Fourier Series

Here is the graph of $f(x)=x$ together with the n-th partial sums for $n=5,10$ over $[-\pi, \pi]$:

Next, here is the graph of f and the $n=50$ partial sum:

See there is trouble at the ends $x= \pm \pi$.

The Fourier series does not represent $f(x)=x$ outside $[-\pi, \pi]$:

Reason:

- The Fourier series is 2π-periodic.
- The function $f(x)=x$ is not 2π-periodic.
- In fact, the Fourier series represents the 2π-periodic extension of $f(x)=x, \quad x \in[-\pi, \pi]$.
- Recall the graph of the 2π - periodic extension is repeated carbon copies to the left and right of the graph of $f(x)=x, \quad x \in[-\pi, \pi]$.

Here is the periodic extension of $f(x)=x,[-\pi, \pi]$ and partial sum $n=50$:

- Observe there are overshoots of the Fourier series at the points $x= \pm \pi, \pm 3 \pi$. This always happens at the discontinuities of the periodic extension of a function. This is known as the Gibbs Phenomenon.
- Notice the Fourier series converges to the "half-way" value at the points $x= \pm \pi, \pm 3 \pi$. This usually happens; in fact the following holds.

General Principle: Let $f(x)$ be 2π-periodic.

- f continuous at $a \Longrightarrow f(a)=$ Fourier series at a
- f not continuous at $a \Longrightarrow$ Fourier series at a converges to the average of the left and right limits of f at a :

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n a)+b_{n} \sin (n a)=\frac{1}{2}\left[\lim _{x \rightarrow a^{-}} f(x)+\lim _{x \rightarrow a^{a}} f(x)\right]
$$

