Sheet 6

Create the directory sheet06 and make it your working directory.
Example 1. This example is warm-up to learn to use Matlab's DFT algorithm and generate plots.
a) Plot the absolute value of the DFT $\widehat{y}=\left\{\widehat{y}_{k}\right\}$ of $f(x)=x+x^{2}, x \in[0,2 \pi]$ as follows:

```
n = 2^5;
x = linspace(0,2*pi,n);
w = 1:length(x);
y = x + x.^2;
yt = fft(y);
plot(w,abs(yt),'o')
xlabel('k');ylabel('Modulus of DFT')
```

Try using $n=2^{6}$ and 2^{7}.
Repeat this for :
b) $f(x)=x \sin (10 x) e^{-x}, x \in[0,2 \pi]$
c) $f(x)=\cos (10 x) \sin (10 x) e^{-x}, x \in[0,2 \pi]$
d) $f(x)=\sin (30 x) \cos (10 x), x \in[0,2 \pi]$
e) $f(x)=\left\{\begin{array}{rll}-1 & \text { if } & 0 \leq x \leq \pi \\ 1 & \text { if } & \pi<x \leq 2 \pi\end{array}\right.$

Example 2. In this example, you are going to plot the modulus of the Discrete Fourier Transform of $f(x)=(x-\pi)^{2}, x \in[0,2 \pi]$ along with the n times the modulus of the complex Fourier coefficients to see how they relate to one another.

Proceed as follows. First enter the function and give the desired n

```
clear
\(\mathrm{f}=\) @ (x) (x-pi). \(\wedge 2\);
\(\mathrm{n}=2 \wedge 3 ;\)
```

Find the complex Fourier coefficients β_{k} :
syms $\mathrm{x} k$;
$\mathrm{b} _\mathrm{k}=\operatorname{int}(\mathrm{f}(\mathrm{x}) * \exp (-\mathrm{i} * \mathrm{k} . * \mathrm{x}), \mathrm{x}, 0,2 * \mathrm{pi}) /(2 * \mathrm{pi})$

Remember to execute these lines, then copy and paste the output from the command window in the following line:

```
kth_coef = @ (k) paste here
```

Now compute the coefficients:

```
for m = 1:n-1
    b(m) = int(f(x),x,0,2*pi)/(2*pi);
end
b_0 = kth_coef(0);
```

List all the coefficients (the double converts to decimal form)

```
coeffs = double([b_0,b(1:n-1)]);
```

Find the DFT

```
x = linspace(0,2*pi,n);
y = f(x);
yt = fft(y);
```

Finally, plot the coefficients and the DFT on the same graph:

```
w = 1:length(x);
plot(w,abs(yt),'o',w,n*abs(coeffs),'r','linewidth', 2)
xlabel('k');
ylabel('Modulus of DFT and n times Complex Fourier Coefficient')
legend('n|DFT|','|Fourier Coefficient|')
```

Sometimes it is useful to zoom in on what is going on near the x-axis. Remember you do this with an axis statement, for example in this case, axis ([0 n 0 10 $]$) would be suitable.

Try different values of n, say 2^{4} and 2^{5}.
Aside: Recall if β_{k} is the complex Fourier coefficient and $\widehat{y}=\left\{\widehat{y}_{k}\right\}$ is the DFT, then we have the approximation $\widehat{y}_{k} \approx n \beta_{k}$ for k small compared to n. You should see how this is working as you change the value of n.

Example 3. Repeat for the following (I suggest you save each separately: ex3a.m, ex3b.m, etc.). Again, vary n to see how the approximation changes and make appropriate axis statements to zoom in on the action near the x-axis, if necessary.
a) $f(x)=x+x^{2}, x \in[0,2 \pi]$
b) $f(x)=x e^{-x} \sin (10 x), x \in[0,2 \pi]$

Note that when we are plotting $\left|\beta_{k}\right|$ as a function of $k=1, \ldots, n$, any peak in the plot at some value $k=k_{0}$ corresponds to a large frequency component for the frequency $\omega=k_{0}$.

Because of the sine that appears in $f(x)$, wiggles in the plot of f will occur with an approximate frequency of $\omega=10$. So you should see a large frequency component in the DFT plot at $k=10$. Do you?
c) $f(x)=\cos (10 x) \sin (10.2 x), x \in[0,2 \pi]$

In this example there should be two peaks corresponding to $\omega=0,20$ in the first half of the plot of the DFT.
d) $f(x)=e^{-3 x} \sin (30 x) \cos (10 x), x \in[0,2 \pi]$

There should be two peaks in the first half of the DFT. What are the corresponding values of the frequency ω ?
e)

$$
f(x)=\left\{\begin{array}{rcc}
-1 & \text { if } & 0 \leq x \leq \pi \\
1 & \text { if } & \pi<x \leq 2 \pi
\end{array}\right.
$$

Hint: On this one, you will need to modify the method a bit. In the lines defining b_k and b_0, enter the integral in two pieces corresponding to $[0, \pi]$ and $[\pi, 2 \pi]$ and enter the corresponding value of f in place of $f(x)$.

Sheet 6: Further Exercises
f)

$$
f(x)=\left\{\begin{array}{rlc}
\pi^{2}-x^{2} & \text { if } & 0 \leq x \leq \pi \\
-\pi^{2}+(x-\pi)^{2} & \text { if } & \pi<x \leq 2 \pi
\end{array}\right.
$$

