Sheet 4

Example 1. a) Expand $f(x)=x^{2}$ in a Fourier series on $[-\pi, \pi]$. Use the even-odd idea to reduce your work.

Create the directory sheet04 and make it your working directory.
b) In this part, you will plot $f(x)$ and the $4^{\text {th }}$ partial sum of the Fourier series on the same graph. Proceed as follows.

Clear the memory and enter the nth term:
clear
nth_term $=$ @ ($n, x)$ whatever you found in part a;
There is a little trouble here because this is valid only for $n \geq 1$ and you should have had an a_{0} term. So add in the line
zeroth_term = whatever you found in part a;
Next give a linspace for plotting:
x = linspace(-pi,pi);
Give the partial sum you want (4 in this case):

```
want_terms = 4;
```

and now find the $4^{\text {th }}$ partial sum:

```
for n = 1:want_terms
    terms(n,:) = nth_term(n,x);
end
y = zeroth_term + sum(terms);
```

The for statement computes the $n^{\text {th }}$ term for each value of x and y gives the $4^{\text {th }}$ partial sum for each value of x. Now plot everything on the same graph:

```
fcn = x.^2;
plot(x,y,'r',x,fcn,'k','linewidth', 2)
legend('n = 4','x^2')
```

Repeat for the $8^{\text {th }}$ partial sum-all you need to do is change the want_terms $=4$. Save your work as ex1b.m.
c) Save ex1b.m as ex1c.m and modify it to plot $f(x)$ and the $4^{\text {th }}$ partial sum on the same graph for $-3 \pi \leq x \leq 3 \pi$. What did you see? Can you explain it?
d) For $-3 \pi \leq x \leq 3 \pi$, plot the periodic extension of $f(x)$ and the $4^{\text {th }}$ partial sum on the same graph. Save this as ex1d.m

Example 2. a) Consider the function

$$
f(x)=\left\{\begin{array}{rcc}
-1 & \text { if } & -\pi \leq x \leq 0 \\
1 & \text { if } & 0<x \leq \pi
\end{array}\right.
$$

Expand $f(x)$ in a Fourier series on $[-\pi, \pi]$-use paper and pencil. Use the even-odd idea to reduce your work.
b) Here's how to enter a function given in pieces, say $g(x)=\left\{\begin{array}{lll}a & \text { if } & -1 \leq x \leq 0 \\ b & \text { if } & 0<x \leq 1\end{array}\right.$:

$$
g=@(x) a *((-1<=x) \&(x<=0))+b *((0<x) \&(x<=1))
$$

Then when you want values of g, just type $g(x)$.
You are going to plot $f(x)$ and the $n^{\text {th }}$ partial sum of the Fourier series on $[-\pi, \pi]$ for various choices of n to see how many terms are needed to get a good approximation. Here is what to do: Your Fourier series should have had only sine terms. You will modify the ex1b.m file you saved above (save it as ex2b.m). The major changes will be

- There is no a_{0} so you will set zeroth_term $=0$
- Change want_terms to various values
- To plot everything on the same graph, you will replace the statements

```
fcn = x.^2;
plot(x,y,'r',x,fcn,'k','linewidth',2)
```

with the statements

```
f = model this on the way you were told to enter g above
fcn = f(x);
plot(x,y,'r',x,fcn,'k','linewidth', 2)
```

c) For $-3 \pi \leq x \leq 3 \pi$, plot the periodic extension of $f(x)$ and the $n^{\text {th }}$ partial sum for the choice of n you made in the previous part, both on the same graph.

Example 3. Expand the function $f(x)=x^{3}$ in a Fourier series on $[-\pi, \pi]$. This is an odd function, and so all the a_{n} 's will be zero. Rather than integrate by hand (it's nasty), let us have Matlab help. Save a new worksheet as ex3.m. At the beginning of the file, type

```
clear
f = @ (x) x.^ \;
syms x n;
b_n = int(f(x)*sin(n*x),x,-pi,pi)/pi
```

and execute the file. This will tell you the Fourier coefficient b_{n} in the command window. Highlight this value - it will be a big mess that you don't want to type yourself. Instead, copy it and paste it into the edit window underneath the

```
b_n = int(f(x)*sin(n*x),x,-pi,pi)/pi
```

line you just typed. Then at the beginning of this pasted line insert

```
nth_term = @ (n,x)
```

and at the end add

```
*sin(n*x);
```

so that now the line will read

```
nth_term = @ ( }\textrm{n},\textrm{x}\mathrm{ ) a huge mess *sin(n*x);
```

Copy and paste the appropriate lines from ex1b.m in order to plot $f(x)$ and the $15^{\text {th }}$ partial sum together for $x \in[-\pi, \pi]$. The only other modification you should make is in the $\mathrm{y}=$ zeroth_term + sum(terms) line. Change it to y $=$ double(zeroth_term + sum(terms)). This tells Matlab to evaluate this as a decimal-if you don't do this, you might have trouble generating the plot.

Example 4. Modifying preceeding example, plot $f(x)=1-(x-1)^{2}$ and the $4^{\text {th }}$ partial sum together for $x \in[-\pi, \pi]$. The added complication is that no even-odd type simplification occurs in this one. Thus your nth_term will have sines and cosines. Also, to avoid trouble you should enter the zeroth_term as zeroth_term = int (f(x),x,-pi,pi)/(2*pi); Try different $n^{\text {th }}$ partial sums. Save your work as ex4.m.

Example 5. Using the method of the preceeding example, plot

$$
f(x)=\left\{\begin{array}{lll}
(\pi+x)^{7} & \text { if } & -\pi \leq x \leq 0 \\
(\pi-x)^{7} & \text { if } & 0<x \leq \pi
\end{array}\right.
$$

and the $5^{\text {th }}$ partial sum together for $x \in[-\pi, \pi]$. Here there is even-odd simplification, but the complication is that $f(x)$ is in two pieces. Here are the major changes you should make to the model ex4.m file you created above:

- Leave off the definition of f in the line just after the clear statement.
- When you compute the a_n, you will need to do two integrals: one integral over $[-\pi, 0]$ and another over $[0, \pi]$. In place of the $\mathbf{f}(\mathrm{x})$, enter the specific expression for f in each int statement. Do a similar thing for the zeroth_term
- Replace the lines after the $\mathrm{y}=$ double(zeroth_term + sum(terms)) but before the plot statement with the lines

$$
\begin{aligned}
& f=@(x) \text { put the appropriate expression for } f \text { here; } \\
& f \subset n=f(x) ;
\end{aligned}
$$

Try other partial sums.

Example 5. Find the Fourier Series on $[-\pi, \pi]$ of the function

$$
f(x)=\left\{\begin{array}{cc}
0 & -\pi \leq x \leq 0 \\
x & 0<x \leq \pi
\end{array}\right.
$$

Answer:

$$
\frac{\pi}{4}+\sum_{n=1}^{\infty}\left[\frac{(-1)^{n}-1}{\pi n^{2}} \cos (n x)-\frac{(-1)^{n}}{n} \sin (n x)\right]
$$

Example 6. Find the Fourier Series on $[-\pi, \pi]$ of the function

$$
f(x)=\left\{\begin{array}{rr}
-\pi & -\pi \leq x \leq 0 \\
0 & 0<x \leq \pi
\end{array}\right.
$$

Answer:

$$
-\frac{\pi}{2}+2 \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{2 n-1}
$$

Example 7. If F is $2 \pi-$ periodic and c is any real number, show that

$$
\int_{-\pi}^{-\pi+c} F(x) d x=\int_{\pi}^{\pi+c} F(x) d x
$$

HINT: Make a u-substitution $x=t-2 \pi$.

