Sheet 4

Example 1. a) Expand $f(x) = x^2$ in a Fourier series on $[-\pi, \pi]$. Use the even-odd idea to reduce your work.

Create the directory sheet04 and make it your working directory.

b) In this part, you will plot f(x) and the 4th partial sum of the Fourier series on the same graph. Proceed as follows.

Clear the memory and enter the nth term:

```
clear
nth_term = @ (n,x) whatever you found in part a;
```

There is a little trouble here because this is valid only for $n \ge 1$ and you should have had an a_0 term. So add in the line

zeroth_term = whatever you found in part a;

Next give a linspace for plotting:

x = linspace(-pi,pi);

Give the partial sum you want (4 in this case):

want_terms = 4;

and now find the 4^{th} partial sum:

```
for n = 1:want_terms
    terms(n,:) = nth_term(n,x);
end
y = zeroth_term + sum(terms);
```

The for statement computes the n^{th} term for each value of x and y gives the 4^{th} partial sum for each value of x. Now plot everything on the same graph:

```
fcn = x. \2;
plot(x,y,'r',x,fcn,'k','linewidth',2)
legend('n = 4','x \2')
```

Repeat for the 8th partial sum—all you need to do is change the want_terms = 4. Save your work as ex1b.m.

c) Save ex1b.m as ex1c.m and modify it to plot f(x) and the 4th partial sum on the same graph for $-3\pi \le x \le 3\pi$. What did you see? Can you explain it?

d) For $-3\pi \le x \le 3\pi$, plot the periodic extension of f(x) and the 4th partial sum on the same graph. Save this as ex1d.m

Example 2. a) Consider the function

$$f(x) = \begin{cases} -1 & \text{if } -\pi \le x \le 0\\ \\ 1 & \text{if } 0 < x \le \pi \end{cases}$$

Expand f(x) in a Fourier series on $[-\pi,\pi]$ —use paper and pencil. Use the even-odd idea to reduce your work.

b) Here's how to enter a function given in pieces, say $g(x) = \begin{cases} a & \text{if } -1 \le x \le 0 \\ & & \\ b & \text{if } 0 < x \le 1 \end{cases}$:

 $g = @ (x) a*((-1 \le x) \& (x \le 0)) + b*((0 \le x) \& (x \le 1))$

Then when you want values of g, just type g(x).

You are going to plot f(x) and the n^{th} partial sum of the Fourier series on $[-\pi, \pi]$ for various choices of n to see how many terms are needed to get a good approximation. Here is what to do: Your Fourier series should have had only sine terms. You will modify the ex1b.m file you saved above (save it as ex2b.m). The major changes will be

- There is no a_0 so you will set zeroth_term = 0
- Change want_terms to various values
- To plot everything on the same graph, you will replace the statements

fcn =
$$x. \wedge 2;$$
plot(x,y,'r',x,fcn,'k','linewidth',2)

with the statements

f = model this on the way you were told to enter g above
fcn = f(x);
plot(x,y,'r',x,fcn,'k','linewidth',2)

c) For $-3\pi \leq x \leq 3\pi$, plot the periodic extension of f(x) and the n^{th} partial sum for the choice of n you made in the previous part, both on the same graph.

Example 3. Expand the function $f(x) = x^3$ in a Fourier series on $[-\pi, \pi]$. This is an odd function, and so all the a_n 's will be zero. Rather than integrate by hand (it's nasty), let us have Matlab help. Save a new worksheet as ex3.m. At the beginning of the file, type

```
clear
f = @ (x) x.∧3;
syms x n;
b_n = int(f(x)*sin(n*x),x,-pi,pi)/pi
```

and execute the file. This will tell you the Fourier coefficient b_n in the command window. Highlight this value—it will be a big mess that you don't want to type yourself. Instead, copy it and paste it into the edit window underneath the

b_n = int(f(x)*sin(n*x),x,-pi,pi)/pi

line you just typed. Then at the beginning of this pasted line insert

 $nth_term = @ (n,x)$

and at the end add

*sin(n*x);

so that now the line will read

nth_term = 0 (n,x) a huge mess *sin(n*x);

Copy and paste the appropriate lines from ex1b.m in order to plot f(x) and the 15th partial sum together for $x \in [-\pi, \pi]$. The only other modification you should make is in the y =zeroth_term + sum(terms) line. Change it to y = double(zeroth_term + sum(terms)). This tells Matlab to evaluate this as a decimal—if you don't do this, you might have trouble generating the plot.

Example 4. Modifying preceeding example, plot $f(x) = 1 - (x-1)^2$ and the 4th partial sum together for $x \in [-\pi, \pi]$. The added complication is that no even-odd type simplification occurs in this one. Thus your nth_term will have sines and cosines. Also, to avoid trouble you should enter the zeroth_term as zeroth_term = int(f(x),x,-pi,pi)/(2*pi); Try different n^{th} partial sums. Save your work as ex4.m.

Example 5. Using the method of the preceeding example, plot

$$f(x) = \begin{cases} (\pi + x)^7 & \text{if} & -\pi \le x \le 0\\ \\ (\pi - x)^7 & \text{if} & 0 < x \le \pi \end{cases}$$

and the 5th partial sum together for $x \in [-\pi, \pi]$. Here there is even-odd simplification, but the complication is that f(x) is in two pieces. Here are the major changes you should make to the model ex4.m file you created above:

- Leave off the definition of **f** in the line just after the **clear** statement.
- When you compute the a_n, you will need to do two integrals: one integral over $[-\pi, 0]$ and another over $[0, \pi]$. In place of the f(x), enter the specific expression for f in each int statement. Do a similar thing for the zeroth_term

• Replace the lines after the y = double(zeroth_term + sum(terms)) but before the plot statement with the lines

f = 0 (x) put the appropriate expression for f here; fcn = f(x);

Try other partial sums.

Sheet 4: Further Exercises

Example 5. Find the Fourier Series on $[-\pi, \pi]$ of the function

$$f(x) = \begin{cases} 0 & -\pi \le x \le 0 \\ x & 0 < x \le \pi \end{cases}$$

Answer:

$$\frac{\pi}{4} + \sum_{n=1}^{\infty} \left[\frac{(-1)^n - 1}{\pi n^2} \cos(nx) - \frac{(-1)^n}{n} \sin(nx) \right]$$

Example 6. Find the Fourier Series on $[-\pi, \pi]$ of the function

$$f(x) = \begin{cases} -\pi & -\pi \le x \le 0\\ 0 & 0 < x \le \pi \end{cases}$$

Answer:

$$-\frac{\pi}{2} + 2\sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1}$$

Example 7. If F is 2π - periodic and c is any real number, show that

$$\int_{-\pi}^{-\pi+c} F(x) \, dx = \int_{\pi}^{\pi+c} F(x) \, dx$$

HINT: Make a u-substitution $x = t - 2\pi$.