TEXAS A\&M UNIVERSITY DEPARTMENT OF MATHEMATICS
 MATH 425

Midterm test version A, 19 Oct 2023

On my honor, as an Aggie, I have neither given nor received unauthorized aid on this work.

Name (print):

No detailed analytical work - no points.
Q. 1 (7 points) Assuming $r=0$, plot the profit (PNL) diagram of the spread consisting of a long put with strike $E=105$ and premium 5.50 and 3 short puts with strike $E=95$ and premium 1.20. Identify the range of the prices of the underlying where the spread will yield profit.
Q. 2 (15 points, use two pages) Compute the 3-level binomial tree for a European Call with the following parameters: $S_{0}=100, E=90, r=0.05, T=3$ months (i.e. $3 / 12$ of a year) using $u=1.1, d=0.9$. Separately, compute the 3 -level binomial tree for a European Put with identical parameters.

Compute Delta in both trees at the nodes $S=100, S=90$ and $S=99$ (i.e. the path Down, Up). Comparing Call Delta and Put Delta at equivalent nodes, conjecture the mathematical relationship between them. Prove this relationship using Put-Call parity.
Q. 3 (8 points) Let U be a uniform random variable on the interval $(0,1)$ (density $p(u)=1$ if $u \in[0,1]$ and $p(u)=0$ otherwise). Calculate the support (the set of values the random variabe can take) and the probability density function of the random variable $X=-\ln (U) / \lambda$, where $\lambda>0$. Hint: calculate the cumulative distribution function $\mathbb{P}[X \leq x]$, then differentiate it with respect to x.

Formulas that might be useful (do not detach)

- Call and put payoff

$$
C_{T}\left(S_{T}, E\right)=\max \left(0, S_{T}-E\right), \quad P_{T}\left(S_{T}, E\right)=\max \left(0, E-S_{T}\right)
$$

- Put-call parity and price bounds

$$
\begin{aligned}
& C_{t}(S, E)+E e^{-r(T-t)}=P_{t}(S, E)+S_{t} \\
& \max \left(S_{t}-E e^{-r(T-t)}, 0\right) \leq C_{t}\left(S_{t}, E\right) \leq S_{t} \\
& \max \left(E e^{-r(T-t)}-S_{t}, 0\right) \leq P_{t}\left(S_{t}, E\right) \leq E e^{-r(T-t)}
\end{aligned}
$$

- Price of the forward contract

$$
F_{t}=S_{t} e^{r(T-t)}
$$

- Tree back-propagation formula

$$
V^{\mathrm{next}}=e^{-r \Delta t}\left(V_{u}^{\mathrm{prev}} q+V_{d}^{\text {prev }}(1-q)\right), \quad \text { where } \quad q=\frac{e^{r \Delta t}-d}{u-d}
$$

- Tree Delta

$$
\Delta=\frac{V_{u}-V_{d}}{S_{u}-S_{d}}
$$

- Short-cut formula for European-type claims

$$
V_{0}^{0}=e^{-r T} \sum_{j=0}^{L} V_{j}^{L}\binom{L}{j} q^{j}(1-q)^{L-j}, \quad q=\frac{e^{r \Delta t}-d}{u-d},
$$

where the price of the underlying is assumed to be $S_{j}^{L}=S_{0} u^{j} d^{L-j}$.

- Expectation is linear:

$$
\mathbb{E}\left(\alpha_{1} X_{1}+\alpha_{2} X_{2}+\beta\right)=\alpha_{1} \mathbb{E} X_{1}+\alpha_{2} \mathbb{E} X_{2}+\beta
$$

- Probability density function of random variable X is an integrable function $f_{X}(x)$ such that

$$
F_{X}(x):=\mathbb{P}(X<x)=\int_{-\infty}^{x} f_{X}(s) d s
$$

In other words (when $f_{X}(x)$ is continuous)

$$
f_{X}(x)=\frac{d}{d x} F_{X}(x)=\frac{d}{d x} \mathbb{P}(X<x) .
$$

- Properties of the variance:

$$
\begin{aligned}
& \operatorname{var}(\alpha X+\beta)=\alpha^{2} \operatorname{var}(X) \\
& \operatorname{var}\left(X_{1}+X_{2}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right) \quad \text { if } X_{1}, X_{2} \text { are uncorrelated. }
\end{aligned}
$$

- Probability density function of a normal $N\left(\mu, \sigma^{2}\right)$ variable is

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} .
$$

- If $Z \sim N(0,1)$ then $X=\sigma Z+\mu$ has distribution $N\left(\mu, \sigma^{2}\right)$. In particular, normal variables remain normal under linear transformations $X \mapsto \alpha X+\beta$.

