
Sheet 7

Create the directory sheet07 and make it your working directory.

Example 1. Go to my homepage and save the files data16.csv and compress.m to your
working directory. You are going to use the DFT to compress the signal in the data file.
Load the data (see sheet 2, Example 1 if you don’t remember how). Assign t to the first
row (time) and y (signal) to the second. We will take r to be the compression rate—it will
be a number between 0 and 1 and the compression will be 100r%. For example, for r = .7
the compression is 70% and that means if your data set had 100 points, then you would be
sending 30 points from which the original data would be reconstructed. Enter the following
line:

r = .9;

Now take the DFT of y :

fy=fft(y);

Next, compress the DFT by throwing out the 100r% smallest coefficients.

fyc=compress(fy,r);

Invert the DFT to get the compressed signal (represented by yc):

yc=ifft(fyc);

Then plot the signal and the compressed signal on the same graph:

plot(t,real(yc),’r’,t,y,’k’,’linewidth’,2);

legend(’Compressed’,’Signal’)

Let’s see exactly what the compression does to the DFT:

figure

plot(t,abs(fyc),’o’,t,abs(fy),’r’,’linewidth’,2)

legend(’Compressed DFT’,’DFT’)

The figure command tells Matlab to allow a new plot (try doing this without it and see
what happens).

It is kind of hard to see what is going on near the y−axis, so zoom in on it using the axis

command;

axis([0,7,0,25])

(Remember the first two numbers give the range for the x−axis and the second two are for
the y−axis).



Finally compute the relative error and the compression:

fprintf(’Relative Error is %f \n’, norm(y-yc)/norm(y))

fprintf(’Compression = %f percent\n’,100*r)

Repeat this for other values of the compression rate r .

Example 2. Repeat this analysis for the signal in data17.csv. When you plot the signal
and the compressed signal on the same graph, it’s hard to tell if the compressed signal
captured the spike. So include an axis command to zoom in on it.

Example 3. Save data13.csv to your working directory and load the data as usual. Plot
it, and see it is noisy. We are going to use the DFT to filter out the noise. Since the noise
is due to high frequency components, we will throw out the high frequencies in the Fourier
expansion. This example with ba model for subsequent problems—you will modify it slightly.
Take the DFT:

fy = fft(y);

Set the number of coefficients to retain:

n = 6;

Filter the DFT:

filtfy = [fy(1:n) zeros(1,length(fy)-2*n) fy(length(fy)-(n-1):length(fy))];

Invert the filtered DFT:

filtery = ifft(filtfy);

Plot the signal and the filtered signal on the same graph:

plot(t,y,’k’,t,filtery,’r’,’linewidth’, 2)

legend(’Signal’,’Filtered Signal’);

Finally, plot the DFT and the filtered DFT on the same graph to see what has happened to
the coefficients—you will need to use an axis statement to zoom in on the x−axis:

figure

plot(t,abs(fy),’o’,t,abs(filtfy),’r’,’linewidth’,2)

legend(’DFT’,’Filtered DFT’)

See what happens as you change the value of n, the number of coefficients retained.



Example 4. Repeat this analysis for the signal in data18.csv.

Example 5. The signal in example 2 has a spike. Filter it out. Again, play around with
n and plot the filtered and unfiltered DFT too. Ave your work as ex5.m

Example 6. Save the file noisydata1.csv to your working directory. Filter it as in the
preceeding examples. Assuming the same varible names as above, to get a better picture of
the noisy signal and the filtered signal on the same graph, replace the plotting lines

plot(t,y,’k’,t,filtery,’r’,’linewidth’, 2)

legend(’Filtered Signal’,’Signal’);

by the lines

hold on

plot(t,y,’k’,’linewidth’, .5)

plot(t,filtery,’r’,’linewidth’, 2)

legend(’Noisy Signal’,’Filtered Signal’)

hold off

This will cause the plot of the noisy data to be drawn with a fine line and the filtered signal
with a heavy line, giving a better picture.

The noisy signal y was generated from the signal with no noise in the file no-noise-data1.csv.
Load it and define the second row as the variable y1. Then plot the filtered signal on the
same graph as the signal without noise so you can see how well the filtering worked with the
particular choice of n you made above:

figure

plot(t,filtery,’r’,t,y1)

legend(’filtered’,’original-no noise’)

Compute the relative error too:

fprintf(’relative error is %f\n\n’,norm(filtery-y1)/norm(y1))

Try other values of n until you get the best result. What did the trick?

Example 7. Compress the signal in the file data5.csv. Try different compression rates.
Also, remember this was the data set you compressed using the linear predictive coding
scheme on sheet 3.

Example 8. Filter the data noisydata3.csv from my homepage.


