3���������19 � � 49 4949 19 � � 4949 49 19 � �
��������� = ���������19 � � 49 4939 + � �39 � � 039 + � 0 �39 � �

���������= (3=9 + �)2 ���������19 � � 49 491 �1 01 0 �1��������� = 0; (3.2.6)53



3.3. Numerial analysis of the series expansionwhere the �rst line was subtrated from the rest and then the ommon fator(3=9 + �)2 was separated. From here it is obvious that 3=9 is an eigenvaluewith multipliity 2. For general B the fator to separate would be of the form2=B2 � (2=B � 1)2 + � of the multipliity B � 1. Thus the matrix A has theeigenvalues f1; B�4B ; : : : ; B�4B g and, therefore,TrAk = 1 + (B � 1)�B � 4B �k : (3.2.7)Using this we writeKdiag(�) � K1(�) + limB!1 �  1 + (B � 1)�B � 4B �k � B �B � 2B �2k!=K1(�) + limB!1 �  1� �B � 4B �k +B(�B � 4B �k � �B � 2B �2k)!=exp(�4�) + � (1� exp(�4�)� 4� exp(�4�)) ; (3.2.8)where we have used the limitlimn!1n��1 + 1an + 1(an)2�n � �1 + 1an�n� = e1=aa : (3.2.9)We note that Eq.(3.2.8) is exatly the same as Eq. (3.2.3). This means that theorbits ignored in the seond assumption above do not ontribute to the diagonalapproximation in the limit B ! 1. The fat that they do ontribute to thefull expansion of K(�) shows the limitations of the diagonal approximation.3.3 Numerial analysis of the series expansionBefore we atually proeed to analyse the power series (3.1.41)-(3.1.43) nu-merially, we would like to prove that there is an interval on whih the seriesonverge.Proposition 4. The radius of onvergene of the series (3.1.41)-(3.1.43) isgreater than zero. 54



3.3. Numerial analysis of the series expansionProof. Let us �rst �nd an upper bound on the modulus of the oeÆient CMde�ned in Eq. (3.1.41). Starting o� with Eq. (3.1.46) we writejCM j � M2M maxK+N=M (K + j � 1)!(N + j � 1)!(M + j � 1)! Fj(K;N)� M2M (j � 1)! maxK+N=M Fj(K;N); (3.3.1)where we used the fat that (assuming, without loss of generality, thatK � N)(K + j � 1)!(N + j � 1)! � (K + j)!(N + j � 2)!� (K + j + 1)!(N + j � 3)! � : : : � (K +N + j � 1)!(j � 1)! (3.3.2)and thus maxK+N=M (K + j � 1)!(N + j � 1)!(M + j � 1)! = (j � 1)!: (3.3.3)To �nd the maximum of the fator Fj(K;N) we estimateFj(K;N) �XK;N Fj(K;N); (3.3.4)and apply the reursion relation (3.1.47) to obtainXK;N Fj(K;N) = 1XK=0 1XN=0 KXk=0 NXn=0 F1(k; n)Fj�1(K � k;N � n) (3.3.5)= Xk;n;r;sF1(k; n)Fj�1(r; s) =Xk;n F1(k; n)Xk;n Fj�1(k; n) = F j;where F =Xk;n F1(k; n) =Xk;n (k + n)!k!n!(k + 1)!(n+ 1)! <1: (3.3.6)Thus jCM j �M2M (j � 1)!F j; (3.3.7)and substituting it into Eq. (3.1.42) we obtainjK(�)j < K1(�) + � 1XM=0M2M�M � 1Xj=2 (4F�)jj ; (3.3.8)whih implies that the radius of onvergene is greater or equal to (4F )�1.55



3.3. Numerial analysis of the series expansion

0 0.02 0.04 0.06 0.08 0.1

1/n

0.6

0.65

0.7

0.75

0.8

(a
  )

Radius of convergence

n
-1

/n
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3.3. Numerial analysis of the series expansion
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Figure 3.6: The result of Pad�e approximation of order M = N � 1 = 21(thin line) and M = N = 23 (thik line) ompared to the results of numerialomputation of K(�) [Kottos and Smilansky℄. The approximation is good farbeyond the radius of onvergene (� 0:64).better quantity to look at is the seond one. Looking at the plot, Fig. 3.5, andestimating where the intersetion with the y-axis would be, we an see thatthe radius of onvergene is approximately 0:64. Before we ontinue analysingthe oeÆients of the series, let us try to approximate the form fator K(�)by rational funtions.In other words, we are going to apply Pad�e approximation (see, for example,[30℄) to the partial series we have. The general idea behind Pad�e approximationis the following. Let SK(x) be the K-th partial sum of the power series forsome funtion S(x), SK = KXi=0 aixi: (3.3.10)We are trying to represent S(x) as a ratio of two polynomials PN(x) andQM(x), of order N and M orrespondingly,S(x) = PN(x)QM (x) + o�xM+N� ; as x! 0: (3.3.11)57



3.3. Numerial analysis of the series expansionwhere by o �xM+N� we understand the terms of order higher than M + N .Rewriting Eq. (3.3.11) asPN(x)�QM(x)S(x) = o �xM+N� (3.3.12)we obtain M + N + 1 linear equations | the �rst N +M + 1 oeÆients ofthe series on the left are equal to zero. There are M + N + 2 unknowns, theoeÆients of PN and QM , but sine we are looking at the ratio P=Q, we an�x one of the oeÆients, say put QM(0) = 1. In fat, to solve Eq. (3.3.12) wedo not need the whole of the series S(x), the partial sum SM+N is enough.As an example we onsider the N = M = 1 approximation to our formfator. It is onvenient to take the fator � 3 out:K(�) = exp(�4�) + � 3�8� 323 � + 163 � 2 + o(� 2)� : (3.3.13)Then the equation for the oeÆients of Q and P is taking the formp0 + p1� � (1 + q1�)�8� 323 � + 163 � 2� = o(� 2); (3.3.14)thereforep0 � 8 = 0; p1 � 8q1 + 323 = 0; 323 q1 � 163 = 0; (3.3.15)whih leads to P1(�) = 8� 203 �; Q1(�) = 1 + 12�: (3.3.16)Very often the approximation PN(x)=QM(x) happens to be very good evenbeyond the radius of onvergene. To understand it heuristially, suppose S(x)is an expansion of a funtion whih has a pole at the distane R from the originsomewhere in the omplex plane, but not on the positive real line and we wantto plot S(x) for real x > 0. If luky, the pole of S(x) will be represented bya zero of the polynomial QM(x) and then the divergene of the original serieswill be absorbed into the rational funtion PN(x)=QM(x) while the remainingpart o �xM+N� will be onvergent and small. Then the approximating funtion58
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Chapter 4
Quantum return probability fortrees
In this hapter we disuss an analogue of the form-fator for in�nite trees, thequantum return probability. The work on trees was inspired by the paper byShanz and Smilansky [21℄ who performed the analysis in the ase of in�nitehain (valeny of every vertex is 2). We follow their work losely and derive thereursion relation for the return probability for a general in�nite regular tree.Our main result is a general formula for the loal ontribution of a degeneraylass. This made possible a numerial investigation, sine the omplexity ofthe formulae do not enourage attempts to analyse the limiting behaviour ofthe return probability analytially. We also show a way to obtain a powerseries expansion of the return probability in the limit of large branhing.4.1 De�nitionsWe have de�ned tree is a onneted graph without any yles. We here onsidermainly a speial type of trees, the in�nite one-sided regular tree, although mostof the results an be easily extended to any trees.An example of in�nite one-sided regular tree is shown on Fig. 4.1. Theone-sided tree has an origin, the vertex O of valeny 1. All other verties have61



4.1. De�nitions
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Figure 4.1: The one-sided in�nite tree with B = 3. The upper subtree is shownwith the thiker lines.the same valeny1 B; B is equal to 3 for the graph on Fig. 4.1.As desribed in Setion 2.4, we assoiate a unitary matrix S(v) to eahvertex v of the in�nite tree. To simplify matters we require that the matrieshave the form S(v) = 0BBBBBB�rv tv : : : tvtv rv : : : tv... ... . . . ...tv tv : : : rv
1CCCCCCA ; (4.1.1)i.e. all diagonal elements are equal to rv while the non-diagonal elementsare equal to tv. Thus we have two types of \amplitudes": the amplituderv assoiated to the reetion (going from a bond b to the bond b) and theamplitude tv assoiated to the transmission. The matrix SO orresponding tothe origin is 1� 1 and we �x rO = 1.The quantum return probability (also alled the survival probability), whihgives the probability to �nd the quantum partile at time t in its initial state1Sine the tree is in�nite, the number of bonds is in�nite thus we re-use B to denote thebranhing of the tree. However its role is very similar to the role of B for the star graphs.62



4.1. De�nitions 0, taken from the orresponding Hilbert spae, is given by��h 0jUtj 0i��2 ; (4.1.2)where U is the time evolution operator. Its Ces�aro average1T Z T0 ��h 0jUtj 0i��2 dt; (4.1.3)is alled the mean return probability over time T . In our ase (see Setion 2.4)the evolution is disrete and the evolution operator is the matrix DS, now ofin�nite size; the state vetor  is the `2 vetor of the amplitudes A(i;j) of thewave travelling from vertex i to vertex j. Thus the mean return probability inour ase is given by1N NXn=1 jh 0j (DS)n j 0ij2 � 1N NXn=1 PB(n); (4.1.4)where by PB(n) we denoted the quantum return probability (not mean).We will take  0 to be the wave leaving the vertex O in the diretion 11,i.e. we take the omponent A(O;1) = 1 and A(i;j) = 0 for all other hoies ofthe verties i and j. Then one an expandPB(n) = jh 0j (D(k)S)n j 0ij2= ������ X[i1=(O;1);i2;::: ;in℄ (D(k)S)i1;i2 (D(k)S)i2;i3 � � � (D(k)S)in;i1������2= ������ Xp2fPn(O)Apeiklp������2 ; (4.1.5)where the seond sum is taken over all periodi sequenes of bonds (see (2.1.5)and subsequent explanations) whih start from the vertex O. The fator Ap is,as usual, the produt of the elements of the matrix S over the sequene p. Weremind that the sequenes are not identi�ed with respet to the shift, in thesense that, for example, [1; 2; 3; 1; 4℄ and [1; 4; 1; 2; 3℄ are di�erent sequenes,unlike the situation we had with the orbits from P.63



4.1. De�nitions
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Figure 4.2: Step-by-step reonstrution of the sequene denoted by [a; b; ; a℄.In the top left orner the subtree overed by the sequene is drawn (the bondsare relabelled for onveniene). The bonds whih are missed in the shortenednotation are shown in dashed lines.Due to the speial struture of the tree all periodi sequenes have evenperiod. If a sequene left a vertex v along the bond b = (v; v0), it will laterome bak to v along the bond b = (v0; v) and not along any other bond. Thisfat is ruial to our derivation and is spei� to the trees. It is easy to seethat when writing the ode for a sequene on the tree, we an mention onlythe traversal of a bond in the outward diretion; basing on this information wean always reonstrut the whole desription of the orbit, see Fig. 4.2. Also,when we write the vetor s for a degeneray lass, the element sb (the stayingrate on the bond b) ounts the number of traversals of the bond b in outwarddiretion only. The vetors s are now in�nite dimensional but they have only�nite number of nonzero omponents sine we demand jsj =Pb sb =M .We now return to our de�nition of the quantum return probability. To theoperations performed in Eq. (4.1.2) we add an averaging, either over a rangeof k or over individual lengths of the bonds of the tree G. It is easy to see thatsquaring the expression on the right-hand side of Eq. (4.1.5) and then applying64



4.1. De�nitionsthe averaging will lead to the expression for the quantum return probabilityafter n steps, PB(n) = Xp;q2fPn(O)ApAqÆlp;lq; (4.1.6)where Ælp;lq is, as before, equal to 1 if lp = lq and is 0 otherwise. Sineall periodi sequenes on a tree have even period, we put n = 2M . RewritingEq. (4.1.6) in the terms of degeneray lasses we arrive to the expression whihwe will use as the de�nition.De�nition 8. The quantum return probability after 2M steps is de�ned byPB(2M) = Xs : jsj=M ������ Xp : s(p)=sAp������2 ; (4.1.7)where the sum is over all degeneray lasses of the sequenes that start fromthe vertex O.Besides being an interesting quantity in its own right, the quantum returnprobability is losely related to the existene of loalised eigenstates of theevolution operator DS. Suh states orrespond to the pure point spetrum ofDS. Sine the underlying graph is no longer ompat, the spetrum of DS annow ontain both pure point and ontinuous (inluding singular ontinuous)parts. To see whether there is a pure point omponent we formally substitutethe spetral deompositionDS = Z j�ieiE�h�jdE� (4.1.8)into the de�nition of the mean return probabilitylimN!1 1N NXn=1 PB(n) = limN!1 1N NXn=1 ����Z eiE� jh j�ij2 dE�����2= ZZ limN!1 1N NXn=1 ein(E��E�0) jh j�ij2 jh j�0ij2 dE�dE�0= ZZ jh j�ij4 ÆE�;E�0dE�dE�0 ; (4.1.9)65



4.1. De�nitionswhere we used the identity limN!1 1N NXn=1 einE = ÆE;0: (4.1.10)It is not hard to see that the last integral in Eq. (4.1.9) is equal to zero ifthe measure dE� has only ontinuous part (for more rigorous statements andresults we refer to [36℄). Thus a nonzero limit of the mean return probabilitywould signify the presene of the pure point spetrum, hene the loalisedstates.This was exatly the situation revealed by Shanz and Smilansky in [21℄for the in�nite hain graphs (an in�nite hain is a tree with B = 2). It wasfound that the quantum return probability saturates to a �nite value while itsdiagonal approximation deays di�usively. Thus the oherent (i.e. taking areof the degeneray lasses) summation of the ontributions of di�erent orbitsreally makes a di�erene. The aim of the following setions is to use the ideasfrom the previous Chapter to treat the ontributions of the degeneray lassesin an exat way for B > 2.But before doing so we give a brief summary of the related researh. Theloalised eigenstates of the disrete Hamiltonian on in�nite trees (alled Bethelattie in the literature) is a muh studied topi, �rst introdued by Anderson[37℄. We refer to the paper by Klein[38℄ for a review of the results in thisarea. Our model, however, is one step removed from the spei�ation of theHamiltonian. Instead, we start with the time evolution operator. In thisrespet our model is similar to the one onsidered by Chalker and Siak in [31℄,although in the model of [31℄ there is no time-reversal symmetry. Among otherresults, Chalker and Siak report the existene of normalizable loalised statesfor a ertain range of the parameter of the model.For our model we also �nd a strong numerial evidene that the quantumreturn probability tends to a nonzero limit for ertain values of the parameter.This implies that the mean return probability also tends to the same limitand, therefore, there are loalised eigenstates. We also �nd that the transi-66



4.2. Reursion for the return probabilitytion between deloalisation and loalisation ours approximately at the sameparameter value as in [31℄.4.2 Reursion for the return probabilityConsider the ontribution Pp : s(p)=s Ap from one degeneray lass s. For agiven vertex v we de�ne m1(v) to be the staying rate on the bond leading to vfrom the diretion of the origin. We also denote by m2(v) the staying rate onthe �rst bond leading out of v and so on up to mB(v), thus m1(v); : : : ; mB(v)provide the loal information about the bond staying rates around the vertex v.It turns out that the ontribution of the degeneray lass s an be deomposedinto a produt, Xp : s(p)=sAp =Yv2GUv�m1(v); m2(v); : : : ; mB(v)�; (4.2.1)where the fator Uv�m1(v); m2(v); : : : ; mB(v)� is the loal ontribution of thedegeneray lass s whih depends only on the matrix S(v) and the loal infor-mation about the degeneray lass, the numbers m1(v), : : : ,mB(v). To explainwhy this happens we onsider an example.In the top left orner of Fig. 4.3 the subtree overed by a degeneray lassis shown. In the bottom left orner the orresponding elements of the vetor sare listed next to the bonds. To the right, all six di�erent sequenes belongingto suh degeneray lass are shown together with their odes in terms of thebonds. We write the number of the bond in the ode only when it is traversedin the outward (up) diretion. It is important to note that the sequenes inthe same row have the same struture around the vertex 2 while the sequenesin the same olumn share the struture around the vertex 1. One an say thata sequene is made out of building bloks, eah representing the struture inthe viinity of a vertex.This idea is illustrated by Fig. 4.4. In the rounded boxes the possiblebloks, or realisations of the loal struture of the degeneray lass, are listed.67
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4.2. Reursion for the return probabilityequal to the sum of UM(m1) over m1,PB(2M) = MXm1=1UM(m1): (4.2.4)It is possible to derive a reursion [21℄ for the onditional probabilityUM(m1). We restrit ourselves to the ase B = 3, the generalisation to B > 3will be obvious. We de�ne the upper subtree of the tree G, Gu to be the treebased on the verties 1, 2, 4, 5, 8, 9, 10, 11 et, see Fig. 4.1. The lower subtreeGl ontains, orrespondingly, the verties 1, 3, 6, 7 et. The �rst bond, leadingfrom O to 1 does not belong to either of the subtrees. We are going to use thefat that the subtrees are isomorphi to the original trees.Given a degeneray lass vetor s, we denote by su (sl) the part of s whihorresponds to the bonds from the upper (orrespondingly lower) subtree.Then s an be expressed as the diret sum s = m1 � sl � su, where m1 isthe number of traversals of the �rst bond (the bond leading from O to 1). Letus �x the parameters m1(1) = m1, m2(1) = m2, m3(1) = m3, jsuj =M2 � m2and jslj =M3 � m3 suh that m1 +M2 +M3 =M . Then the ontribution ofall degeneray lasses with these parameters �xed an be written asXs Yv2V(G)U2v = ��U1(m1; m2; m3)��20�Xsu Yv2V(Gu)U2v1A0�Xsl Yv2V(Gl)U2v1A= ��U1(m1; m2; m3)��2UM2(m2)UM3(m3); (4.2.5)where with U2v we abbreviate the squared loal ontribution of the degeneraylass at the vertex v, ��Uv (m1(v); m2(v); m3(v)) ��2. Here we used the fat thatPsuQv2V(Gu) U2v is exatly the onditional return probability on the uppersubtree and, sine it is isomorphi to the whole tree, their return probabili-ties are equal. Now we an sum this ontribution over all possible hoies ofpreviously �xed parameters m2, m3, M2 and M3 to obtain UM (m1):UM(m1) = XM2+M3=M�m1 M2Xm2=1 M3Xm3=1 ��U (m1; m2; m3) ��2UM2 (m2)UM3 (m3) ;(4.2.6)70



4.3. Loal ontribution of the degeneray lassor, for general B,UM(m1) = XM2+:::+MB=M�m1 M2Xm2=1 � � � MBXmB=1 ��U (m1; m2; : : : ; mB) ��2 BYi=2 UMi (mi) :(4.2.7)Here the summations over Mi are starting from 0 and the summations for miare starting from 1 unless the orresponding Mi is equal to 0. If for some i wehave Mi = 0, the summation over mi is dropped and the fator UMi (mi) istaken to be 1.4.3 Loal ontribution of the degeneray lassIn the previous Setion we have shown that to determine the return probabilitywe need to alulate the loal ontribution of degeneray lasses. The loalon�guration of the tree is the B-star graph and the loal information aboutthe degeneray lass is the number of traversals of the bonds of this star. Itis lear that alulating the loal ontribution should be similar to derivingthe ontribution of the degeneray lasses for star graphs, the feat whih wasaomplished in Setion 3.1.4.The loal numbering of the bonds is arbitrary with the exeption of the�rst bond whih points to the origin. We are given B numbers mi and thequestion is to �nd all possible loal sequenes of bonds where ith bond oursmi times. Eah sequene is given a weight whih is determined aordingto the usual rules: the weight of the sequene is the produt of the weightsof the individual transitions with the reetion olleting the fator r andtransmission olleting the fator t; the transition between the last bond andthe �rst should also be taken into aount. The loal ontribution is then thesum of these weights over all possible sequenes.Eah sequene is haraterised by the number of groups of di�erent sym-bols. If we denote the number of groups of the bond with the loal number i bygi then the weight of the sequene haraterised by m1, : : : ,mB and g1, : : : ,gB71



4.3. Loal ontribution of the degeneray lassis given by tGrM(v)�G, where we introdued the notation G = g1+ : : :+ gb andM(v) = m1 + : : :+mB. Thus the main question here is how many sequeneswith the above harateristis are there. To ount suh sequenes we try torelate the number of sequenes to the number of sequenes N g1 ;::: ;gjs1;::: ;sj , derivedin Setion 3.1.4.First of all, while an orbit is a yle, without a beginning or an end, the se-quene is a linear objet, with both a beginning and an end. We are interestedin all sequenes whih start with a 1, but we do not demand that it does notend with a 1 (ompare to ondition (), Setion 3.1.4). Further, if a sequeneends with a group of 1s, we ount the last and the �rst group of 1 as one group.Thus eah orbit orresponds to m1 sequenes: we an ut an orbit before eahourrene of 1, obtaining with eah suh ut a new sequene. For example,the orbit (1; 1; 2; 1; 3) orresponds to 3 sequenes starting with a 1: [1; 1; 2; 1; 3℄,[1; 2; 1; 3; 1℄ and [1; 3; 1; 1; 2℄. If, however, the orbit was a repetition of anotherorbit, with the repetition number rp, we obtain eah sequene rp times. Butthen suh an orbit was ounted as 1=rp in the total number of orbits N g1;::: ;gjm1;::: ;mjthus multiplying by m1 works with the repetitions too. Therefore the numberof all possible sequenes haraterised by m1, : : : ,mB and g1, : : : ,gB is givenby m1N g1;::: ;gjm1;::: ;mj ,m1N g1 ;::: ;gjm1;::: ;mj = m1(�1)G Xk1;::: ;kv (�1)KK � Kk1; : : : ; kv� BYi=1 �mi � 1gi � 1��gi � 1ki � 1�;(4.3.1)where K = k1 + : : : + kB and G = g1 + : : : + gB.. Now if we sum the aboveexpression over all possible hoies of gi, multiplying them by tGrM(v)�G, the
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4.3. Loal ontribution of the degeneray lassresult is the loal ontribution of a degeneray lass,U (m1; m2; : : : ; mB)= m1 Xg1;::: ;gB(�t)GrM(v)�G Xk1;::: ;kB (�1)KK � Kk1; : : : ; kB� BYi=1 �mi � 1gi � 1��gi � 1ki � 1�= m1 miXki=1 (�1)KK � Kk1; : : : ; kB� BYi=1 �mi � 1ki � 1� miXgi=ki��tr �gi rmi�mi � kigi � ki �;(4.3.2)where the �rst sum is in fat a B-tuple sum over all ki. Here we have used theidentity �m� 1g � 1��g � 1k � 1� = �m� 1k � 1��m� kg � k�: (4.3.3)Now, performing the innermost summationmiXgi=ki��tr �gi rmi�mi � kigi � ki � = rmi ��tr �ki �1� tr�mi= (r � t)mi � �tr � t�ki ; (4.3.4)we �nally obtainU (m1; m2; : : : ; mB)= m1(r � t)M(v) miXki=1 1K� Kk1; : : : ; kB�� tr � t�K BYi=1 �mi � 1ki � 1�: (4.3.5)This expression together with the reursion (4.2.7) and Eq. (4.2.4) gives theomplete set of exat formulae to determine the return probability.One an also derive an alternative expression for U (m1; m2; : : : ; mB). Todo so, we represent the fatorial (K � 1)! as an integral,(K � 1)! = Z 10 zK�1 exp(�z)dz (4.3.6)and notie that the summations over di�erent indies ki beome unoupled. It73



4.3. Loal ontribution of the degeneray lassleads to the expressionU (m1; m2; : : : ; mB)= m1(r � t)M(v) Z 10 exp(�z) BYi=1 miXki=1 1ki! � tzr � t�ki �mi � 1ki � 1�dzz= m1(r � t)M(v) Z 10 exp(�z) BYi=1 L�1mi (��z) dzz ; (4.3.7)where � = t=(r � t) andL�1m (x) = mXk=1 (�x)kk! �m� 1k � 1�; (4.3.8)is the generalised Laguerre polynomial.4.3.1 The ase B = 2When B = 2 the tree is redued to the line and we should reover the formulaefrom [21℄. To do so we use the ombinatorial identitymXj=0(�1)j�a + jb ��mj � = (�1)m� ab�m� (4.3.9)to simplify the summation(�1)G Xk1;::: ;kB (�1)KK � Kk1; : : : ; kB� BYi=1 �gi � 1ki � 1� (4.3.10)in the seond line of Eq. (4.3.2) in the ase B = 2. For this summation,denoted Rg1;g2 (see Appendix A.3), one hasRg1;g2 = (�1)G g2Xk2=1 g1Xk1=1 (�1)k1+k2k1 + k2 �k1 + k2k2 ��g1 � 1k1 � 1��g2 � 1k2 � 1�= (�1)G g2Xk2=1 (�1)k2+1k2 �g2 � 1k2 � 1� g1Xk1=1(�1)k1�1�k2 + k1 � 1k2 � 1 ��g1 � 1k1 � 1�= (�1)g2 g2Xk2=1 (�1)k2k2 �g2 � 1k2 � 1�� k2k2 � g1�; (4.3.11)74



4.4. Extending results to the omplete treewhere we applied identity (4.3.9) with the parameters j = k1 � 1, a = k2,b = k2 � 1, m = g1 � 1. Now using that1k2� k2k2 � g1� = 1g1�k2 � 1g1 � 1� (4.3.12)and applying identity (4.3.9) one again, now with the parameters j = k1� 1,a = 0, b = g1 � 1, m = g2 � 1, we obtainRg1;g2 = (�1)g2+1g1 g2Xk2=1(�1)k2�1�k2 � 1g1 � 1��g2 � 1k2 � 1�= 1g1 (�1)g2+1(�1)g2�1� 0g1 � g2� = 1g1 Æg1;g2: (4.3.13)Substituting this result bak into the seond line of Eq. (4.3.2) we obtainU (m1; m2) = m1Xg1;g2 tGrM(v)�G�m1 � 1g1 � 1��m2 � 1g2 � 1� 1g1 Æg1;g2= Xg1 t2g1rM(v)�2g1�m1g1 ��m2 � 1g1 � 1�; (4.3.14)whih is exatly the orresponding expression from [21℄.4.4 Extending results to the omplete treeA natural question to ask is how one an extend the results obtained aboveto the ase of the omplete tree, i.e. a tree where all verties, inluding theorigin, are of valeny B. The initial onditions are the same as before: a waveleaving the origin in one hosen diretion, see Fig. 4.5.It turns out that the return probability of suh wave paket on the ompletetree is related to the quantity we already desribed, the one-sided onditionalreturn probability UM(m). Indeed, due to our initial ondition, the �rst bond(the bond (O; 11)) is traversed at least one. We denote the number of traver-sals of this bond bym1. Now we an introdue an auxiliary vertex �, of valeny2, in the middle of the �rst bond. We set the amplitudes t = 1 and r = 0 onthis vertex thus the trajetory will never be reeted at the vertex �.75



4.4. Extending results to the omplete tree
β

part

upper
part

lower

O

O

11

3323

22

12 13

323121
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4.5. Numerial evaluationIt is interesting to note that the form of the expression is independent of theparameter B.4.5 Numerial evaluation4.5.1 Parameters t and rBefore we present the results of the numerial evaluation of Eqs. (4.2.7) and(4.3.5), we disuss the possible values of the amplitudes t and r. These prob-abilities are the elements of the matrix (4.1.1) whih is required to be unitary.Without loss of generality we an assume that r is real: otherwise we anmultiply the whole matrix by �r=jrj. If we write t as t = �jtjei�, the unitarityondition implies r2 + (B � 1)jtj2 = 1; (4.5.1)2r os�� (B � 2)jtj = 0; (4.5.2)where � 2 [0; �=2℄ whih leads tor = ��1 + 4(B � 1)(2�B)2 os2 ���1=2 t = 2r os�2� B exp(i�): (4.5.3)Note that the reetion amplitude r varies from (B � 2)=B (for � = 0) to 1(� = �=2) thus the range of possible values of r shrinks as B tends to in�nity.One an onsider the matrix S(v) of a more general form, in fat any unitarymatrix would generate onsistent dynamis on the tree and thus the diagonal(o�-diagonal) elements do not have to be equal. However, taking the elementsto be di�erent signi�antly ompliates the expression in Eq. (4.3.5) for B =3 and makes the derivation of suh an expression using the same methodsimpossible for B > 3.An alternative desription of r and t an be given in terms of q = jtj=jrj,a parameter whih has more physial meaning to it than the phase �. If we77



4.5. Numerial evaluationassume that t is real thent = q1 + q2(B � 1) (4.5.4)r = �(B � 2)q �p(B � 2)2q2 � 42 + 2q2(B � 1) ; (4.5.5)where q varies from 0 to 2=(B � 2) and the onnetion between � and q isq = 2 os(�)=(B � 2).4.5.2 Computing U (m1;m2; : : : ;mB)The aim of this Subsetion is to simplify the omputation of the loal ontri-bution U (m1; m2; : : : ; mB). As given by Eq. (4.3.5), it is a B-fold summationwhih requires a lot of mahine time to evaluate for large mi. Instead we aregoing to derive a reursion relation satis�ed by U .First of all we notie that jr�tj2 = 1, whih an be easily veri�ed by addingtogether Eqs. (4.5.1) and (4.5.2). Therefore the fator (r � t)m in front of theexpression for U (m1; m2; : : : ; mB) an be dropped.Next we introdue the quantityVm1;m2;::: ;mB = U (m1; m2; : : : ; mB) =m1 (4.5.6)whih is symmetri with respet to its argument mi. We haveVm1;m2;m3 = Z 10 exp(�z)Lm1 (��z)Lm2 (��z)Lm3 (��z) dzz ; (4.5.7)where we took B = 3 as this ase will be of the most interest to us. Wealso omit the supersript �1 over L. It is well-known [39℄ that the Laguerrepolynomials satisfy the reursion relation (the supersript �1 is omitted!)Ln+1(x) = 2n� xn+ 1 Ln(x)� n� 1n+ 1Ln�1(x); (4.5.8)whih an be easily proved using the tehniques desribed in [40℄. However, ifwe put the reursion (4.5.8) straight into Eq. (4.5.7) it will do us no good be-ause of the non-numerial fator x multiplying Ln(x). Instead we reformulate78



4.5. Numerial evaluationthe above reursion in the formxLn(x) = �(n + 1)Ln+1(x) + 2nLn(x)� (n� 1)Ln�1(x); (4.5.9)and apply it twie to the produt Lm1+1(x)Lm2(x), �rst as (4.5.8) with n = m1and then as (4.5.9) with n = m2,(m1 + 1)Lm1+1(x)Lm2(x)= 2m1Lm1(x)Lm2(x)� xLm1(x)Lm2(x)� (m1 � 1)Lm1�1(x)Lm2(x)= 2m1Lm1(x)Lm2(x) + (m2 + 1)Lm1(x)Lm2+1(x)� 2m2Lm1(x)Lm2(x)+ (m2 � 1)Lm1(x)Lm2�1(x)� (m1 � 1)Lm1�1(x)Lm2(x): (4.5.10)Substituting the above reursion in the integral de�nition of Vm1;m2;m3 we �ndthat it satis�es a similar relation,(m1 + 1)Vm1+1;m2;m3 = (m2 + 1)Vm1;m2+1;m3 + 2(m1 �m2)Vm1;m2;m3+ (m2 � 1)Vm1;m2�1;m3 � (m1 � 1)Vm1�1;m2;m3 : (4.5.11)4.5.3 Results of the simulationsIn our simulations we omputed the onditional return probability UM (m)for the branhing number B = 3 and then performed the summation eitheraording to Eq. (4.2.4) to get the return probability P3(2M), or aordingto Eq. (4.4.2) to obtain the return probability for the omplete tree, P 3 (2M).We assumed the matries S(v) to be the same for all verties v, apart form O,whih is learly speial. Thus the probabilities t and r were taken to be thesame throughout the tree.First of all we would like to ompare the quantum return probability toits lassial analogue. We turn our tree into the probabilisti system with therules similar to the quantum ones. The state is spei�ed by the bond and thediretion; the reetion (i.e. hange of the diretion) has probability jrj2 andthe transmission to one of the 2 adjaent bonds happens with probability jtj2.79
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4.6. Large B limit
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4.6. Large B limitWe set the parameters t and r to bet = 2=B r = 2=B � 1: (4.6.2)This seletion simpli�es Eq. (4.3.5) sine r � t = �1. Besides we do not loosegenerality with suh seletion. Indeed, from Eq. (4.5.3) (or Eq. (4.5.4)) itfollows that any seletion of jtBj would go to zero at least as B�1. If it dereasesfaster than B�1, the expansion below would beome trivial and therefore non-interesting. Thus we should �x jtBj / B�1 whih is adequately reeted inEq. (4.6.2).This seletion makes the sequenes with the least number of transitions tmore signi�ant in the limit B ! 1. The largest ontribution (as in Chap-ter 3) omes from the sequene whih is on�ned to the �rst bond2. Thesequene undergoes M = B� rebounds and the orresponding Ap is thereforegiven by Ap = (1� 2=B)B� . Thus the ontribution of the sequene to thereturn probability isK1(�) = limB!1 (1� 2=B)2B� = exp(�4�): (4.6.3)The next most signi�ant lass of sequenes onsists of the sequenes whihvisit only two bonds beause suh sequene an have as few as 2 transitions t.Let us onsider the ontribution made by suh sequenes in detail.The �rst bond in suh sequenes is �xed while there are B � 1 hoiesfor the seond bond. We denote the number of traversals (in one hosendiretion) of the �rst bond by m1 and number of traversals of the seond bondby m2 with the ondition m1 +m2 = B� . To alulate Ap we notie that thesequene piks up m2 rebounds at the end of the seond bond and piks upthe ontribution U (m1; m2) at the vertex where �rst and seond bonds meet.Thus the ontribution isK2(�) = limB!1(B � 1) B��1Xm2=1 ��U (B� �m2; m2) ��2(1� 2=B)2m2 : (4.6.4)2If we took jtB j to be dereasing faster than B�1, i.e. if jtB jB ! 0 as B ! 1, thisontribution would be equal to 1 while all other ontributions would be 084



4.6. Large B limitDenoting m2=B by q, expanding U2 (B� �m2; m2) aording to Eq. (4.3.5),taking the limit B ! 1 termwise and approximating the summation by anintegral we obtainK2(�)= limB!1B B��1Xm2=1 �����Xk1;k2 (K � 1)!(k1 � 1)!k2! ��2B �K �m1k1 ��m2 � 1k2 � 1������2�1� 2B�2m2= Z �0 �(�2)k1+k2 (� � q)k1qk2�1(k1 + k2 � 1)!k1!k2!(k1 � 1)!(k2 � 1)! �2 exp(�4q)dq; (4.6.5)where m1 = B� �m2 and K = k1+k2, and we have made the approximations1Bk2�1�m2 � 1k2 � 1�! qk2�1(k2 � 1)! and 1Bk1�m1k1 �! (� � q)k1k1! : (4.6.6)Next we expand the square and do the integration term by term using the ruleZ �0 qa(� � q)b exp(�4q)dq = 1Xl=0 (�4)ll! Z �0 qa+l(� � q)bdq (4.6.7)= 1Xl=0 (�4)l�a+b+l+1(a+ b + l + 1)! a!(b + l)!l! : (4.6.8)We arrive toK2(�) � � 1Xl=0 1Xki=1 1Xni=1 2N+K+2l (��)K+N+l�1(k1 + n1)!(k2 + n2 + l � 2)!(K +N + l � 1)!l!�(K � 1)!(N � 1)! 2Yj=1 1kj!nj!(kj � 1)!(nj � 1)! ; (4.6.9)where K = k1 + k2 and N = n1 + n2. Sine the minimum values for K and Nare 2, the expansion of K2(�) starts with � 3.The expression for K2(�) is already very ompliated, involving summa-tions over �ve indies. To give a further example, the ontribution from thesequene skethed on the inset of Fig. 4.11 an be expressed in the formK33(�) � limB!1"2�B � 12 ��B � 12 �B4 (4.6.10)� Zq1+:::+q5=� V 2(q1; q2; q3)B4 V 2(q3; q4; q5)B4 e�4(q2+q4+q5)dq#= 12 Zq1+:::+q5=� V 2(q1; q2; q3)V 2(q3; q4; q5)e�4(q2+q4+q5)dq;85



4.6. Large B limit
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4.6. Large B limitProposition 5. For a general shape (subtree), the lowest power in the expan-sion of the orresponding ontribution to P (�) is given by twie the number ofthe verties in the subtree with valeny greater than 1 plus the number of bondsof the subtree minus one.Indeed, eah vertex of the valeny greater than 1 will produe the fatorV 2(qi; : : : ; qj) whose expansion starts with the term of order q2i (it orrespondsto taking the parameters ki = : : : = kj = 0 in the sum of Eq. (4.6.11)). Thenthe integration will add the power equal to the number of the bonds of thesubtree minus one | the number of free variables in the integration.
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Chapter 5
Integral Representation
In this Chapter we return to the star graphs. But now we will approahthe problem of deriving the statistis not through the trae formula and theperiodi orbits but by using the seular equation (2.2.12) diretly. One anevaluate the determinant and obtain a (transendental) equation on k for anygiven graph, but for star graphs it takes an espeially simple form,BXj=1 tanLjk = 0: (5.0.1)Our aim is to derive an expression for the two point orrelation funtion inthe limit B !1 and to ompare it with the expansion of the form fator weobtained in Chapter 3. The derivation is based on the method developed in[32℄ for statistis of the �Seba billiard [33, 34℄.5.1 Statement of the problemHere we onsider an alternative approah to the question of alulating thespetral statistis. Instead of averaging over a large spetral interval we applythe averaging with respet to the lengths of the individual bonds. That iswe assume that the lengths Lj are independent random variables distributeduniformly on the interval [L0; L0 +�L℄ and rede�ne the two-point orrelation88



5.1. Statement of the problemfuntion as R2(x) = limk!1 1�d2 Dd(k)d�k + x�d�EfLjg ; (5.1.1)where d(x), as before, is the spetral density. The averaging is de�ned byh � ifLjg = Z L0+�LL0 � � �Z L0+�LL0 � dL1�L � � � dLB�L : (5.1.2)We argue that de�nition (5.1.1) produes an equivalent result to the one on-sidered in Setion 2.6.2. Indeed, imaging applying the averaging to a termof the form os �(lq � lp)k + lq 2�xL �, see Eq. (2.6.21). We an write lp ass1;pL1 + : : : + sB;pLB, where the vetor sp is the vetor of the bond stay-ing rates of the orbit p. Similarly lq = s1;qL1 + : : :+ sB;qLB and if for some jthe orresponding staying rates sj;p and sj;q are not equal then after averagingwith respet to Lj the osine term will aquire a fator of order 1=k. Thusall ontributions from the pairs of orbits of di�erent length will disappear inthe limit k !1, reovering Eq. (2.6.22). Unfortunately it is hard to put thisargument into a more rigorous form.In this setion we make the following assumptions� we are interested in the limits �L! 0 and B !1.� when the limits �L! 0 and k !1 are to be taken together we assumethat k�L!1.In what follows we will not onern ourselves with the periodi orbits. On theontrary, we will derive a formula for R2(x) from the \�rst priniples".The general solution of Eq. (2.1.22) on a star graph an be written inthe form 	0;j(x) = Aj os(k(x + �j)), j = 1; : : : ; B. Applying the urrentonservation ondition, (2.1.21), on the outer verties (x = Lj), we obtain�j = �Lj. Condition (2.1.20) on the entral vertex implies Aj os(Ljk) =onst. Finally, applying ondition (2.1.21) and dividing by Aj os(Ljk) weobtain BXj=1 tanLjk = 0: (5.1.3)89



5.2. Average densityThus k is an eigenlevel if and only if it is a zero of the funtionF (k) = BXj=1 tanLjk: (5.1.4)Now we remember that for any funtion F (k) the densityd(k) =Xn Æ(k � kn); (5.1.5)of the zeros fkng of F an be expressed asd(k) = jF 0(k)jÆ(F (k)) = 12� Z jF 0(k)jeizF (k)dz; (5.1.6)where the integral is taken over the whole real line. In our ase F (k) =PBj=1 tanLjk and thusd(k) = 12� Z BXs=1 Lsos2 LskeizPBj=1 tanLjkdz: (5.1.7)5.2 Average densityFirst of all we would like to alulate the average density d now de�ned as�d = lim�L!0;k!1Dd(k)EfLjg (5.2.1)and ompare it to the result we derived in Subsetion 2.6.1. Applying theaveraging (5.1.2) to Eq. (5.1.7) we obtainDd(k)EfLjg = 12� Z 1�1 dz BXs=1 Z � � �Z L0+�LL0 Ls eizPBj=1 tan kLjos2 kLs dL1�L � � � dLB�L= B2� Z 1�1 dz�Z L0+�LL0 eiz tan kL dL�L�B�1 �Z L0+�LL0 Leiz tan kLos2 kL dL�L�� B2� Z 1�1 ~fB�1(z)~g(z) dz: (5.2.2)Here the funtion g(z) is~g(z) = Z L0+�LL0 Leiz tan kLos2 kL dL�L � L0�Lk Z L0+�LL0 eiz tan kL� tan kL�L dL; (5.2.3)90



5.2. Average density
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Figure 5.1: Illustration to the transition from Eq.(5.2.3) to Eq. (5.2.4): theinterval [L0; L0 +�L℄ ontains approximately k�L=� periods of tan kL. Theinomplete bits of the period on the left and right give the O(1) ontribution.where we were able to approximate L by L0 beause it is slowly varying,omparing to tan kL, and ultimately we will take the limit �L ! 0. Now,sine tan kL is a periodi funtion with the period of �=k and the integrationis performed over the interval ontaining approximately �Lk=� periods, seeFig. 5.1, we an further approximate~g(z) = L0�Lk  �Lk� Z �=(2k)��=(2k) eiz tan kL� tan kL�L dL+O(1)! (5.2.4)� L0� Z 1�1 eiz�d� = 2L0Æ(z);where O(1) is a quantity whih is bounded as �Lk ! 1 and � = tan kL.Similarly for the funtion ~f(z),~f(z) = Z L0+�LL0 eiz tan kL dL�L = L0�Lk Z L0+�LL0 eiz tan kL d tan kL1 + tan2 kL� 1� Z 1�1 eiz�1 + �2d� = e�jzj; (5.2.5)91



5.3. Two-point orrelation funtion
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Figure 5.2: Closing the ontour in the integral of Eq. (5.2.5) in the ase z > 0.Along the ar the integral is bounded by 1=R. The residue at the pole is equalto �eiz.where the last integral was evaluated by losing the ontour in either the upper(z > 0, see Fig. 5.2) or lower (z < 0) half-plane.Substituting the results into Eq. (5.2.2) we obtain for the average density�d = B2�2L0 Z 1�1 e�(B�1)jzjÆ(z)dz = L0B� ; (5.2.6)whih oinides with the expression of Eq.(2.6.5).5.3 Two-point orrelation funtion5.3.1 The reipeTo shorten the notation we introdue the funtionR(k1; k2) = hd(k1)d(k2)i (5.3.1)= *Z 1�1 BXr;s=1 LrLseiPBj=1(z1 tan k1Lj+z2 tan k2Lj)os2 k1Lr os2 k2Ls dz4�2+fLjg ;where z = (z1; z2). Then the two-point orrelation funtion is given byR2(x) = limk!1 1�d2R �k; k + x�d� ; (5.3.2)where �d is the mean density. 92



5.3. Two-point orrelation funtionApplying the averaging, as was done in Eq. (5.2.2), to the integral inEq. (5.3.1) we redue it toR(k1; k2) = Z 1�1 �Bg(z)fB�1(z) + (B2 �B)�1(z)�2(z)fB�2(z)	 dz4�2 ;(5.3.3)where f(z) = 1�L Z L0+�LL0 ei(z1 tan(k1L)+z2 tan(k2L))dL (5.3.4)g(z) = 1�L Z L0+�LL0 L2os2 k1L os2 k2Lei(z1 tan(k1L)+z2 tan(k2L))dL(5.3.5)�1(z) = 1�L Z L0+�LL0 Los2 k1Lei(z1 tan(k1L)+z2 tan(k2L))dL (5.3.6)�2(z) = 1�L Z L0+�LL0 Los2 k2Lei(z1 tan(k1L)+z2 tan(k2L))dL: (5.3.7)5.3.2 The ingredientsSubstituting k1 = k, k2 = k + �x=(BL0) for �xed x and taking the limitsk !1, �L! 0 (while k�L!1) we obtain for the �rst integralf(z) = 1�L Z L0+�LL0 ei�z1 tan(kL)+z2 tan�kL+ �xLBL0 ��dL� 1� Z �=2��=2 ei(z1 tan �+z2 tan(�+�xB ))d�; (5.3.8)where we put L=L0 � 1 beause it is slowly varying and, as in transition fromEq. (5.2.3) to Eq. (5.2.4), we approximated f by the integral over one periodlength. We writetan��+ �xB � = tan�+ tan ��xB �1� tan� tan ��xB � = 1 + �2� � tan� � �; (5.3.9)where � = (tan(�x=B))�1 / B=(�x) (we are interested in B ! 1 limit).Performing the hange of variables � = tan�� �, we arrive tof(z1; z2) � ei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1� d�(�+ �)2 + 1 ; (5.3.10)Note that f(z) is invariant under exhange z1 $ z2 and � ! ��, whih anbe veri�ed by the hange of variables � = (�2 + 1)=y in Eq. (5.3.10).93



5.3. Two-point orrelation funtionTo evaluate the integral of Eq. (5.3.10) we di�erentiate it with respet toz1 and z2 to get�f�z1 � �f�z2 = iei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1� �2� + � + �2 + 1� � d�(� + �)2 + 1= iei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1� d�� = �ei�(z1�z2)�(z1; z2); (5.3.11)where we denoted�(z1; z2) � � i� Z 1�1 eiz1��iz2 �2+1� d�� (5.3.12)= 2 sign(z1)H(�z1z2)J0 �2p�(�2 + 1)z1z2� ;where J0(x) is the Bessel funtion of the �rst kind and H(x) is the Heavisidefuntion (harateristi funtion of the half axis [0;1)).Now to �nd the funtion f(z) we need to solve the partial di�erentialequation �f�z1 � �f�z2 = �ei�(z1�z2)�(z1; z2): (5.3.13)We are going to use the method of harateristis, a general method of solving�rst order PDEs of the formP (z) �f�z1 +Q(z) �f�z2 = R(z): (5.3.14)The idea behind the method is to �nd the foliation of the plane into set ofurves z1 = z1(t), z2 = z2(t) suh that the left hand side of the equation isthe di�erential of f with respet to t. It leads to a set of ordinary di�erentialequations, usually written asdyQ(z) = dxP (z) = dfR(z) : (5.3.15)In our ase P = 1, Q = 1 and R = �ei�(z1�z2)�(z) , and, applying the method,we obtain the solution in the formf(z) = C(z1 + z2) + Z z10 R (y; z1 + z2 � y)dy; (5.3.16)94



5.3. Two-point orrelation funtionwhere the funtion C( � ) is to be found from the boundary ondition(s). Fixingz1 = 0 we haveC(z2) = f(0; z2) = f� 7!��(z2; 0)= e�i�z2� Z 1�1 eiz2� d�(�� �)2 + 1 = e�jz2j; (5.3.17)whih �xes the funtion C(�). Thus from Eqs. (5.3.11), (5.3.16) and (5.3.17),f(z) = e�jz1+z2j � Z z10 ei�(2y�z1�z2)� (y; z1 + z2 � y) dy: (5.3.18)We treat the integral for g(z) (see Eq. (5.3.5)) in a fashion similar to theone used to obtain Eq. (5.3.10). This leads us tog(z1; z2) � L20� Z �=2��=2 ei(z1 tan(�)+z2 tan(�+�x=B))os2(�) os2(�+ �x=B)d� (5.3.19)= L20 ei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1�  1 + �1 + �2� + ��2! d�;where we made the hange of variable � = tan�� � and used the identity1os2(�+ �x=v) = 1 + tan2(�+ �x=v) =  1 + � 1 + �2tan�� � + ��2! :(5.3.20)Comparing the integral above to the de�nition of the funtion �(z1; z2),Eq. (5.3.12), we note that1 + �1 + �2� + ��2 = �2 + 1� �� + � + �2 + 1� + �� (5.3.21)and therefore represent g(z) asg(z) = L20(�2 + 1)� ��z1 � ��z2��ei�(z1�z2)�(z1; z2)� ; (5.3.22)whih an be veri�ed by simple di�erentiation.One an derive a similar expression for the funtions �1(z),�1(z) � L0 ei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1� d� = L0ei�(z1�z2) ��z1�(z1; z2); (5.3.23)95



5.3. Two-point orrelation funtionand �2(z),�2(z) � L0 ei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1�  1 + �1 + �2� + ��2! d�(�+ �)2 + 1= L0 ei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1� (�2 + 1)d��2= �L0ei�(z1�z2) ��z2�(z1; z2); (5.3.24)whih again an be easily veri�ed by the di�erentiation of the expression for�(z1; z2), Eq. (5.3.12).5.3.3 The resultNow we have all neessary ingredients for evaluating the integral in Eq. (5.3.3).Substituting the expression for g(z), Eq. (5.3.22), into the �rst half of theintegral and integrating it by parts we obtainZ dz4�2BfB�1g = BL20 Z dz4�2fB�1(�2 + 1)� ��z1 � ��z2��ei�(z1�z2)��= �BL20 Z dz4�2 (�2 + 1)ei�(z1�z2)�� ��z1 � ��z2��fB�1(z)�= B(B � 1)L20 Z dz4�2 (�2 + 1)fB�2e2i�(z1�z2)�2; (5.3.25)and, gathering everything together,R2(x) = B(B � 1)L20�d2 Z dz4�2fB�2e2i�(z1�z2) �(�2 + 1)�2 � ���z1 ���z2� : (5.3.26)Now we need to take the limit B !1. To do so we write fB�2(z) = e(B�2) ln fand resale f(z)f(u=�) = e� ju1+u2j� � 1� Z u10 ei(2y�u1�u2)	(y; u1 + u2 � y)dy (5.3.27)Thus, to the leading order in 1=� = �x=B, we have(B � 2) ln f(u) � ��x�ju1 + u2j+ Z u10 ei(2y�u1�u2)	(y; u1 + u2 � y)dy�� ��xQ (5.3.28)96



5.3. Two-point orrelation funtionwhere 	 is the resaled funtion �,	(u) = ��u�� = 2 sign(u1)H(�u1u2)J0 �2p�u1u2� ; (5.3.29)and we have taken the limit B !1 (� !1).Renormalising the rest of the Eq. (5.3.26) and taking the limit B !1 weobtain R2(x) = 14 Z due��xQe2i(u1�u2) �	2 � �	�u1 �	�u2� : (5.3.30)For the derivatives of the funtion 	 one has�	�u1 = 2�J0(0)Æ(u1) + sign(u1)H(�u1u2)u2J 00(2p�u1u2)p�u1u2 � ; (5.3.31)�	�u2 = 2��J0(0)Æ(u2) + sign(u1)H(�u1u2)u1J 00(2p�u1u2)p�u1u2 � ;(5.3.32)therefore, using J0(0) = 1 and J 00(x) = �J1(x),�	�u1 �	�u2 = �4 �Æ(u1)Æ(u2) +H(�u1u2)J1(2p�u1u2)� : (5.3.33)ThusR2(x) = 1 + Z e��xM+2i(u1�u2) �J20 (2p�u1u2) + J21 (2p�u1u2)�H(�u1u2)du:(5.3.34)Now we perform the hange of variables u2 7! �u2 arriving to the integralrepresentation of the two-point orrelation funtion,R2(x) = 1 + ZD e��xM(u)+2i(u1+u2) �J20 (2pu1u2) + J21 (2pu1u2)� du; (5.3.35)where the domain of integration D inludes �rst and third quarters of the R2and M(u) is given byM(u) �M(u1; u2) = ju1 � u2j+ Z u10 ei(2y�u1+u2)	(y; u1 � u2 � y)dy:(5.3.36)97



5.3. Two-point orrelation funtion5.3.4 Properties of the funtion M(u)In the subsequent material the funtion M(u) plays an important role. Weholds the key to both the asymptoti expansion of the two-point orrelationfuntion and the study of the singularities of the form fator. We begin byderiving the power series representation of M(u).We only need to onsider the funtion M(u) in the region u1u2 > 0. Letus start with u1; u2 > 0. ThenM(u) = ju1 � u2j+ 2 Z u10 ei(2y�u1+u2)H (y(y � u1 + u2)) J0 �2py(y � u1 + u2)� dy: (5.3.37)Due to the presene of the Heaviside funtion H we need to onsider two ases.If u2 > u1 then y(y � u1 + u2) � 0 for any y : 0 � y � u1 and thereforeM(u) = u2 � u1 + 2 Z u10 ei(2y�u1+u2)J0 �2py(y � u1 + u2)� dy: (5.3.38)In the ase u1 > u2, however, the lower limit of the integration hanges,M(u) = u1 � u2 + 2 Z u1u1�u2 ei(2y�u1+u2)J0 �2py(y � u1 + u2)� dy: (5.3.39)To �nd an expression whih is valid for both regions, we alulate the integralZ u1�u20 ei(2y�u1+u2)J0 �2py(y � u1 + u2)� dy: (5.3.40)For simpliity we denote u1 � u2 = b and writeei(2y�b)J0 �2py(y � b)� = �(y; y � b); (5.3.41)where�(x; y) � ei(x+y)J0 (2pxy) = 1Xj;k=0 ij+kxjyk(j + k)! �j + kj � 1Xn=0(�1)nxnynn!n!= 1Xr;s=0xrys min(r;s)Xn=0 (�1)nir+s�2nn!n!(r � n)!(s� n)! = 1Xr;s=0 ir+sxrysr!s! 1Xn=0 �rn��sn�= 1Xr;s=0 ir+s�r + sr �xrysr!s! : (5.3.42)98



5.3. Two-point orrelation funtionHere we used the identity 1Xn=0 �rn��sn� = �r + sr �: (5.3.43)Now we substitute x = y � b and integrate the series, remembering thatZ b0 (y � b)rysdy = (�1)r r!s!(r + s+ 1)!br+s+1; (5.3.44)see also Eq. (4.6.7). We obtainZ b0 �(y; y � b)dy = 1Xr;s=0 ir+sbr+s+1(r + s+ 1)!(�1)r�r + sr �= 1Xr+s=0 ir+sbr+s+1(r + s+ 1)!Ær+s;0 = b: (5.3.45)Thus, adding and subtrating 2b from Eq. (5.3.39), we an show that (5.3.38)is valid for both u2 > u1 and u1 > u2.We remember that the funtion f(u) whih gave rise to M(u) in our al-ulation in the previous Setion satis�ed a linear partial di�erential equationof the �rst order. Calulating partial derivatives of M(u),�M�u1 = �1 + 2 Z u10 ��u1�(y; y � u1 + u2)dy + 2�(u1; u2); (5.3.46)�M�u2 = 1 + 2 Z u10 ��u2�(y; y � u1 + u2)dy= 1� 2 Z u10 ��u1�(y; y � u1 + u2)dy; (5.3.47)we see that M(u) also satis�es a PDE,�M�u1 + �M�u2 = 2�(u1; u2): (5.3.48)The initial ondition an be easily supplied by substituting u1 = 0:M(0; u2) = u2: (5.3.49)Now we an �nd the series expansion ofM(u) by solving Eq. (5.3.48) with theinitial ondition (5.3.49). WritingM(u) = 1Xj;k=0Aj;kuj1uk2; (5.3.50)99



5.3. Two-point orrelation funtionand denoting by Bj;k the oeÆients of the expansion of 2�(u1; u2), as givenby Eq. (5.3.42), we arrive to the reursionAj+1;k = 1j + 1 (Bj;k � (k + 1)Aj;k+1) ; A0;k = Æ0;k: (5.3.51)This reursion is satis�ed by A1;0 = A0;1 = 1 andAj;k = �2ij+k+1 (j + k � 2)!j!k!(j � 1)!(k � 1)! : (5.3.52)Indeed,1j + 1 (Bj;k � (k + 1)Aj;k+1) = 2ij+k(j + 1)!k! ��j + kk �� �j + k � 1k ��= �2ij+k+2(j + 1)!k!�j + k � 1j � = Aj+1;k: (5.3.53)Thus for u1; u2 > 0M(u) = u1 + u2 � 2i 1Xr;s=1 (iu1)r(iu2)s(r + s� 2)!r!s!(r � 1)!(s� 1)! : (5.3.54)Comparing the expansions for the funtions M(u) and �(u) we notie thatthey are quite similar. In fat,�2M�u1�u2 (u) = 2i�(u): (5.3.55)An analysis, similar to the one presented in the pages above, of the funtionM(u) in the region u1; u2 < 0 yields the PDE�M�u1 + �M�u2 = �2�(u1; u2); M(0; u2) = �u2: (5.3.56)Solving this PDE using the same methods we arrive to the general formula forM(u),M(u) = ju1j+ ju2j � 2i sign(u1) 1Xr;s=1 (iu1)r(iu2)s(r + s� 2)!r!s!(r � 1)!(s� 1)! : (5.3.57)While we are at it, we might as well derive an expansion for the seondfator in the integrand of representation (5.3.35) of the two-point orrelation100



5.4. Expansion for large xfuntion, the sum of the Bessel funtions, J20 (2p�u1u2) + J21 (2p�u1u2). Toderive it we use the standard formula (see, e.g. [41℄)J�(z)J�(z) = (z2)�+� 1Xk=0 (�1)k�(� + �+ 2k + 1)(z=2)2k�(� + k + 1)�(�+ k + 1)�(� + �+ k + 1)k! :(5.3.58)Applying this formula to our ase, with � = � = 0 and � = � = 1, we obtainJ20 (2p�u1u2) + J21 (2p�u1u2)= 1Xk=0 (�1)k(2k)!uk1uk2k!k!k!k! � 1Xk=1 (�1)k(2k)!uk1uk2k!k!(k + 1)!(k � 1)!= 1 + 1Xk=1 (�1)k(2k)!uk1uk2k!k! � 1k!k! � 1(k + 1)!(k � 1)!�= 1Xk=0 (�1)k(2k)!uk1uk2k!k!(k + 1)!k! (5.3.59)5.4 Expansion for large xTo derive an expansion of the two point orrelation funtion R2(x) for large xwe notie that sineM(�u) =M(u), the integral over the third quarter-planein Eq. (5.3.35) is equal to the omplex onjugate of the integral over seondquarter-plane, i.e.R2(x) = 1 + 2< Z Z 10 e��xM(u)+2i(u1+u2)J(u)du; (5.4.1)where J(u) = J20 (2pu1u2) + J21 (2pu1u2) = 1Xn=0 (�1)nun1un2 (2n)!(n+ 1)!(n!)3 : (5.4.2)Now we an use the expansion of M(u), Eq. (5.3.57), to expand R2(x) in thepowers of 1=x. We substitute ui = i=(x�) and obtainR2(x) = 1 + 2< 1x2�2 Z Z 10 d1d2e�1�2 �1 + 2i (1 + 2 � 12)x�� (512 + 221 + 222 � 5122 � 5212 + 22122)x2�2 +O� 1x3��= 1 + 2< � 1x2�2 + 2ix3�3 � 1x4�4 + : : : � : (5.4.3)101



5.4. Expansion for large xTo ompare it to the expansion of the form fator K(�) we remember that theexpansion of R2(x) in powers of 1=x and the expansion of K(�) in powers of� are onneted through the Fourier transform: if K(�) = 1 +P1k=1 ak�k for� > 0 and K(��) = K(�) thenR2(x)� 1 = Æ(x) + 2< lim�!0 Z 10 (K(�)� 1)e�i2�(x�i�)�d�= Æ(x) + 2< lim�!0 1Xk=1 ak Z 10 �ke�i2�(x�i�)�d�= Æ(x) + 2< 1Xk=1 ��i2��k+1 akk!xk+1 : (5.4.4)Applying this rule toK(�) = 1� 4� + 8� 2 � 83� 3 +O(� 4); (5.4.5)we see that the �rst few oeÆients of the both expansions agree.1 In fat, it ispossible to prove a muh more general result, due to Bogomolny (also reportedin [42℄)Theorem 2. Asymptoti expansion (5.4.1) of the two-point orrelation fun-tion and expansion (3.1.42) for the form fator agree under Fourier transform,Z Z 10 e��xM(u)+2i(u1+u2)J(u)du = Z 10 (K(� 0)� 1) e�2�ix� 0d� 0: (5.4.6)Proof. When taking the Fourier transform in Eq. (5.4.6), we give x a smallimaginary part and then take limit as done in Eq.(5.4.4). This establishes theorrespondene between the terms in the asymptoti expansion offR2(x) = Z Z 10 e��xM(u)+2i(u1+u2)J(u)du (5.4.7)and the terms of the small � expansion of K(�). This orrespondene is1(2�ix)k  ! �k�1(k � 1)! : (5.4.8)1Æ(x) is not present in the expansion Eq. (5.4.3), sine the large x expansion \does notknow" about the loalised delta funtion. 102



5.4. Expansion for large xOur plan is to modify the integrand in the de�nition of fR2(x), getting ridof the fator e2i(u1+u2)J(u), expand the integral in the inverse powers of x andapply the orrespondene rule (5.4.8) reovering expansion (3.1.42).First of all, let us derive a series expansion for�1(u) = �2ipu1u2J1 (2pu1u2) ei(u1+u2): (5.4.9)One way to do it is to relate �1(u) to the funtion �(u) = ei(u1+u2)J0 �2pu1u2�,expansion for whih we know, see Eq. (5.3.42). We have����(�x; �y) = i(x + y)�(�x; �y)� 2p�2xyJ1 (2�pxy) ei�(x+y)= x ���u1 (�x; �y) + y ���u2 (�x; �y); (5.4.10)where ��=�ui denotes the derivative of � with respet to ith argument. Henewe have for �1(u)�1(u) = i�u1 ��u1�(u) + u2 ��u2�(u)� + (u1 + u2)�(u): (5.4.11)Substituting the series expansion of the funtion �(u) into the above equationwe obtain for the oeÆient of the ur1us2 term of the funtion �1(u),ir+s+1 (r + s)(r + s)!r!s!r!s! + ir+s�1 (r + s� 1)!((r � 1)!s!)2 + ir+s�1 (r + s� 1)!(r!(s� 1)!)2= 2ir+s+1 (r + s� 1)!r!s!(r � 1)!(s� 1)! ; (5.4.12)for r; s > 0. Now we notie that the general terms of the expansions of thefuntionsM(u) and �1(u) are very similar, the only di�erene being the fator�(r + s � 1) in the expansion of �1(u). One of the ways to relate M(u) to�1(u) is to write ��x �xM ��1x ; �2x �� = �1 ��1x ; �2x � : (5.4.13)This is the �rst of the identities we will need. The seond one is a modi�ationof Eq. (5.3.48),� ���1 + ���2��xM ��1x ; �2x �� = 2���1x ; �2x � : (5.4.14)103



5.4. Expansion for large xApplying the �rst of the above identities we alulate�2�x2 e��xM(�1x ;�2x ) = e��xM  �2� ��x (xM)�2 � � �2�x2 (xM)!= e��xM ��4�2�1�2x2 J21 e2� � 2�ix3 �2J0e��1�2 + iJ1e�p�1�2(�1 + �2)�� ;(5.4.15)where � = i(�1 + �2)=x and the argument (�1=x; �2=x) of the funtions M ,J0, and J1 is omitted.Similarly using identity (5.4.14), we derive� ���1 + ���2�2 e��xM(�1x ;�2x ) = e��xM ��2�2 � �� ���1 + ���2���= e��xM �4�2J20 e2� � 2�i�1�2x �2J0e��1�2 + iJ1e�p�1�2(�1 + �2)��(5.4.16)Notiing the similarities of Eqs. (5.4.15) and (5.4.16) we subtrat the �rst fromthe seond, with the appropriate fators, to obtain14�2 " 1x2 � ���1 + ���2�2 � 1�1�2 �2�x2# e��xM(�1x ;�2x )= 1x2 �J20 + J21 � e2�e�xM ; (5.4.17)where, as before, � = i(�1 + �2)=x and the argument (�1=x; �2=x) is omittedafterM , J0 and J1. The right hand side of Eq. (5.4.17) is exatly the integrandof Eq. (5.4.1) if we perform the hange of variables ui = �i=x and therefore,fR2(x) = ZZ 10 d�1d�24�2 " 1x2 � ���1 + ���2�2 � 1�1�2 �2�x2# e��xM(�1x ;�2x ):(5.4.18)The �rst summand in the integral an be evaluated as follows,ZZ 10 d�1d�24�2x2 � ���1 + ���2�2 e��xM(�1x ;�2x )= ��2� ZZ 10 d�1d�24�2x2 � ���1 + ���2��e��xM�= �� Z 10 d�22�x2 ��e��xM�1�1=0 � Z 10 d�12�x2 ��e��xM�1�2=0� : (5.4.19)104



5.4. Expansion for large xSine h���1x ; �2x � e��xM(�1x ;�2x )i1�1=0 = �ei�2=xe���2 ; (5.4.20)we obtain for the ontribution of the �rst summandZZ 10 d�1d�24�2x2 � ���1 + ���2�2 e��xM(�1x ;�2x )= �Z 10 d�22�x2 ei�2=x���2 + Z 10 d�12�x2 ei�1=x���1�= 12�x2 2� � i=x: (5.4.21)Now we an expand the answer in the inverse powers of x and apply theorrespondene rule, Eq. (5.4.4). We obtain1�x 1�x� i = � 1Xk=0 � i�x�k+2= � 1Xk=0 (�2)k+2(2�ix)k+2  ! 2 1Xk=0 (�2�)k+1(k � 1)! = 2 �e�2� � 1� : (5.4.22)Now we need to expand the seond part of the integrand of Eq. (5.4.18),�2�x2 e��xM(�1x ;�2x ) = �2�x2 e��(�1+�2) exp 2�i 1Xr;s=0 (i�1)r+1(i�2)s+1(r + s)!xr+s+1r!s!(r + 1)!(s+ 1)!!= e��(�1+�2) �2�x2 24 1Xj=0 (2�i)jj!  1Xr;s=0 (i�1)r+1(i�2)s+1(r + s)!xr+s+1r!s!(r + 1)!(s+ 1)!!j35 (5.4.23)Following notation (3.1.44) we expand the power j, 1Xr;s=0 (i�1)r+1(i�2)s+1(r + s)!xr+s+1r!s!(r + 1)!(s+ 1)!!j =  1Xr;s=0 (i�1)r+1(i�2)s+1xr+s+1 F1(r; s)!j= 1XR;S=0 (i�1)R+j(i�2)S+jxR+S+j Fj(R; S); (5.4.24)where, as in Chapter 3,Fj(R; S) = Xr1+:::+rj=R Xs1+:::+sj=S jYi=1 (ri + si)!ri!si!(ri + 1)!(si + 1)! ; (5.4.25)105



5.5. Singularities of the form fatori.e. Fj(R; S) is the jth onvolution of the in�nite matrix F1(R; S) with itself.Continuing Eq. (5.4.23) we obtain�2�x2 e��xM(�1x ;�2x ) = e��(�1+�2) 1Xj=1 (2�i)jj!� 1XR;S=0 (R + S + j � 1)!(i�1)R+j(i�2)S+j(R + S + j + 1)!xR+S+j+2 Fj(R; S): (5.4.26)Finally we integrate against d�1d�2=(4�2�1�2) to arrive at� ZZ 10 d�1d�24�2�1�2 �2�x2 e��xM(�1x ;�2x )= � 1Xj=1 (2�i)j4�2j! 1XR;S=0 (R + S + j + 1)!(R + j � 1)!(S + j � 1)!(R + S + j � 1)!(�i�)R+S+2jxR+S+j+2 Fj(R; S)= 1Xj=1 (�2)j4j! 1XR;S=0 (R + S + j + 1)!(R + j � 1)!(S + j � 1)!(R + S + j � 1)!(�i�x)R+S+j+2 Fj(R; S) ! 1Xj=1 (�2)j4j! 1XR;S=0 (�2�)R+S+j+2(R + j � 1)!(S + j � 1)!�(R + S + j � 1)! Fj(R; S)= � 1Xj=1 (4�)jj! 1XR;S=0 (�2�)R+S(R + j � 1)!(S + j � 1)!(R + S + j � 1)! Fj(R; S): (5.4.27)This is exatly the same as the j sum in Eq. (3.1.42) with the exeption of theextra j = 1 term in the summation above. For j = 1 we have4� 2 1XR;S=0 (�2�)R+SR!S!(R + S)! Fj(R; S) = 1XR;S=0 (�2�)R+S+2(R + 1)!(S + 1)!=  1XR=0 (�2�)R+1(R + 1)! ! 1XS=0 (�2�)S+1(S + 1)! ! = (1� e�2� )2= 1� 2e�2� + e�4� ; (5.4.28)whih together with the terms 1 and 2(e�2� � 1) gives the orret ontributione�4� .5.5 Singularities of the form fatorIt turns out that one an obtain some information about the singularities ofK(�) by studying integral representation (5.4.1). We are going to apply the106



5.5. Singularities of the form fatorFourier transform to the integral in Eq. (5.4.1) to reover the expansion of theform fator. There is, however, a subtle problem assoiated with this. Theform fator is by de�nition an even funtion de�ned on the real line. Whatwe want to get from transforming Eq. (5.4.1) is an analyti funtion whihoinides with the form fator for real � > 0.As we saw above,fR2(x) = Z Z 10 e��xM(u)+2i(u1+u2)J(u)du = Z 10 (K(� 0)� 1)e�2�ix� 0d� 0:(5.5.1)Integrating (5.5.1) against e2�ix� on the real line (and thus e�etively invertingthe Fourier transform) we obtainZ 1�1fR2(x)e2�ix�dx = K(�)� 1; � > 0: (5.5.2)The left hand side an be viewed as the analyti ontinuation of the form fatorrestrited to � > 0 into the omplex plane. Now we use fR2(�x) = fR2(x) towrite Z 1�1 e2�ix�fR2(x)dx = Z 10 �e2�ix�fR2(x) + e�2�ix�fR2(x)� dxThe only fator in the integral for fR2(x) whih depends on x is e��xM(u) andZ 10 e2�ix�e��xM(u)dx = 1�(M(u)� 2i�) ; (5.5.3)thus we have for the form fatorK(�) = 1 + 1� Z Z 10 " e2i(u1+u2)M(u)� 2i� + e�2i(u1+u2)M(u) + 2i� # J(u)du: (5.5.4)The representation (5.5.4) presents us with a way to �nd the singularitiesof the form fator K(�). They are given by the ondition � =M(us)=(2i) and� =M(us)=(2i), where the point us is suh that�M�u1 (us) = �M�u2 (us) = 0: (5.5.5)107



5.5. Singularities of the form fatorThe derivative with respet to u2 is�M�u2 = 1� 2 Z u10 hei(y+z)J1 (2pyz)py=z � iei(y+z)J0 (2pyz)i dy; (5.5.6)where z = y � u1 + u2 and we assumed that u1 > u2 > 0. It is obviousfrom the expansion (5.3.57), however, that the funtion M(u) is ontinuouslydi�erentiable if u1u2 > 0 and that the expression (5.5.6) is valid for all u1 > 0and u2 > 0. The expression in Eq. (5.5.6) is not easy to analyse and to simplifyit we redue our searh to the values u2 = u1,�M�u2 (u2 = u1) = 1� 2 Z u10 e2iyJ1(2y)dy + 2i Z u10 e2iyJ0(2y)dyIntegrating the seond integral by parts,Z u10 e2iyJ0(2y)dy = e2iyJ0(2y)2i ����u10 + 22i Z u10 e2iyJ1(2y)dy; (5.5.7)we obtain, after simpli�ation,�M�u2 (u2 = u1) = e2iu1J0(2u1): (5.5.8)Sine �M�u1 (u2 = u1) = �M�u2 (u2 = u1), the zeros of the derivatives of M(u)on the line u2 = u1 are given by the zeros of the Bessel funtion J0. Thenearest zero is at us � 1:202. Then one of the poles of K(�) is given by�s =M(1:202; 1:202)=(2i) = 0:462� 0:420i whih is in a very good agreementwith the results of the numerial analysis. Although the numerial analysis isin favour of the laim that �s is the singularity nearest to the origin, we anprove it only partly.Proposition 6. Among the singularities arising from the values u2 = u1, thesingularity at �s =M(1:202; 1:202)=(2i) is the nearest to the origin.Proof. To show that the statement is true we need to prove that the funtionjM(u; u)j is growing with u. Indeed, on the line u1 = u2 the funtionM isM(u; u) = Z 2u0 eiyJ0(y)dy = 2e2iuu (J0(2u)� iJ1(2u)) : (5.5.9)108



5.5. Singularities of the form fator
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Figure 5.3: The oeÆients of the power series expansion of K(�) normalisedby �n (rosses) are ompared to the predition of Eq. (5.5.15). The �t getsbetter as n inreases.Then jM(x=2; x=2)j = x2 (J20 (x) + J21 (x)) and its derivative is (see [41℄)ddx jM(x=2; x=2)j2= 2x �J20 (x) + J21 (x)�+ x2�� 2J0(x)J1(x) + 2J1(x) (J0(x)� J1(x)=x) �= 2xJ20 (x) � 0 (5.5.10)
Further, one an approximate the behaviour of K(�) near the singularities.Denoting a stationary point of M(u) by us = (us; us), we expandM(u) � M(us) + 12 �2M�u21 (us)(u1 � u2)2 + 12 �2M�u22 (us)(u2 � us)2+ �2M�u1�u2 (us)(u1 � us)(u2 � us)= M(us) + �s �(u1 � us)2 + (u2 � us)2� ; (5.5.11)where, as we saw in Eq. (5.3.55), �2M�u1�u2 (us) = e2iusJ0(2us)=(2i) and is equalto zero sine �M�u1 is equal to zero at us. For the singularity assoiated with the109



5.6. Small x limit of R2(x)�rst Bessel zero, �s = :385� :349i. Then the form fatorK(�)� 1��s Z Z 10 J(u)e2i(u1+u2)du(u1 � us)2 + (u2 � us)2 + (M(us)� 2i�)=�s + ..(5.5.12)where the omplex onjugate (..) was taken pretending that � is real. Themain ontribution to the integral omes from around the point us. Theintegral near a singularity an be approximated by the value of the fatorJ(u)e�2i(u1+u2)= (��s) at the singularity multiplied byZ Z0 duu21 + u22 + � = Z 2�0 Z0 rdrr2 + � = � Z0 dr2r2 + � = �� ln�; (5.5.13)where the absene of the upper limit indiates that the integral is taken in theviinity of the lower limit. Thus we onlude that the leading order approx-imation of the form fator in the viinity of the singularities (i.e. where �,whih orresponds to M(us)� 2i� or M(us) + 2i� , is small) is given byK(�) / �C ln�1� 2i�M(us)�� C ln 1 + 2i�M(us)! ; (5.5.14)where C = J(us)e4ius=�s. Expanding the ontribution of Eq. (5.5.14) into theseries around � = 0 we getK(�) / 2< C 1Xn=1 �n ein�n �n! = 2A os(�n+  )�nn �n; (5.5.15)where A = jJ(us)e4ius=�sj � 0:519,  = arg (J(us)e4ius=�s) � �0:737, � =j2i=M(us)j � 1:602 and � = arg (2i=M(us)) � 0:737. By Darboux Priniple,the oeÆients of expansion (5.5.15) should omprise the leading ontributionto the exat oeÆients given by Eqs. (3.1.42)-(3.1.43). To ompare themwe plot the exat oeÆients nan=�n against the approximated oeÆients2A os(�n+  ). The result is shown on Fig. 5.3.5.6 Small x limit of R2(x)To derive an expression for R2(x) whih is onvenient in the limit of small xwe return to Eq. (5.3.30). There we want to reexpress the term in the square110



5.6. Small x limit of R2(x)brakets in suh a way that it is possible to do the integration by parts.First of all, we notie that the properties of the Bessel funtions imply thatthe funtion 	(u) satis�es �2	�u1�u2 (u) = 	(u): (5.6.1)Then, looking at the identities��u1 �e2i(u1�u2)	2� = 2ie2i(u1�u2)	2 + 2e2i(u1�u2)	 �	�u1 ; (5.6.2)��u2 �e2i(u1�u2)	2� = �2ie2i(u1�u2)	2 + 2e2i(u1�u2)	 �	�u2 ; (5.6.3)and �2�u1�u2 �e2i(u1�u2)	2�= e2i(u1�u2)�4	2 + 4i	 �	�u2 � 4i	 �	�u1 + 2 �	�u1 �	�u2 + 2	 �2	�u1�u2�= e2i(u1�u2)�6	2 + 4i	 �	�u2 � 4i	 �	�u1 + 2 �	�u1 �	�u2� ; (5.6.4)we notie that� �22�u1�u2 + i� ��u1 � ��u2�� �e2i(u1�u2)	2�= e2i(u1�u2)��	�z1 �	�z2 � 	2� : (5.6.5)Substituting it into Eq. (5.3.30) and integrating by parts we obtainR2(x) = �14 Z due��xQ � �22�u1�u2 + i� ��u1 � ��u2���e2i(u1�u2)	2(u1; u2)�= Z du4 e2i(u1�u2)	2 �i� ��u1 � ��u2�� �22�u1�u2� �e��xQ� : (5.6.6)Now, using the identities (ompare to Eqs.(5.3.48) and (5.3.55))�Q�u1 � �Q�u2 = ei(u1�u2)	; �2Q2�u1�u2 = �iei(u1�u2)	; (5.6.7)
111



5.7. Comparing star graphs and �Seba billiardswe write�i� ��u1 � ��u2�� �22�u1�u2� �e��xQ�= e��xQ��i�x� �Q�u1 � �Q�u2� + �x2 �2Q�u1�u2 � (�x)22 �Q�u1 �Q�u2�= �e��xQ�3i�x2 ei(u1�u2)	+ (�x)22 �Q�u1 �Q�u2� : (5.6.8)Thus we �nally obtainR2(x) = � Z du8 e��xQe2i(u1�u2)	2 ��2x2 �Q�u1 �Q�u2 + 3i�x	ei(u1�u2)� ; (5.6.9)From Eq. (5.6.9) one an see that the two-point orrelation funtion R2(x) islinear in x for small x and the orresponding numerial fator was omputedin [32℄,3i� Z e3i(u1�u2)	3du = 3i� ZD sign(u1)e3i(u1�u2)J30 �2p�u1u2� du= 3i� Z 10 Z 0�1 e3i(u1�u2)J30 �2p�u1u2� du1du2 + ..= ��p32 ; (5.6.10)produing R2(x) = �p32 x +O(x2): (5.6.11)5.7 Comparing star graphs and �Seba billiardsThe original �Seba billiard, whih is a retangular billiard quantized and per-turbed by a delta funtion, see Fig. 5.4, was introdued in [33℄ as an exampleof a system whose lassial ounterpart is integrable (the delta funtion a�etsonly measure zero set of the orbits) but whih nonetheless exhibits features ofquantum haos. This onstrution was later generalized to quantized versionsof any integrable system [34℄ whih retained the aforementioned properties.We will refer to any system in this lass as a \�Seba billiard".112
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Figure 5.4: A star graph with v edges (a) and a �Seba billiard (b): di�erentsystems with the same statistis.The energy levels of a �Seba billiard an be found by solving an expliitequation whih depends on the levels of the original unperturbed system andon the boundary onditions imposed at the singularity. This equation takesthe general form �(z) = 0, where �(z) is a meromorphi funtion; for example,for one partiular hoie of boundary ondition [33, 34℄�(z) =Xn � 1En � z � EnE2n + 1� ; (5.7.1)where fEig are the eigenlevels of the unperturbed system. Using this expliitexpression and assuming that fEig are given by a Poisson proess, one anderive the assoiated funtions suh as the joint distribution of the levels ofthe �Seba billiard, asymptotis of the level spaing distribution [34℄ and thetwo-point spetral orrelation funtion [32℄. The results show the presene ofthe spetral orrelations but are substantially di�erent from RMT results.The derivation presented above in the Setions 5.2, 5.3 and 5.6 is the re-sult of the appliation of the methods developed in [32℄ to alulating R2(x)for the star graphs. Although onerning statistis of zeroes of two di�erentfuntions, (5.1.3) and (5.7.1), both derivation follow the same route and, mostimportantly, produe exatly the same result.113



Chapter 5. Integral RepresentationThe heuristi reasons for this somewhat surprising result are the follow-ing. First, the dynamis in both systems is entered around the single pointsatterer. In the star graphs it is the entral vertex and in the �Seba billiardsit is the delta funtion. Furthermore, in between satterings the dynamis isintegrable in both ases.The seond reason is given by an appliation of the Mittag-Le�er theoremto the meromorphi funtion tan z:tan z = 1Xn=�1� 1n� + �=2� z � 1n� + �=2� : (5.7.2)Thus we an rewrite Eq. (5.1.3) in the form similar to (5.7.1) and sine thepoles of the funtion in Eq. (5.1.3) in the limit B !1 have properties similarto the ones of a Poisson sequene, it is less surprising that the two pointorrelation funtions are the same.Finally, we remark that the results of this Chapter demonstrate that, atleast in the speial ase onsidered here, graphs are able to reprodue fea-tures of other, experimentally realizable, quantum systems, and also that theyprovide further on�rmation that spetral statistis an be omputed exatlyusing the trae formula as we have done in Chapter 3.
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Appendix A
Combinatorial results
A.1 General properties of degeneray lassesTheorem 3 (The number of the degeneray lasses). Let G be a graphwith V verties and B (non-direted) bonds. Denote by D(m) the number ofthe degeneray lasses of the period m. Then D(2n)+D(2n+1) is a polynomialin n of order B � 1 with the leading term2B�V+1 nB�1(B � 1)! : (A.1)Proof. First we reall that the degeneray lasses an be labelled by the vetorss 2 NB0 (.f. Eq. (2.1.15) and Def. 6). However not all suh vetors orrespondto degeneray lasses. There are two restritions. First, the \Euler ondition",is Xj : (i;j)2B s(i;j) is even for any i 2 V; (A.2)where s(i;j) is the omponent of the vetor s orresponding to the non-diretedbond (i; j). The above ondition arises from the fat that passing through thevertex i adds 2 to the sum in Eq. (A.2) and if the sum was odd it would meanthat the orbits in the degeneray lass would \get stuk" at the vertex i.The seond restrition is the onnetivity of the degeneray lass. For thisrestrition there is no onvenient desription in terms of the vetor s. However,115
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Figure A.1: On the left: an example of a graph. On the right: addition of twoskeletons. The dotted bond disappears after the addition.as we shall see, the number of disonneted degeneray lasses is sub-dominantto the number of onneted ones.First we ount all degeneray lasses, both onneted and disonneted.That is, we ount all vetors s satisfying Eq. (A.2). For a degeneray lass,the skeleton is the set of all bonds b suh that sb is odd. It is lear that theskeleton of a degeneray lass will satisfy Eq. (A.2) itself and will have theassoiated vetor ss 2 NB0 with the omponents equal to 1 orresponding tothe bonds that are in the skeleton and zeros orresponding to the bonds thatare not. Thus we deompose eah vetor s satisfying Eq. (A.2) into the sums = ss + sfl; (A.3)where the \esh omponent" sfl has only even omponents. Suh a deompo-sition is learly unique.Now we want to ount the number of all possible skeletons on our graph.Let ZG denote the yle spae of the graph and let fzigdimZGi=1 be a basis ofthe yle spae (see, e.g., [43℄). For example, the dimension of the yle spaeof the graph on Fig. A.1 is four and one of the possible hoies of the basis116



Appendix A. Combinatorial resultsonsists of the yles f(1; 3; 6); (1; 2; 4); (2; 3; 5); (6; 7; 8)g. We de�ne the sumof two yles as a set whih onsists of all the bonds whih belong to one of thesummands but not to both (logial exluding OR). For example, the addition(1; 3; 6) + (6; 7; 8) = (1; 3; 8; 7) (A.4)is illustrated on Fig. A.1. Sum of more than two summands is de�ned byindution, like in(1; 3; 6) + (1; 2; 4) + (2; 3; 5) = (2; 3; 6; 4) + (2; 3; 5) = (4; 5; 6) (A.5)One an hek that this operation is assoiative and that the result is always askeleton. It is also true that any skeleton an be represented as a sum of someof the basis yles with oeÆients 0 or 1 in a unique way. Thus the numberof all possible skeletons is equal to 2dimZG with the empty skeleton being oneof them. It is a well-known result that the dimension of the yle spae isdimZG = B � V + 1 (see, for example, [43℄).Now if we have a skeleton ss with jssj \bones", we have to ount allpossible \esh omponents" with the sum of the vetor elements equal to2n � jssj(+1), where 1 is added if jssj is odd. It is the same as the numberof ways to distribute n � [jssj℄ ouples of objets between B distinguishablebins. Here [x℄ stands for the integer part of x. The answer to our question isthe binomial oeÆient �n� [jssj℄ +B � 1B � 1 �; (A.6)whih is a polynomial in n with the leading term given by nB�1(B�1)! , independent ofjssj. Multiplying the leading term by the number of all skeletons we obtain theleading order approximation to the number of all degeneray lasses, onnetedand disonneted.We an estimate from above the number of disonneted degeneray lassesby the number of all disonneted subgraphs of G multiplied by the numberof all degeneray lasses that belong to the subgraph. But the number of the117



Appendix A. Combinatorial resultssubgraphs does not depend on n and the number of the degeneray lasses ina subgraph must have order less than B� 1 sine the subgraph has less bondsthan the original graph. Thus the number of disonneted degeneray lassesis sub-dominant.Remark. If Se is the number of all skeletons with even number of bonesand So is the number of odd ones thenD(2n) / Se nB�1(B � 1)! (A.7)D(2n+ 1) / So nB�1(B � 1)! (A.8)However it is better to onsider the sum D(2n)+D(2n+1) as it might happenthat So = 0 (e.g. for star graphs). There is always at least one even skeleton| the empty one.Theorem 4 (Upper bound on a degeneray lass ontribution).Given a degeneray lass s, its ontribution is bounded by������ Xs(p)=s Aprp ������ � 2B; (A.9)where B is the number of bonds of the graph.Proof. We remind ourselves that the ontribution of the degeneray lass s isthe oeÆient of eik` in the expansion of Tr(DS)n, Eq. (2.3.16), where ` =PBi=1 siLi.Form the 2B � 2B diagonal matrix Z with the elements Zb;b = zb, wherezb are omplex variables, and identify the variables zb and zb. Then if we putzi = eikLi , we will reover the matrix D, Eq. (2.2.10).The trae Tr(ZS)n is a polynomial of degree n in B omplex variables. Theontribution of the degeneray lass s is given by the oeÆient of zs11 zs22 � � � zsBB .The upper bound for suh oeÆient is given by the Cauhy inequality,������ Xs(p)=s Aprp ������ � max jTr(ZS)nj ; (A.10)118



Appendix A. Combinatorial resultswhere the maximum is taken over the variables zi taking values on the unitirle, zi = ei�i . However for suh values of the variables the matrixZ is unitarythus (ZS)n is also unitary of dimension 2B�2B thus max jTr(ZS)nj � 2B.A.2 Partitions of an integer into a sum of non-zero summandsThe number of partitions of the integer n into k non-zero summands is awell known ombinatorial quantity. Rigorously speaking, it is the number ofsolutions in N = f1; 2; 3; : : :g of the equationx1 + x2 + � � �+ xk = n; xi 2 N : (A.1)We denote suh number by b(n; k).Let (a1; : : : ; ak) be suh a solution. Then the set fa1; a1 + a2; : : : ; a1 +� � � + ak�1g onsists of k � 1 numbers whih are distint, ordered, greaterthan 0 and less than n. In fat, the solutions of Eq. (A.1) are in one-to-oneorrespondene with suh subsets of the set f1; : : : ; n � 1g: given an orderedsubset f1; 2; : : : ; k�1g we obtain a solution of Eq. (A.1) by setting a1 = 1,a2 = 2 � 1, : : : , ak�1 = k�1 � k�2, ak = n� k�1. Thus the number of thesolutions to Eq. (A.1) is equal to the number of all k � 1-element subsets off1; : : : ; n� 1g, b(n; k) = �n� 1k � 1�: (A.2)This number is extensively used in the present work whih was the reason forthe inlusion of its derivation.A.3 Permutations without liaisons.In this setion we address one of the most important underlying questions ofthe present work. Given g1 ordered objets of type 1, g2 ordered objets of type119



Appendix A. Combinatorial results
1 2 3 1 1 2Given: , ,, , ,

1 2 3 121

1 2 3 211

1 1 2 1 3 2Allowed: 

1 2 3 12 1Not allowed:

1 21 3

1 1 22

1 2

31Figure A.2: Permutations that are allowed and not allowed. Di�erent shapesorrespond to the di�erent types of objets: there are 3 types with g1 = 3,g2 = 1 and g3 = 2. The three examples of the permutations that are notallowed violate onditions 2, 3 and 4 orrespondingly. The o�ending objetsare shaded.2, : : : , gj ordered objets of type j, ount the permutations of these objetswhih satisfy the following onditions,1. First objet of the type 1 omes �rst.2. Order of the objets is preserved in the permutation.3. No objets of the same type may stand next to eah other.4. The last objet annot be of the type 1.We denote the answer to our question by Rg1;::: ;gj . This question is purelyombinatorial and throughout this setion we forget about the nature of theobjets as groups of bonds.Remark 4. Condition 4 may be onsidered to be a speial ase of ondition 3,if we adopt the yli vision of the permutation.120



Appendix A. Combinatorial resultsFor an example of permutations satisfying and not satisfying the aboveonditions, see Fig. A.2. Following the solution of a similar problem in [24℄,we address this problem using an inlusion-exlusion priniple. Temporarilywe forget about onditions 3 and 4 and onsider all permutation satisfying theremaining onditions. If two objets of the same type stand next to eah otherwe say that they form a liaison. Our ultimate goal is to ount all permutationwithout liaisons.Sine ondition 2 remains in fore, only two onseutive objets of the sametype an form a liaison. Thus there is maximum of gi�1 liaisons to be formedby the objets of the type i and G � v possible liaisons altogether, whereG =Pji=1 gi.To ount all permutation without liaisons we use the following inlusion-exlusion priniple. Let X be a �nite set and P be a �nite set of booleanfuntions (properties) on X:8p 2 P p : X ! f0; 1g : (A.1)If p is a property then we denote by Xp the set of all x for whih the propertyp holds, i.e. p(x) = 1. If P is a subset of P, by XP we denote the subset of XXP = nx 2 X : (8p 2 P ) [p(x) = 1℄o = \p2P Xp: (A.2)We also put X; = X.Proposition 7. The number of elements in X whih do not satisfy any prop-erties from P is given by�����X n [p2PXp����� = XP�P(�1)jP j jXP j ; (A.3)where the modulus sign stands for the number of elements in the set and thesum is taken over all subsets of P, inluding the empty set and the set P itself.Proof. Eq. (A.3) is a slightly altered version of the more traditional inlusion-121



Appendix A. Combinatorial resultsexlusion priniple�����[p2PXp����� =Xp2P jXpj � Xp;q2P jXp \Xqj+ Xp;q;r2P jXp \Xq \Xrj � : : : ; (A.4)whih is obtained by iterating the formulajA [ Bj = jAj+ jBj � jA \ Bj : (A.5)
If the properties P are suh that jXP j depends only on jP j,jXP j = f(jP j) (A.6)then �����X n [p2PXp����� = jPjXi=0 (�1)i�jPji �f(i): (A.7)We now generalise Proposition 7 to j sets of propertiesProposition 8. If there are j sets of properties, Pi, i = 1; : : : ; j, andXP1;P2;::: ;Pj = j\i=1XPi (A.8)are suh that jXP1;P2;::: ;Pj j = f(jP1j; jP2j; : : : ; jPjj) (A.9)then the number of elements in X whih do not satisfy any of the properties isgiven by�����X n j[i=1 [p2PiXp!����� = Xl1;l2;::: ;lj(�1)l1+���+ljf(l1; l2; : : : ; lj) jYi=1 �jPijli �: (A.10)To apply Proposition 8 to our problem we de�ne a set of properties on allpossible permutation of objet as follows: to eah of the possible liaisons weassoiate a funtion whih is equal to one on the permutations that ontainsuh liaison and is zero otherwise. We group the properties by the type of the122



Appendix A. Combinatorial resultsliaison they are assoiated with. Thus we obtain j sets of properties, G � jproperties in total. The quantity we are seeking, the number of permutationswithout liaisons, is exatly the left-hand side of Eq. (A.10).To make use of Eq. (A.10) we need to know the number f(l1; : : : ; lv). Themeaning of this number is as follows: �x l1 liaisons of the �rst type, l2 liaisonsof the seond type et; how many permutations are there ontaining those �xedliaisons and, possibly, other liaisons as well. If li = 0 for all i (the situationwith no restritions) then it is not hard to see that f(0; 0; : : : ; 0) is equal tothe number of all permutations of G � 1 = g1 � 1 + g2 + : : : + gj objets ofj types with any two objets of the same type being indistinguishable. Theminus one ontribution is there beause the position of one objet of the �rsttype is �xed, it must ome �rst. The indistinguishability omes from the needto preserve the order of the objets of the same type: being ordered and beingindistinguishable is equivalent in terms of ombinatoris. Thus the answer forf(0; 0; : : : ; 0) is f(0; : : : ; 0) = (G� 1)!(g1 � 1)!g2! � � � gv! : (A.11)Let us now selet l1 liaisons among the objets of the type 1, l2 liaisonsamong the objets of the type 2 and so forth, 0 � li � gi� 1. We an onsidertwo or more objets bound together by liaison(s) to be a single objet, itsposition in the ordering within its type being obvious. Now, by analogy withEq. (A.11), we derivef(l1; : : : ; lv) = (G� l1 � : : :� lv � 1)!(g1 � l1 � 1)!(g2 � l2)! � � � (gv � lv)! : (A.12)Applying Proposition 8 we obtain the number of permutations without liaisonsto be equal toXl1;::: ;lv(�1)l1+:::+lv (G� l1 � : : :� lv � 1)!(g1 � l1 � 1)!(g2 � l2)! � � � (gv � lv)! vYi=1 �gi � 1li �: (A.13)There is one last detail to be �xed: nothing in our derivation prevents ondi-tion 4 from being violated. To mend it we onsider the situation when this123



Appendix A. Combinatorial resultsondition is violated to be a speial form of liaison, between the last group andthe �rst group of \1". This way there are g1 liaisons of type 1 to hoose fromand we should write �g1l1� instead of �g1�1l1 �. The rest of formula (A.13) remainsunhanged. Performing hange of variables ki = gi � li we �nally arrive toRg1;::: ;gv = (�1)Gg1 Xk1;::: ;kv (�1)k1+:::+kvk1 + : : :+ kv�k1 + : : :+ kvk1; : : : ; kv � vYi=1 �gi � 1ki � 1�;(A.14)where G =Pvi=1 gi.
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Appendix B
List of notations�nk� binomial (for n < k or k < 0 de�ned to be 0)[a; b; ℄ sequene(a; b; ) orbitfa; b; g setÆxy Kroneker delta (1 whenever x = y, 0 otherwise)Æ(x) Dira delta funtionjsj =P si if s is a vetorjSj number of elements in S if S is a setN0 set of non-negative integers<z real part of z=z imaginary part of zend of proof (QED)
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