Sheet 6

Create the directory sheet06 and make it your working directory.

Example 1. This example is warm-up to learn to use Matlab's DFT algorithm and generate plots.

a) Plot the absolute value of the DFT $\hat{y} = {\hat{y}_k}$ of $f(x) = x + x^2$, $x \in [0, 2\pi]$ as follows:

Try using $n = 2^6$ and 2^7 .

Repeat this for :

b)
$$f(x) = x \sin(10x)e^{-x}, x \in [0, 2\pi]$$

c) $f(x) = \cos(10x) \sin(10x)e^{-x}, x \in [0, 2\pi]$
d) $f(x) = \sin(30x) \cos(10x), x \in [0, 2\pi]$
e) $f(x) = \begin{cases} -1 & \text{if } 0 \le x \le \pi \\ 1 & \text{if } \pi < x \le 2\pi \end{cases}$

Example 2. In this example, you are going to plot the modulus of the Discrete Fourier Transform of $f(x) = (x - \pi)^2$, $x \in [0, 2\pi]$ along with the *n* times the modulus of the complex Fourier coefficients to see how they relate to one another.

Proceed as follows. First enter the function and give the desired n

```
clear
f = @ (x) (x-pi).∧2;
n = 2∧3;
```

Find the complex Fourier coefficients β_k :

syms x k; b_k = int(f(x)*exp(-i*k.*x),x,0,2*pi)/(2*pi) Remember to execute these lines, then copy and paste the output from the command window in the following line:

kth_coef = 0 (k) paste here

Now compute the coefficients:

for m = 1:n-1
 b(m) = int(f(x),x,0,2*pi)/(2*pi);
end
b_0 = kth_coef(0);

List all the coefficients (the double converts to decimal form)

```
coeffs = double([b_0,b(1:n-1)]);
```

Find the DFT

x = linspace(0,2*pi,n); y = f(x); yt = fft(y);

Finally, plot the coefficients and the DFT on the same graph:

```
w = 1:length(x);
plot(w,abs(yt),'o',w,n*abs(coeffs),'r','linewidth',2)
xlabel('k');
ylabel('Modulus of DFT and n times Complex Fourier Coefficient')
legend('n|DFT|','|Fourier Coefficient|')
```

Sometimes it is useful to zoom in on what is going on near the x-axis. Remember you do this with an axis statement, for example in this case, axis([0 n 0 10]) would be suitable.

Try different values of n, say 2^4 and 2^5 .

Aside: Recall if β_k is the complex Fourier coefficient and $\hat{y} = {\hat{y}_k}$ is the DFT, then we have the approximation $\hat{y}_k \approx n\beta_k$ for k small compared to n. You should see how this is working as you change the value of n.

Example 3. Repeat for the following (I suggest you save each separately: ex3a.m, ex3b.m, etc.). Again, vary n to see how the approximation changes and make appropriate **axis** statements to zoom in on the action near the x-axis, if necessary.

- a) $f(x) = x + x^2, x \in [0, 2\pi]$
- b) $f(x) = xe^{-x}\sin(10x), x \in [0, 2\pi]$

Note that when we are plotting $|\beta_k|$ as a function of k = 1, ..., n, any peak in the plot at some value $k = k_0$ corresponds to a large frequency component for the frequency $\omega = k_0$.

Because of the sine that appears in f(x), wiggles in the plot of f will occur with an approximate frequency of $\omega = 10$. So you should see a large frequency component in the DFT plot at k = 10. Do you?

c)
$$f(x) = \cos(10x)\sin(10.2x), x \in [0, 2\pi]$$

In this example there should be two peaks corresponding to $\omega = 0, 20$ in the first half of the plot of the DFT.

d)
$$f(x) = e^{-3x} \sin(30x) \cos(10x), x \in [0, 2\pi]$$

There should be two peaks in the first half of the DFT. What are the corresponding values of the frequency ω ?

e)

$$f(x) = \begin{cases} -1 & \text{if } 0 \le x \le \pi \\ \\ 1 & \text{if } \pi < x \le 2\pi \end{cases}$$

Hint: On this one, you will need to modify the method a bit. In the lines defining **b_k** and **b_0**, enter the integral in two pieces corresponding to $[0, \pi]$ and $[\pi, 2\pi]$ and enter the corresponding value of f in place of f(x).

$$f(x) = \begin{cases} \pi^2 - x^2 & \text{if } 0 \le x \le \pi \\ -\pi^2 + (x - \pi)^2 & \text{if } \pi < x \le 2\pi \end{cases}$$