## Betting systems: how not to lose your money gambling

G. Berkolaiko

Department of Mathematics
Texas A\&M University

28 April 2007 / Mini Fair, Math Awareness Month 2007

## Gambling and Games of Chance

- Simple games:
- flipping a coin (head / tail)
- rolling a die (6 sided)
- roulette (18 black, 18 red and 2 green)
- Player vs casino
- Player predicts outcome and agrees on the wager
- If prediction is correct, the player gets money, otherwise he pays.
- Examples:


## Gambling and Games of Chance

- Simple games:
- flipping a coin (head / tail)
- rolling a die (6 sided)
- roulette (18 black, 18 red and 2 green)
- Player vs casino
- Player predicts outcome and agrees on the wager
- If prediction is correct, the player gets money, otherwise he pays.
- Examples:


## Gambling and Games of Chance

- Simple games:
- flipping a coin (head / tail)
- rolling a die (6 sided)
- roulette (18 black, 18 red and 2 green)
- Player vs casino
- Player predicts outcome and agrees on the wager
- If prediction is correct, the player gets money, otherwise he pays.
- Examples:


## Gambling and Games of Chance

- Simple games:
- flipping a coin (head / tail)
- rolling a die (6 sided)
- roulette (18 black, 18 red and 2 green)
- Player vs casino
- Player predicts outcome and agrees on the wager
- If prediction is correct, the player gets money, otherwise he pays.
- Examples:


## Gambling and Games of Chance

- Simple games:
- flipping a coin (head / tail)
- rolling a die (6 sided)
- roulette (18 black, 18 red and 2 green)
- Player vs casino
- Player predicts outcome and agrees on the wager
- If prediction is correct, the player gets money, otherwise he pays.
- Examples:


## Gambling and Games of Chance

- Simple games:
- flipping a coin (head / tail)
- rolling a die (6 sided)
- roulette (18 black, 18 red and 2 green)
- Player vs casino
- Player predicts outcome and agrees on the wager
- If prediction is correct, the player gets money, otherwise he pays.
- Examples:


## Gambling and Games of Chance

- Simple games:
- flipping a coin (head / tail)
- rolling a die (6 sided)
- roulette (18 black, 18 red and 2 green)
- Player vs casino
- Player predicts outcome and agrees on the wager
- If prediction is correct, the player gets money, otherwise he pays.
- Examples:


## Gambling and Games of Chance

- Simple games:
- flipping a coin (head / tail)
- rolling a die (6 sided)
- roulette (18 black, 18 red and 2 green)
- Player vs casino
- Player predicts outcome and agrees on the wager
- If prediction is correct, the player gets money, otherwise he pays.
- Examples:

if head, player wins 1\$;


## Gambling and Games of Chance

- Simple games:
- flipping a coin (head / tail)
- rolling a die (6 sided)
- roulette (18 black, 18 red and 2 green)
- Player vs casino
- Player predicts outcome and agrees on the wager
- If prediction is correct, the player gets money, otherwise he pays.
- Examples:
- Coin: if head, player wins $1 \$$; if tail, player loses $1 \$$.
- Die:
if 5 or above, win $5 \$$;
if 4 or below, lose $3 \$$.


## Gambling and Games of Chance

- Simple games:
- flipping a coin (head / tail)
- rolling a die (6 sided)
- roulette (18 black, 18 red and 2 green)
- Player vs casino
- Player predicts outcome and agrees on the wager
- If prediction is correct, the player gets money, otherwise he pays.
- Examples:
- Coin: if head, player wins $1 \$$; if tail, player loses $1 \$$.
- Die:
if 5 or above, win $5 \$$;
if 4 or below, lose $3 \$$.


## Fair Game

## Examples:

- Coin tossing with wager $1 \$$ -
- Roulette red-black, wager 1\$ -
- Die: 5 or above win $2 \$, 4$ or below lose $1 \$$ -
- Die: 5 or above win $5 \$, 4$ or below lose $3 \$-$
sum 8 or above win 20\$,
- 2 dice: sum 7 or below lose $15 \$$


## Fair Game

## Examples:

- Coin tossing with wager $1 \$$ - fair
- Roulette red-black, wager 1\$ -
- Die: 5 or above win $2 \$, 4$ or below lose $1 \$$ -
- Die: 5 or above win $5 \$, 4$ or below lose $3 \$-$
sum 8 or above win 20\$,
- 2 dice:
sum 7 or below lose $15 \$$


## Fair Game

## Examples:

- Coin tossing with wager $1 \$$ - fair
- Roulette red-black, wager $1 \$$ -
- Die: 5 or above win 2\$, 4 or below lose $1 \$$ -
- Die: 5 or above win $5 \$, 4$ or below lose $3 \$-$
sum 8 or above win 20\$,
- 2 dice:
sum 7 or below lose 15\$


## Fair Game

Examples:

- Coin tossing with wager $1 \$$ - fair
- Roulette red-black, wager $1 \$$ - unfair to player or subfair
- Die: 5 or above win $2 \$, 4$ or below lose $1 \$$ -
- Die: 5 or above win $5 \$, 4$ or below lose $3 \$-$
sum 8 or above win 20\$,
sum 7 or below lose 15\$


## Fair Game

Examples:

- Coin tossing with wager $1 \$$ - fair
- Roulette red-black, wager $1 \$$ - unfair to player or subfair
- Die: 5 or above win $2 \$, 4$ or below lose $1 \$$ -
- Die: 5 or above win $5 \$, 4$ or below lose $3 \$-$
- 2 dice:
sum 8 or above win 20\$,
sum 7 or below lose $15 \$$


## Fair Game

Examples:

- Coin tossing with wager $1 \$$ - fair
- Roulette red-black, wager $1 \$$ - unfair to player or subfair
- Die: 5 or above win $2 \$, 4$ or below lose $1 \$$ - fair
- Die: 5 or above win $5 \$, 4$ or below lose $3 \$-$
- 2 dice:
sum 8 or above win 20\$,
sum 7 or below lose $15 \$$


## Fair Game

Examples:

- Coin tossing with wager $1 \$$ - fair
- Roulette red-black, wager $1 \$$ - unfair to player or subfair
- Die: 5 or above win $2 \$, 4$ or below lose $1 \$$ - fair
- Die: 5 or above win $5 \$, 4$ or below lose $3 \$-$
- 2 dice:
sum 8 or above win 20\$, sum 7 or below lose $15 \$$


## Fair Game

Examples:

- Coin tossing with wager $1 \$$ - fair
- Roulette red-black, wager $1 \$$ - unfair to player or subfair
- Die: 5 or above win $2 \$, 4$ or below lose $1 \$$ - fair
- Die: 5 or above win $5 \$, 4$ or below lose $3 \$-$ subfair

sum 8 or above win 20\$, sum 7 or below lose $15 \$$


## Fair Game

Examples:

- Coin tossing with wager $1 \$$ - fair
- Roulette red-black, wager $1 \$$ - unfair to player or subfair
- Die: 5 or above win $2 \$, 4$ or below lose $1 \$$ - fair
- Die: 5 or above win $5 \$, 4$ or below lose $3 \$-$ subfair
- 2 dice: sum 8 or above win 20\$,
—?
sum 7 or below lose $15 \$$


## Average: Definition

$$
\text { average }=\text { sum of (probability } \times \text { payment }) .
$$



## probability $=\#$ favourable combinations <br> \# all combinations

## Average: Definition

average $=$ sum of (probability $\times$ payment $).$

$$
\text { payment }=\left\{\begin{array}{l}
\text { positive if a win } \\
\text { negative if a loss }
\end{array}\right.
$$

## probability $=\#$ favourable combinations

## Average: Definition

average $=$ sum of (probability $\times$ payment $).$

$$
\text { payment }=\left\{\begin{array}{l}
\text { positive if a win } \\
\text { negative if a loss }
\end{array}\right.
$$

probability $=\frac{\# \text { favourable combinations }}{\# \text { all combinations }}$

## Average: Examples

## - Coin tossing

- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$


## - Roulette

- 2 dice:


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$


## - Roulette

## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- Roulette


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$ - fair!
- 2 dice:


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$ - fair!
- Roulette
- \#total $=18+18+2=38$.
- \#favourable $=18$
- average $=1 \times \frac{18}{38}+(-1) \times \frac{20}{38}=-\frac{2}{38}<0$
- 2 dice:


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$ - fair!
- Roulette
- \#total $=18+18+2=38$.
- \#favourable $=18$
- average $=1 \times \frac{18}{38}+(-1) \times \frac{20}{38}=-\frac{2}{38}<0$
- 2 dice:


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$ - fair!
- Roulette
- \#total $=18+18+2=38$.
- \#favourable $=18$.
- 2 dice:


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$ - fair!
- Roulette
- \#total $=18+18+2=38$.
- $\#$ favourable $=18$.
- average $=1 \times \frac{18}{38}+(-1) \times \frac{20}{38}=-\frac{2}{38}<0$


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$ - fair!
- Roulette
- \#total $=18+18+2=38$.
- $\#$ favourable $=18$.
- average $=1 \times \frac{18}{38}+(-1) \times \frac{20}{38}=-\frac{2}{38}<0-$ subfair!


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$ - fair!
- Roulette
- \#total $=18+18+2=38$.
- $\#$ favourable $=18$.
- average $=1 \times \frac{18}{38}+(-1) \times \frac{20}{38}=-\frac{2}{38}<0-$ subfair!
- 2 dice:
- \#total combinations $=36$.
- \#combinations with sum 8 or larger $=15$.
- \#combinations with sum 7 or smaller $=21$
- average $=20 \times \frac{15}{36}+(-15) \times \frac{21}{36}=-\frac{15}{36}<0$


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$ - fair!
- Roulette
- \#total $=18+18+2=38$.
- $\#$ favourable $=18$.
- average $=1 \times \frac{18}{38}+(-1) \times \frac{20}{38}=-\frac{2}{38}<0-$ subfair!
- 2 dice:
- \#total combinations $=36$.
- \#combinations with sum 8 or larger $=15$.
- \#combinations with sum 7 or smaller $=21$
- average $=20 \times \frac{15}{36}+(-15) \times \frac{21}{36}=-\frac{15}{36}<0$


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$ - fair!
- Roulette
- \#total $=18+18+2=38$.
- $\#$ favourable $=18$.
- average $=1 \times \frac{18}{38}+(-1) \times \frac{20}{38}=-\frac{2}{38}<0-$ subfair!
- 2 dice:
- \#total combinations $=36$.
- \#combinations with sum 8 or larger $=15$.
- \#combinations with sum 7 or smaller $=21$.
- average $=20 \times \frac{15}{36}+(-15) \times \frac{21}{36}=-\frac{15}{36}<0$


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$ - fair!
- Roulette
- \#total $=18+18+2=38$.
- $\#$ favourable $=18$.
- average $=1 \times \frac{18}{38}+(-1) \times \frac{20}{38}=-\frac{2}{38}<0-$ subfair!
- 2 dice:
- \#total combinations $=36$.
- \#combinations with sum 8 or larger $=15$.
- \#combinations with sum 7 or smaller $=21$.


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$ - fair!
- Roulette
- \#total $=18+18+2=38$.
- $\#$ favourable $=18$.
- average $=1 \times \frac{18}{38}+(-1) \times \frac{20}{38}=-\frac{2}{38}<0-$ subfair!
- 2 dice:
- \#total combinations $=36$.
- \#combinations with sum 8 or larger $=15$.
- \#combinations with sum 7 or smaller $=21$.
- average $=20 \times \frac{15}{36}+(-15) \times \frac{21}{36}=-\frac{15}{36}<0$


## Average: Examples

- Coin tossing
- head probability $=1 / 2$.
- tail probability $=1 / 2$.
- average $=1 \times \frac{1}{2}+(-1) \times \frac{1}{2}=0$ - fair!
- Roulette
- \#total $=18+18+2=38$.
- $\#$ favourable $=18$.
- average $=1 \times \frac{18}{38}+(-1) \times \frac{20}{38}=-\frac{2}{38}<0-$ subfair!
- 2 dice:
- \#total combinations $=36$.
- \#combinations with sum 8 or larger $=15$.
- \#combinations with sum 7 or smaller $=21$.
- average $=20 \times \frac{15}{36}+(-15) \times \frac{21}{36}=-\frac{15}{36}<0-$ subfair!


## Another type of average

- Previous average was the average winning in one round.
- Another important average is average capital after round N : - Example:


## - Example:

- You had $10 \$$ and played roulette. What is you average capital after round 19?


## Another type of average

- Previous average was the average winning in one round.
- Another important average is average capital after round $N$ :
- Example:
- Example:
- You had $10 \$$ and played roulette. What is you average capital after round 19?


## Another type of average

- Previous average was the average winning in one round.
- Another important average is average capital after round $N$ :
- Example:
- you had $10 \$$ and played a round of coin tossing.
- if you won (probability $1 / 2$ ), you have $11 \$$.
- if you lost (probability $1 / 2$ ), you have $9 \$$.
- on average you have $9 \times \frac{1}{2}+11 \times \frac{1}{2}=10$ dollars.
- Example:
- You had $10 \$$ and played roulette. What is you average capital after round 19 ?


## Another type of average

- Previous average was the average winning in one round.
- Another important average is average capital after round $N$ :
- Example:
- you had $10 \$$ and played a round of coin tossing.
- if you won (probability 1/2), you have 11\$.
- if you lost (probability $1 / 2$ ), you have $9 \$$.
- on average you have $9 \times \frac{1}{2}+11 \times \frac{1}{2}=10$ dollars.
- Example:
- You had $10 \$$ and played roulette. What is you average capital after round 19?


## Another type of average

- Previous average was the average winning in one round.
- Another important average is average capital after round $N$ :
- Example:
- you had $10 \$$ and played a round of coin tossing.
- if you won (probability $1 / 2$ ), you have $11 \$$.
- if you lost (probability $1 / 2$ ), you have $9 \$$.
- on average you have $9 \times \frac{1}{2}+11 \times \frac{1}{2}=10$ dollars.
- Example:
- You had $10 \$$ and played roulette. What is you average capital after round 19 ?


## Another type of average

- Previous average was the average winning in one round.
- Another important average is average capital after round $N$ :
- Example:
- you had $10 \$$ and played a round of coin tossing.
- if you won (probability $1 / 2$ ), you have $11 \$$.
- if you lost (probability $1 / 2$ ), you have $9 \$$.
- on average you have $9 \times \frac{1}{2}+11 \times \frac{1}{2}=10$ dollars.
- Example:
- You had $10 \$$ and played roulette. What is you average capital after round 19 ?


## Another type of average

- Previous average was the average winning in one round.
- Another important average is average capital after round $N$ :
- Example:
- you had $10 \$$ and played a round of coin tossing.
- if you won (probability $1 / 2$ ), you have $11 \$$.
- if you lost (probability $1 / 2$ ), you have $9 \$$.
- on average you have $9 \times \frac{1}{2}+11 \times \frac{1}{2}=10$ dollars.
- Example:
- You had $10 \$$ and played roulette. What is you average capital after round 19?


## Another type of average

- Previous average was the average winning in one round.
- Another important average is average capital after round $N$ :
- Example:
- you had $10 \$$ and played a round of coin tossing.
- if you won (probability $1 / 2$ ), you have $11 \$$.
- if you lost (probability $1 / 2$ ), you have $9 \$$.
- on average you have $9 \times \frac{1}{2}+11 \times \frac{1}{2}=10$ dollars.
- Example:
- you had $10 \$$ and played a round of roulette.
- on average you have $9 \times \frac{20}{38}+10 \times \frac{18}{38}=9 \frac{36}{38}=10-\frac{2}{38}$ dollars
- You had $10 \$$ and played roulette. What is you average capital after round 19 ?


## Another type of average

- Previous average was the average winning in one round.
- Another important average is average capital after round $N$ :
- Example:
- you had $10 \$$ and played a round of coin tossing.
- if you won (probability $1 / 2$ ), you have $11 \$$.
- if you lost (probability $1 / 2$ ), you have $9 \$$.
- on average you have $9 \times \frac{1}{2}+11 \times \frac{1}{2}=10$ dollars.
- Example:
- you had $10 \$$ and played a round of roulette.
- You had $10 \$$ and played roulette. What is you average capital after round 19?


## Another type of average

- Previous average was the average winning in one round.
- Another important average is average capital after round $N$ :
- Example:
- you had $10 \$$ and played a round of coin tossing.
- if you won (probability $1 / 2$ ), you have $11 \$$.
- if you lost (probability $1 / 2$ ), you have $9 \$$.
- on average you have $9 \times \frac{1}{2}+11 \times \frac{1}{2}=10$ dollars.
- Example:
- you had $10 \$$ and played a round of roulette.
- on average you have $9 \times \frac{20}{38}+10 \times \frac{18}{38}=9 \frac{36}{38}=10-\frac{2}{38}$ dollars.
- You had $10 \$$ and played roulette. What is you average capital after round 19 ?


## Another type of average

- Previous average was the average winning in one round.
- Another important average is average capital after round $N$ :
- Example:
- you had $10 \$$ and played a round of coin tossing.
- if you won (probability $1 / 2$ ), you have $11 \$$.
- if you lost (probability $1 / 2$ ), you have $9 \$$.
- on average you have $9 \times \frac{1}{2}+11 \times \frac{1}{2}=10$ dollars.
- Example:
- you had $10 \$$ and played a round of roulette.
- on average you have $9 \times \frac{20}{38}+10 \times \frac{18}{38}=9 \frac{36}{38}=10-\frac{2}{38}$ dollars.
- You had $10 \$$ and played roulette. What is you average capital after round 19 ?


## Another type of average

- Previous average was the average winning in one round.
- Another important average is average capital after round $N$ :
- Example:
- you had $10 \$$ and played a round of coin tossing.
- if you won (probability $1 / 2$ ), you have $11 \$$.
- if you lost (probability $1 / 2$ ), you have $9 \$$.
- on average you have $9 \times \frac{1}{2}+11 \times \frac{1}{2}=10$ dollars.
- Example:
- you had $10 \$$ and played a round of roulette.
- on average you have $9 \times \frac{20}{38}+10 \times \frac{18}{38}=9 \frac{36}{38}=10-\frac{2}{38}$ dollars.
- You had $10 \$$ and played roulette. What is you average capital after round 19? 9\$.


## Gambler's Ruin : The Problem

- Initially you have $n$ dollars.
- You play a game with a wager of $1 \$$ in each round.
- In each round, the probability to win is $p$.
- $p=1 / 2$ is fair, $p<1 / 2$ is subfair.
- You stop when you get to $m$ dollars or lose all your money.
- What is the probability to win the day?
- Looking from the other angle, what is the probability of you financial ruin?


## Gambler's Ruin : The Problem

- Initially you have $n$ dollars.
- You play a game with a wager of $1 \$$ in each round.
- In each round, the probability to win is p.
- $p=1 / 2$ is fair, $p<1 / 2$ is subfair.
- You stop when you get to $m$ dollars or lose all your money.
- What is the probability to win the day?
- Looking from the other angle, what is the probability of you financial ruin?


## Gambler's Ruin : The Problem

- Initially you have $n$ dollars.
- You play a game with a wager of $1 \$$ in each round.
- In each round, the probability to win is $p$.
- $p=1 / 2$ is fair, $p<1 / 2$ is subfair.
- You stop when you get to $m$ dollars or lose all your money.
- What is the probability to win the day?
- Looking from the other angle, what is the probability of you financial ruin?


## Gambler's Ruin : The Problem

- Initially you have $n$ dollars.
- You play a game with a wager of $1 \$$ in each round.
- In each round, the probability to win is $p$.
- $p=1 / 2$ is fair, $p<1 / 2$ is subfair.
- You stop when you get to $m$ dollars or lose all your money.
- What is the probability to win the day?
- Looking from the other angle, what is the probability of you financial ruin?


## Gambler's Ruin : The Problem

- Initially you have $n$ dollars.
- You play a game with a wager of $1 \$$ in each round.
- In each round, the probability to win is $p$.
- $p=1 / 2$ is fair, $p<1 / 2$ is subfair.
- You stop when you get to $m$ dollars or lose all your money.
- What is the probability to win the day?
- Looking from the other angle, what is the probability of you financial ruin?


## Gambler's Ruin : The Problem

- Initially you have $n$ dollars.
- You play a game with a wager of $1 \$$ in each round.
- In each round, the probability to win is $p$.
- $p=1 / 2$ is fair, $p<1 / 2$ is subfair.
- You stop when you get to $m$ dollars or lose all your money.
- What is the probability to win the day?
- Looking from the other angle, what is the probability of you financial ruin?


## Gambler's Ruin : The Problem

- Initially you have $n$ dollars.
- You play a game with a wager of $1 \$$ in each round.
- In each round, the probability to win is $p$.
- $p=1 / 2$ is fair, $p<1 / 2$ is subfair.
- You stop when you get to $m$ dollars or lose all your money.
- What is the probability to win the day?
- Looking from the other angle, what is the probability of you financial ruin?


## Gambler's Ruin: The Formula

- Probability theory grew out of this problem.
- And it provides the answer:

where



## Gambler's Ruin : The Formula

- Probability theory grew out of this problem.
- And it provides the answer:

$$
P(n \rightarrow m)= \begin{cases}\frac{\rho^{n}-1}{\rho^{m}-1} & \text { if } \rho \neq 1 \\ \frac{n}{m} & \text { if } \rho=1\end{cases}
$$

where

$$
\rho=\frac{1-p}{p} .
$$

## Gambler's Ruin: Examples

- You start with $900 \$$, your goal is $1000 \$$, - Tossing a coin, probability of success is 0.9. - Playing roulette, $P=0.00003$.
- You start with 100\$, and must raise 20,000\$ by dawn,


## Gambler's Ruin: Examples

- You start with $900 \$$, your goal is $1000 \$$,
- Tossing a coin, probability of success is 0.9 .
- You start with $100 \$$, and must raise $20,000 \$$ by dawn,


## Gambler's Ruin: Examples

- You start with $900 \$$, your goal is $1000 \$$,
- Tossing a coin, probability of success is 0.9 .
- Playing roulette, $P=0.00003$.
- You start with $100 \$$, and must raise $20,000 \$$ by dawn,


## Gambler's Ruin: Examples

- You start with $900 \$$, your goal is $1000 \$$,
- Tossing a coin, probability of success is 0.9 .
- Playing roulette, $P=0.00003$.
- You start with $100 \$$, and must raise $20,000 \$$ by dawn,
- Tossing a coin, probability to get the money is 0.005 . - Playing roulette, it is $0.0000 \ldots 003 \$$


## Gambler's Ruin: Examples

- You start with $900 \$$, your goal is $1000 \$$,
- Tossing a coin, probability of success is 0.9 .
- Playing roulette, $P=0.00003$.
- You start with $100 \$$, and must raise $20,000 \$$ by dawn,
- Tossing a coin, probability to get the money is 0.005 .
- Playing roulette, it is $0.0000 \ldots 003 \$$


## Gambler's Ruin: Examples

- You start with $900 \$$, your goal is $1000 \$$,
- Tossing a coin, probability of success is 0.9 .
- Playing roulette, $P=0.00003$.
- You start with $100 \$$, and must raise $20,000 \$$ by dawn,
- Tossing a coin, probability to get the money is 0.005 .
- Playing roulette, it is $0.0000 \ldots 003 \$$


## Gambler's Ruin: Examples

- You start with $900 \$$, your goal is $1000 \$$,
- Tossing a coin, probability of success is 0.9 .
- Playing roulette, $P=0.00003$.
- You start with $100 \$$, and must raise $20,000 \$$ by dawn,
- Tossing a coin, probability to get the money is 0.005 .
- Playing roulette, it is $0.0000 \ldots 003 \$ 911$ zeros!!!

Betting Systems: Definition and Examples

## Betting Systems: Definition

- Assume in each round, possible win $=$ possible loss.
- Assume you can bet any amount, if you have the money.
- Before each round you decide how much you will bet, based only on the outcomes of the previous rounds.
- Simple examples:
- In probability theory, the random variable "capital after round $N$ "
is called martingale (if the game is fair) and supermartingale (if the game is subfair).
- Before being adopted as a mathematical term, martingale was used to refer to a particular betting system.


## Betting Systems: Definition

- Assume in each round, possible win = possible loss.
- Assume you can bet any amount, if you have the money.
- Before each round you decide how much you will bet, based only on the outcomes of the previous rounds.
- Simple examples:
- In probability theory, the random variable "capital after round $N$ "
is called martingale (if the game is fair) and supermartingale (if the game is subfair).
- Before being adopted as a mathematical term, martingale was used to refer to a particular betting system.


## Betting Systems: Definition

- Assume in each round, possible win = possible loss.
- Assume you can bet any amount, if you have the money.
- Before each round you decide how much you will bet, based only on the outcomes of the previous rounds.
- Simple examples:
- In probability theory, the random variable "capital after round $N$ "
is called martingale (if the game is fair) and supermartingale (if the game is subfair).
- Before being adopted as a mathematical term, martingale was used to refer to a particular betting system.


## Betting Systems: Definition

- Assume in each round, possible win = possible loss.
- Assume you can bet any amount, if you have the money.
- Before each round you decide how much you will bet, based only on the outcomes of the previous rounds.
- Simple examples:
- Straight Play: bet $1 \$$ every round.
- Chicken Play: bet $1 \$$ every round until the first loss, then stop.
- In probability theory, the random variable "capital after round $N$ "
is called martingale (if the game is fair) and supermartingale (if the game is subfair).
- Before being adopted as a mathematical term, martingale was used to refer to a particular betting system.


## Betting Systems: Definition

- Assume in each round, possible win = possible loss.
- Assume you can bet any amount, if you have the money.
- Before each round you decide how much you will bet, based only on the outcomes of the previous rounds.
- Simple examples:
- Straight Play: bet $1 \$$ every round.
- Chicken Play: bet $1 \$$ every round until the first loss, then stop.
- In probability theory, the random variable "capital after round $N$ "
is called martingale (if the game is fair) and supermartingale (if the game is subfair).
- Before being adopted as a mathematical term, martingale was used to refer to a particular betting system.


## Betting Systems: Definition

- Assume in each round, possible win = possible loss.
- Assume you can bet any amount, if you have the money.
- Before each round you decide how much you will bet, based only on the outcomes of the previous rounds.
- Simple examples:
- Straight Play: bet $1 \$$ every round.
- Chicken Play: bet $1 \$$ every round until the first loss, then stop.
- In probability theory, the random variable "capital after round $N$ "
is called martingale (if the game is fair) and supermartingale (if the game is subfair).
- Before being adopted as a mathematical term, martingale was used to refer to a particular betting system


## Betting Systems: Definition

- Assume in each round, possible win = possible loss.
- Assume you can bet any amount, if you have the money.
- Before each round you decide how much you will bet, based only on the outcomes of the previous rounds.
- Simple examples:
- Straight Play: bet $1 \$$ every round.
- Chicken Play: bet $1 \$$ every round until the first loss, then stop.
- In probability theory, the random variable "capital after round $N$ "
is called martingale (if the game is fair) and supermartingale (if the game is subfair).
- Before being adopted as a mathematical term, martingale was used to refer to a particular betting system


## Betting Systems: Definition

- Assume in each round, possible win = possible loss.
- Assume you can bet any amount, if you have the money.
- Before each round you decide how much you will bet, based only on the outcomes of the previous rounds.
- Simple examples:
- Straight Play: bet $1 \$$ every round.
- Chicken Play: bet $1 \$$ every round until the first loss, then stop.
- In probability theory, the random variable "capital after round $N$ "
is called martingale (if the game is fair) and supermartingale (if the game is subfair).
- Before being adopted as a mathematical term, martingale was used to refer to a particular betting system.


## The Matringale: An Example of a Betting System

- Algorithm:
(1) Bet $1 \$$
(2) If you lost, bet $2 \$$.
(3) If lost again, bet $4 \$$
( $)$ And so forth, doubling the stake each round until you win.
(5) If you win, go to stage 1 .
- Analysis:
- Benefit: you can never lose!


## The Matringale: An Example of a Betting System

- Algorithm:
(1) Bet $1 \$$.
(2) If you lost, bet $2 \$$
(3) If lost again, bet $4 \$$.
(9) And so forth, doubling the stake each round until you win.
(0) If you win, go to stage 1 .
- Analysis:
- Benefit: you can never lose!


## The Matringale: An Example of a Betting System

- Algorithm:
(1) Bet $1 \$$.
(2) If you lost, bet $2 \$$.
(3) If lost again, bet $4 \$$
(9) And so forth, doubling the stake each round until you win.
(0) If you win, go to stage 1 .
- Analysis:
- Benefit: you can never lose!


## The Matringale: An Example of a Betting System

- Algorithm:
(1) Bet $1 \$$.
(2) If you lost, bet $2 \$$.
(3) If lost again, bet $4 \$$.
- And so forth, doubling the stake each round until you win.
(0) If you win, go to stage 1 .
- Analysis:
- Benefit: you can never lose!


## The Matringale: An Example of a Betting System

- Algorithm:
(1) Bet $1 \$$.
(2) If you lost, bet $2 \$$.
(3) If lost again, bet $4 \$$.
(9) And so forth, doubling the stake each round until you win.
© If you win, go to stage 1 .
- Analysis:
- Benefit: you can never lose!


## The Matringale: An Example of a Betting System

- Algorithm:
(1) Bet $1 \$$.
(2) If you lost, bet $2 \$$.
(3) If lost again, bet $4 \$$.
(9) And so forth, doubling the stake each round until you win.
(0) If you win, go to stage 1 .


## - Analysis:

- Benefit: you can never lose!


## The Matringale: An Example of a Betting System

- Algorithm:
(1) Bet $1 \$$.
(2) If you lost, bet $2 \$$.
(3) If lost again, bet $4 \$$.
(9) And so forth, doubling the stake each round until you win.
(5) If you win, go to stage 1 .
- Analysis:
- Suppose you lost 3 times in a row and then won. Your total
win (loss) is $-1-2-4+8$
- In general, when a losing streak is followed by a win, the win pays for the losses and brings you $1 \$$ on top.
- Benefit: you can never lose!


## The Matringale: An Example of a Betting System

- Algorithm:
(1) Bet $1 \$$.
(2) If you lost, bet $2 \$$.
(3) If lost again, bet $4 \$$.
(9) And so forth, doubling the stake each round until you win.
(5) If you win, go to stage 1 .
- Analysis:
- Suppose you lost 3 times in a row and then won. Your total win (loss) is $-1-2-4+8$
- In general, when a losing streak is followed by a win, the win pays for the losses and brings you $1 \$$ on top.
- Benefit: you can never losel


## The Matringale: An Example of a Betting System

- Algorithm:
(1) Bet $1 \$$.
(2) If you lost, bet $2 \$$.
(3) If lost again, bet $4 \$$.
(9) And so forth, doubling the stake each round until you win.
(3) If you win, go to stage 1 .
- Analysis:
- Suppose you lost 3 times in a row and then won. Your total win (loss) is $-1-2-4+8=1$.
- In general, when a losing streak is followed by a win, the win pays for the losses and brings you $1 \$$ on top.
- Benefit: you can never losel


## The Matringale: An Example of a Betting System

- Algorithm:
(1) Bet $1 \$$.
(2) If you lost, bet $2 \$$.
(3) If lost again, bet $4 \$$.
(9) And so forth, doubling the stake each round until you win.
(3) If you win, go to stage 1 .
- Analysis:
- Suppose you lost 3 times in a row and then won. Your total win (loss) is $-1-2-4+8=1$.
- In general, when a losing streak is followed by a win, the win pays for the losses and brings you $1 \$$ on top.
- Benefit: you can never lose!


## The Matringale: An Example of a Betting System

- Algorithm:
(1) Bet $1 \$$.
(2) If you lost, bet $2 \$$.
(3) If lost again, bet $4 \$$.
(9) And so forth, doubling the stake each round until you win.
(3) If you win, go to stage 1 .
- Analysis:
- Suppose you lost 3 times in a row and then won. Your total win (loss) is $-1-2-4+8=1$.
- In general, when a losing streak is followed by a win, the win pays for the losses and brings you $1 \$$ on top.
- Benefit: you can never lose!


## The Martingale: A Practitioner's Testimonial

- An excerpt from Casanova's diary, Venice, 1754:

Playing the martingale, and doubling my stakes
continuously, I won every day during the remainder
of the carnival. [..] I congratulated myself upon
having increased the treasure of my dear mistress [..]

- Alas, several days later,


## The Martingale: A Practitioner's Testimonial

- An excerpt from Casanova's diary, Venice, 1754:

Playing the martingale, and doubling my stakes continuously, I won every day during the remainder of the carnival. [..] I congratulated myself upon having increased the treasure of my dear mistress [..]

- Alas, several days later,


## The Martingale: A Practitioner's Testimonial

- An excerpt from Casanova's diary, Venice, 1754:

Playing the martingale, and doubling my stakes continuously, I won every day during the remainder of the carnival. [..] I congratulated myself upon having increased the treasure of my dear mistress [..]

- Alas, several days later,

> I still played on the martingale, but with such bad luck that I was soon left without a sequin. As I shared my property with my mistress, [.. $]$ at her request I sold all her diamonds, losing what I got for them; she had now only five hundred sequins by her.
> There was no more talk of her escaping from the convent, for we had nothing to live on!

## The Martingale: A Practitioner's Testimonial

- An excerpt from Casanova's diary, Venice, 1754:

Playing the martingale, and doubling my stakes continuously, I won every day during the remainder of the carnival. [..] I congratulated myself upon having increased the treasure of my dear mistress [..]

- Alas, several days later,

I still played on the martingale, but with such bad luck that I was soon left without a sequin. As I shared my property with my mistress, [..] at her request I sold all her diamonds, losing what I got for them; she had now only five hundred sequins by her.
There was no more talk of her escaping from the convent, for we had nothing to live on!

## You Cannot Reverse the Odds

- Problem: you need a lot of money if a losing streak is long.
- The martingale is a sure thing only with infinite capital!


## Theorem <br> If the game is 1 , your average capital remains constant regardless of the betting system.

## Theorem

If the game is subfair, your average capital decreases after every
round regardless of the betting system.

- If the game is subfair, you lose no matter how you bet.


## You Cannot Reverse the Odds

- Problem: you need a lot of money if a losing streak is long.
- The martingale is a sure thing only with infinite capital!


## Theorem <br> If the game is fin, your average capital remains constant regardless <br> of the betting system.

## Theorem

If the game is subfair, your average capital decreases after every
round regardless of the betting system.

- If the game is subfair, you lose no matter how you bet.


## You Cannot Reverse the Odds

- Problem: you need a lot of money if a losing streak is long.
- The martingale is a sure thing only with infinite capital!


## Theorem

If the game is fair, your average capital remains constant regardless of the betting system.

## Theorem

If the game is subfair, your average capital decreases after every round regardless of the betting system.

- If the game is subfair, you lose no matter how you bet.


## You Cannot Reverse the Odds

- Problem: you need a lot of money if a losing streak is long.
- The martingale is a sure thing only with infinite capital!


## Theorem

If the game is fair, your average capital remains constant regardless of the betting system.

## Theorem

If the game is subfair, your average capital decreases after every round regardless of the betting system.

- If the game is subfair, you lose no matter how you bet.


## You Cannot Reverse the Odds

- Problem: you need a lot of money if a losing streak is long.
- The martingale is a sure thing only with infinite capital!


## Theorem

If the game is fair, your average capital remains constant regardless of the betting system.

## Theorem

If the game is subfair, your average capital decreases after every round regardless of the betting system.

- If the game is subfair, you lose no matter how you bet.


## Example: Gambler's Ruin with the Martingale

- Are betting systems completely worthless then?
- Remember example: you have 900\$, you want to reach $1000 \$$
- Suppose the game is
- Suppose you play roulette


## Example: Gambler's Ruin with the Martingale

- Are betting systems completely worthless then?
- Remember example: you have $900 \$$, you want to reach $1000 \$$.
- Suppose the game is
- Suppose you play roulette


## Example: Gambler's Ruin with the Martingale

- Are betting systems completely worthless then?
- Remember example: you have $900 \$$, you want to reach $1000 \$$.
- Suppose the game is fair
- Using Straight Play, the probability to reach the target is 0.9 . - Using the Martingale, the probability remains the same, 0.9.


## Example: Gambler's Ruin with the Martingale

- Are betting systems completely worthless then?
- Remember example: you have $900 \$$, you want to reach $1000 \$$.
- Suppose the game is fair
- Using Straight Play, the probability to reach the target is 0.9 .
- Suppose you play roulette


## Example: Gambler's Ruin with the Martingale

- Are betting systems completely worthless then?
- Remember example: you have $900 \$$, you want to reach $1000 \$$.
- Suppose the game is fair
- Using Straight Play, the probability to reach the target is 0.9 .
- Using the Martingale, the probability remains the same, 0.9.
- Suppose you play roulette


## Example: Gambler's Ruin with the Martingale

- Are betting systems completely worthless then?
- Remember example: you have $900 \$$, you want to reach $1000 \$$.
- Suppose the game is fair
- Using Straight Play, the probability to reach the target is 0.9 .
- Using the Martingale, the probability remains the same, 0.9.
- Suppose you play roulette
> - Using Straight Play, the probability is 0.00003 .
> - But with the Martingale, it is 0.783 !
> - This is much better than Straight Play!
> - And not much worse than in a fair game.


## Example: Gambler's Ruin with the Martingale

- Are betting systems completely worthless then?
- Remember example: you have $900 \$$, you want to reach $1000 \$$.
- Suppose the game is fair
- Using Straight Play, the probability to reach the target is 0.9 .
- Using the Martingale, the probability remains the same, 0.9.
- Suppose you play roulette
- Using Straight Play, the probability is 0.00003 .
- But with the Martingale, it is 0.783
- This is much better than Straight Play!
- And not much worse than in a fair game.


## Example: Gambler's Ruin with the Martingale

- Are betting systems completely worthless then?
- Remember example: you have $900 \$$, you want to reach $1000 \$$.
- Suppose the game is fair
- Using Straight Play, the probability to reach the target is 0.9 .
- Using the Martingale, the probability remains the same, 0.9.
- Suppose you play roulette
- Using Straight Play, the probability is 0.00003 .
- But with the Martingale, it is 0.783 !
- This is much better than Straight Play!
- And not much worse than in a fair game.


## Example: Gambler's Ruin with the Martingale

- Are betting systems completely worthless then?
- Remember example: you have $900 \$$, you want to reach $1000 \$$.
- Suppose the game is fair
- Using Straight Play, the probability to reach the target is 0.9 .
- Using the Martingale, the probability remains the same, 0.9.
- Suppose you play roulette
- Using Straight Play, the probability is 0.00003 .
- But with the Martingale, it is 0.783 !
- This is much better than Straight Play!
- And not much worse than in a fair game.


## Example: Gambler's Ruin with the Martingale

- Are betting systems completely worthless then?
- Remember example: you have $900 \$$, you want to reach $1000 \$$.
- Suppose the game is fair
- Using Straight Play, the probability to reach the target is 0.9 .
- Using the Martingale, the probability remains the same, 0.9.
- Suppose you play roulette
- Using Straight Play, the probability is 0.00003 .
- But with the Martingale, it is 0.783 !
- This is much better than Straight Play!
- And not much worse than in a fair game.


## Bold Play System

- If the game is subfair, every round we lose some (on average).
- To minimize losses - minimize rounds!
- Algorithm (Bold Play):


## Bold Play System

- If the game is subfair, every round we lose some (on average).
- To minimize losses - minimize rounds!
- Algorithm (Bold Play):


## Bold Play System

- If the game is subfair, every round we lose some (on average).
- To minimize losses - minimize rounds!
- Algorithm (Bold Play):
(1) Suppose you are within $x$ dollar of your target.
(2) If your can afford a bet of $x$, do it!
(3) If your cannot afford, bet all you have got!


## Bold Play System

- If the game is subfair, every round we lose some (on average).
- To minimize losses - minimize rounds!
- Algorithm (Bold Play):
(1) Suppose you are within $x$ dollar of your target.
(2) If your can afford a bet of $x$, do it!
(3) If your cannot afford, bet all you have got!


## Bold Play System

- If the game is subfair, every round we lose some (on average).
- To minimize losses - minimize rounds!
- Algorithm (Bold Play):
(1) Suppose you are within $x$ dollar of your target.
(2) If your can afford a bet of $x$, do it!
(3) If your cannot afford, bet all you have got!


## Bold Play System

- If the game is subfair, every round we lose some (on average).
- To minimize losses - minimize rounds!
- Algorithm (Bold Play):
(1) Suppose you are within $x$ dollar of your target.
(2) If your can afford a bet of $x$, do it!
(3) If your cannot afford, bet all you have got!


## Bold Play: How Does it Fare?

- In roulette, going from $900 \$$ to $1000 \$$ will be sucessful with probability 0.88 .
- Better than Straight Play (0.00003)
- or Martingale (0.78)
- and not much worse than in a fair game (0.9).
- Raising 20,000\$ from $100 \$$ at roulette will succeed with probability 0.003


## Bold Play: How Does it Fare?

- In roulette, going from $900 \$$ to $1000 \$$ will be sucessful with probability 0.88 .
- Better than Straight Play (0.00003)
- or Martingale (0.78)
- and not much worse than in a fair game (0.9).
- Raising $20,000 \$$ from $100 \$$ at roulette will succeed with probability 0.003.


## Bold Play: How Does it Fare?

- In roulette, going from $900 \$$ to $1000 \$$ will be sucessful with probability 0.88 .
- Better than Straight Play (0.00003)
- or Martingale (0.78)
- and not much worse than in a fair game (0.9).
- Raising $20,000 \$$ from $100 \$$ at roulette will succeed with probability 0.003 .


## Bold Play: How Does it Fare?

- In roulette, going from $900 \$$ to $1000 \$$ will be sucessful with probability 0.88 .
- Better than Straight Play (0.00003)
- or Martingale (0.78)
- and not much worse than in a fair game (0.9).
- Raising 20,000\$ from $100 \$$ at roulette will succeed with probability 0.003 .


## Bold Play: How Does it Fare?

- In roulette, going from $900 \$$ to $1000 \$$ will be sucessful with probability 0.88 .
- Better than Straight Play (0.00003)
- or Martingale (0.78)
- and not much worse than in a fair game (0.9).
- Raising $20,000 \$$ from $100 \$$ at roulette will succeed with probability 0.003 .
- but infinitely better than 0.00... 03 with Straight Play
- and not much worse than 0.005 chance in a fair game.


## Bold Play: How Does it Fare?

- In roulette, going from $900 \$$ to $1000 \$$ will be sucessful with probability 0.88 .
- Better than Straight Play (0.00003)
- or Martingale (0.78)
- and not much worse than in a fair game (0.9).
- Raising $20,000 \$$ from $100 \$$ at roulette will succeed with probability 0.003 .
- Unlikely
- but infinitely better than 0.00... 03 with Straight Play
- and not much worse than 0.005 chance in a fair game.


## Bold Play: How Does it Fare?

- In roulette, going from $900 \$$ to $1000 \$$ will be sucessful with probability 0.88 .
- Better than Straight Play (0.00003)
- or Martingale (0.78)
- and not much worse than in a fair game (0.9).
- Raising $20,000 \$$ from $100 \$$ at roulette will succeed with probability 0.003 .
- Unlikely
- but infinitely better than 0.00... 03 with Straight Play
- and not much worse than 0.005 chance in a fair game


## Bold Play: How Does it Fare?

- In roulette, going from $900 \$$ to $1000 \$$ will be sucessful with probability 0.88 .
- Better than Straight Play (0.00003)
- or Martingale (0.78)
- and not much worse than in a fair game (0.9).
- Raising $20,000 \$$ from $100 \$$ at roulette will succeed with probability 0.003 .
- Unlikely
- but infinitely better than $0.00 \ldots 03$ with Straight Play
- and not much worse than 0.005 chance in a fair game.


## Bold Play is Optimal

## Theorem

For every fixed subfair game, starting capital $n$ and the target $m$, Bold Play provides the best chances of success.

## Conclusions

- You cannot reverse the odds.
- If you must play and have a target,

Bold Play will maximize your chances of reaching it.

- How not to lose your money gambling?


## Conclusions

- You cannot reverse the odds.
- If you must play and have a target, Bold Play will maximize your chances of reaching it.
- How not to lose your money gambling?


## Conclusions

- You cannot reverse the odds.
- If you must play and have a target, Bold Play will maximize your chances of reaching it.
- How not to lose your money gambling?


## Conclusions

- You cannot reverse the odds.
- If you must play and have a target, Bold Play will maximize your chances of reaching it.
- How not to lose your money gambling?


## DO NOT GAMBLE!

