TEXAS A\&M UNIVERSITY DEPARTMENT OF MATHEMATICS

MATH 425-500

Midterm test version A, 8 Mar 2018

On my honor, as an Aggie, I have neither given nor received unauthorized aid on this work.
Name (print):

No detailed analytical work - no points.
Each question is worth 10 points unless noted otherwise

1. You assumed the 1-level tree model, priced and sold a call with strike $E, S_{d}<E<S_{u}$, followed the hedging procedure but the market ended up at S_{1},

$$
S_{d}<S_{1}<S_{u}
$$

Did you lose or make money? Calculate how much profit or loss do you make and plot (sketch) your answer as a function of S_{1}. You may assume $r=0$ for simplicity.
2. For the American Call with the parameters $S_{0}=100, E=95, r=0.05$, expiration in 3 years, use the tree model with $\Delta t=1, u=1.2, d=0.8$. Calculate the option price. At which nodes is the early exercise optimal?
3. Given two independent random variables X and Y with probability densities f_{X} and f_{Y}, the probability density of their sum $Z=X+Y$ is given by the convolution formula

$$
\begin{equation*}
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(z-y) f_{Y}(y) d y \tag{1}
\end{equation*}
$$

Show that the sum of two independent standard normal variables is a normal variable; identify its mean and variance.

- Call payoff

$$
C_{T}\left(S_{T}, E\right)=\max \left(0, S_{T}-E\right)
$$

- Put payoff

$$
P_{T}\left(S_{T}, E\right)=\max \left(0, E-S_{T}\right)
$$

- Put-call parity

$$
C_{t}(S, E)+E e^{-r(T-t)}=P_{t}(S, E)+S_{t} .
$$

- 1 level tree model for call

$$
C=\left(S_{0}-e^{-r T} S_{d}\right) \Delta, \quad \text { where } \Delta=\frac{S_{u}-E}{S_{u}-S_{d}}
$$

- Probability density function of random variable X is an integrable function $f_{X}(x)$ such that

$$
F_{X}(x):=\mathbb{P}(X<x)=\int_{-\infty}^{x} f_{X}(s) d s
$$

In other words (when $f_{X}(x)$ is continuous)

$$
f_{X}(x)=\frac{d}{d x} F_{X}(x)
$$

- Probability density function of a normal $N\left(\mu, \sigma^{2}\right)$ variable is

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{2}
\end{equation*}
$$

- "Risk neutral probability"

$$
q=\frac{e^{r \delta t}-d}{u-d}
$$

- Tree back-propagation formula

$$
V^{\text {next }}=e^{-r \delta t}\left(V_{u p}^{\text {prev }} q+V_{\text {down }}^{\text {prev }}(1-q)\right)
$$

- Tree Delta

$$
\Delta=\frac{V_{u p}-V_{d o w n}}{S_{u p}-S_{d o w n}}
$$

