ON A RECURSIVE FORMULA FOR BINOMIAL COEFFICIENTS

G. BERKOLAIKO

Abstract. We demonstrate that the binomial coefficients $B(n, k)$ satisfy the recursive formula

$$
B(n, k)=B(n-1, k-1)+B(n-1, k) .
$$

Moreover, we prove that together with the initial conditions $B(n, 0)=$ $B(n, n)=1$ our formula can be used to calculate all binomial coefficients.

1. Introduction

The binomial coefficients $B(n, k)$ arise in the expansions of the polynomial $(a+b)^{n}$. In fact, $B(n, k)$ is the coefficient of the term $a^{k} b^{n-k}$ is the said expansion. The case $n=2$ dates back to Euclid who expressed it in geometric terms [1]. The general formula

$$
\begin{equation*}
B(n, k)=\frac{n!}{k!(n-k)!} \quad n \geq 0,0 \leq k \leq n \tag{1}
\end{equation*}
$$

is attributed to Newton who reportedly published it on his gravestone, although this claim is disputed by some authors [2].

Formula (1), although explicit, is not very convenient in abacus computations, as one has to multiply and divide large numbers. In the present manuscript we prove that $B(n, k)$ satisfy certain recurrence relation which, together with few initial values, reduce the task of computing the binomial coefficients to a series of additions. Our main theorem can be formulated as follows

Theorem 1. The binomial coefficients $B(n, k)$ defined by formula (1) satisfy

$$
\begin{equation*}
B(n, k)=B(n-1, k-1)+B(n-1, k), \quad 1 \leq k \leq n-1 . \tag{2}
\end{equation*}
$$

Together with the initial conditions $B(n, 0)=B(n, n)=1$ recursion (2) completely specifies the binomial coefficients.

2. Proof of the main result

Proof. Using equation (1) we obtain

$$
\begin{aligned}
B(n-1, k-1) & =\frac{(n-1)!}{(k-1)!(n-k)!}=\frac{(n-1)!}{(k-1)!(n-k-1)!} \frac{1}{n-k}, \\
B(n-1, k) & =\frac{(n-1)!}{k!(n-k-1)!}=\frac{(n-1)!}{(k-1)!(n-k-1)!} \frac{1}{k} .
\end{aligned}
$$

Adding the two together we calculate

$$
\begin{aligned}
B(n-1, k-1)+B(n-1, k) & =\frac{(n-1)!}{(k-1)!(n-k-1)!}\left(\frac{1}{n-k}+\frac{1}{k}\right) \\
& =\frac{(n-1)!}{(k-1)!(n-k-1)!} \frac{n}{k(n-k)} \\
& =\frac{n!}{k!(n-k)!} \\
& =B(n, k) .
\end{aligned}
$$

This proves recursion (2). We notice that the right-hand side of (2) only makes sense when $1 \leq k \leq n-1$, since the original binomial $B(n, k)$ is only defined when $0 \leq k \leq n$.

To demonstrate that the above recursion fully specifies the binomial coefficients when supplemented with the initial conditions $B(n, 0)=$ $B(n, n)=1$ we employ induction on n. For $n=0$ and $n=1$ all the binomial coefficients are specified by the initial data:

$$
B(0,0)=1, \quad B(1,0)=1, \quad B(1,1)=1 .
$$

Assume all values for $n=N-1$ have been found. Then we can find values of $B(N, k)$ for $k=1, \ldots, N-1$ from the recursion. For the remaining values of $k, k=0$ and $k=N$, the values are again given by the initial data:

$$
B(N, 0)=1, \quad B(N, N)=1 .
$$

This completes the proof of the theorem.

3. Conclusions and Outlook

We have shown that the binomial coefficients satisfy a recurrence relation which can be used to speed up abacus calculations. Our approach raises an important question: what can be said about the solution of the recurrence (2) if the initial data is different? For example, if $B(n, 0)=1$ and $B(n, n)=-1$, do coefficients $B(n, k)$ stay bounded for all n and k ?

Acknowledgment

Useful discussions with B. Pascal regarding arrangements of $B(n, k)$ in a hexagonal pattern are gratefully acknowledged.

References

[1] Euclid, Elements, 34th ed., Macedonian Press, Thebes, 1976.
[2] F. Cajori, Was the binomial theorem engraven on Newton's monument?, Bull. Amer. Math. Soc. 1 (1894), 52-54 .

Department of Mathematics, Texas A\&M University, College StaTION, TX 77845-3368, U.S.A.

