Fourier Series

Here is the graph of f(z) = = together with the n—th partial sums for n = 5,10 over
[—m, 7]
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Next, here is the graph of f and the n = 50 partial sum:
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See there is trouble at the ends z = £7.



The Fourier series does not represent f(x) =z outside [—m,7]:
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Reason:

e The Fourier series is 2m— periodic.
e The function f(x) =z is not 27— periodic.

e In fact, the Fourier series represents the 2m—periodic extension of
fl)=2z, z¢€l-mmnl.

e Recall the graph of the 27— periodic extension is repeated carbon copies to the left
and right of the graph of f(z) =z, =z € |[—7, 7]



Here is the periodic extension of f(z) = x, [-m, 7] and partial sum n = 50:
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e Observe there are overshoots of the Fourier series at the points x = 7, £3w. This
always happens at the discontinuities of the periodic extension of a function. This is
known as the Gibbs Phenomenon.

e Notice the Fourier series converges to the “half-way” value at the points x = £7, £37.
This usually happens; in fact the following holds.

General Principle: Let f(z) be 2r— periodic.
e f continuous at @ = f(a) = Fourier series at a

e f not continuous at a = Fourier series at a converges to the average of the left and
right limits of f at a:

lim f(z)+ lim f(z)
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ap + Z a, cos(na) + b, sin(na) =

n=1



