
Sheet 6

Create the directory sheet06 and make it your working directory.

Example 1. This example is warm-up to learn to use Matlab’s DFT algorithm and generate
plots.

a) Plot the absolute value of the DFT ŷ = {ŷk} of f(x) = x + x2 , x ∈ [0, 2π] as follows:

n = 2∧5;

x = linspace(0,2*pi,n);

w = 1:length(x);

y = x + x.∧2;

yt = fft(y);

plot(w,abs(yt),’o’)

xlabel(’k’);ylabel(’Modulus of DFT’)

Try using n = 26 and 27 .

Repeat this for :

b) f(x) = x sin(10x)e−x , x ∈ [0, 2π]

c) f(x) = cos(10x) sin(10x)e−x , x ∈ [0, 2π]

d) f(x) = sin(30x) cos(10x), x ∈ [0, 2π]

e) f(x) =






−1 if 0 ≤ x ≤ π

1 if π < x ≤ 2π

Example 2. In this example, you are going to plot the modulus of the Discrete Fourier
Transform of f(x) = (x−π)2 , x ∈ [0, 2π] along with the n times the modulus of the complex
Fourier coefficients to see how they relate to one another.

Proceed as follows. First enter the function and give the desired n

clear

f = @ (x) (x-pi).∧2;

n = 2∧3;

Find the complex Fourier coefficients βk :

syms x k;

b k = int(f(x)*exp(-i*k.*x),x,0,2*pi)/(2*pi)



Remember to execute these lines, then copy and paste the output from the command window
in the following line:

kth coef = @ (k) paste here

Now compute the coefficients:

for m = 1:n-1

b(m) = int(f(x),x,0,2*pi)/(2*pi);

end

b 0 = kth coef(0);

List all the coefficients (the double converts to decimal form)

coeffs = double([b 0,b(1:n-1)]);

Find the DFT

x = linspace(0,2*pi,n);

y = f(x);

yt = fft(y);

Finally, plot the coefficients and the DFT on the same graph:

w = 1:length(x);

plot(w,abs(yt),’o’,w,n*abs(coeffs),’r’,’linewidth’,2)

xlabel(’k’);

ylabel(’Modulus of DFT and n times Complex Fourier Coefficient’)

legend(’n|DFT|’,’|Fourier Coefficient|’)

Sometimes it is useful to zoom in on what is going on near the x−axis. Remember you do
this with an axis statement, for example in this case, axis([0 n 0 10]) would be suitable.

Try different values of n, say 24 and 25 .

Aside: Recall if βk is the complex Fourier coefficient and ŷ = {ŷk} is the DFT, then we
have the approximation ŷk ≈ nβk for k small compared to n. You should see how this is
working as you change the value of n.

Example 3. Repeat for the following (I suggest you save each separately: ex3a.m, ex3b.m,
etc.). Again, vary n to see how the approximation changes and make appropriate axis

statements to zoom in on the action near the x−axis, if necessary.

a) f(x) = x + x2 , x ∈ [0, 2π]

b) f(x) = xe−x sin(10x), x ∈ [0, 2π]



Note that when we are plotting |βk| as a function of k = 1, . . . , n, any peak in the plot at
some value k = k0 corresponds to a large frequency component for the frequency ω = k0 .

Because of the sine that appears in f(x), wiggles in the plot of f will occur with an approx-
imate frequency of ω = 10. So you should see a large frequency component in the DFT plot
at k = 10. Do you?

c) f(x) = cos(10x) sin(10.2x), x ∈ [0, 2π]

In this example there should be two peaks corresponding to ω = 0, 20 in the first half of the
plot of the DFT.

d) f(x) = e−3x sin(30x) cos(10x), x ∈ [0, 2π]

There should be two peaks in the first half of the DFT. What are the corresponding values
of the frequency ω?

e)

f(x) =






−1 if 0 ≤ x ≤ π

1 if π < x ≤ 2π

Hint: On this one, you will need to modify the method a bit. In the lines defining b k

and b 0, enter the integral in two pieces corresponding to [0, π] and [π, 2π] and enter the
corresponding value of f in place of f(x).



Sheet 6: Further Exercises

f)

f(x) =






π2 − x2 if 0 ≤ x ≤ π

−π2 + (x − π)2 if π < x ≤ 2π


