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Chapter 1

Overview of asymptotic random matrix results.

Brief review of probability theory.

Probability space (Ω,Σ, P ). Here

Ω = set.

Σ = σ-algebra of measurable subsets of Ω.

P = probability measure on (Ω,Σ), P (Ω) = 1.

X = random variable = (real-valued) measurable function on Ω.

E = expectation functional,

E[X] =

∫
X dP =

∫
X(ω) dP (ω)

whenever defined.

µX = distribution of X = probability measure on R,

µX(A) = P (X ∈ A) = P (ω ∈ Ω : X(ω) ∈ A).

Also for f ∈ Cb(R),

E[f(X)] =

∫
f(x) dµX(x).

A random matrix is an N ×N matrix of random variables = MN -valued random variable.

These come up in a variety of models and settings.

Remark 1.1. In this course, our main interest is in the behavior of N × N random X as N → ∞. So
often a “random matrix X” really means a sequence (XN)∞N=1, each XN N × N . There are also many
exact results for finite N , which we will omit.
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1.1 Gaussian orthogonal ensemble GOEN .

Fix N ≥ 1. For 1 ≤ i ≤ j ≤ N , let Bij ∼ N (0, 1) be independent standard normal variables. Define XN

an N ×N matrix by

[XN ]ij = [XN ]ji =
1√
N
Bij, i < j

(so that XN is symmetric), and

[XN ]ii =

√
2√
N
Bii.

Usually the Gaussian Orthogonal Ensemble is defined without the 1√
N

normalization. We include this
normalization from the very beginning, to have

1

N
Tr[XN ] =

1

N

N∑
i=1

Xii

and

E

[
1

N
Tr[XN ]

]
= 0.

1

N
Tr[X2

N ] =
1

N

N∑
i,j=1

XijXji =
1

N

(
2
∑
i<j

1

N
B2
ij +

∑
i

2

N
B2
ii

)
=

2

N2

N∑
i≤j

B2
ij,

and so

E

[
1

N
Tr[X2

N ]

]
=

2

N2

N(N + 1)

2
→ 1.

Theorem (Wigner’s Theorem I). Let XN ∼ GOEN . Then as N →∞,

1

N
Tr[X2k]︸ ︷︷ ︸
random

→ ck︸︷︷︸
number

= Catalan number =
1

k + 1

(
2k

k

)

and
1

N
Tr[X2k+1]→ 0.

We will see a combinatorial interpretation of ck soon.

Convergence in what sense?

Definition 1.2. (xN)∞N=1 random variables.

xN → a in expectation if
E[xN ]→ a.
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xN → a in probability if ∀δ > 0,
P (|xN − a| ≥ δ)→ 0.

xN → a a.s. (almost surely) if
P (xN 6→ a) = 0.

Review the relation between these modes of convergence.

The theorem above holds in all three senses (Wigner 1955, 1958, Grenander ?, Arnold 1967).

Remark 1.3 (Second point of view: matrix-valued distribution). Take X ∼ GOEN as before. Forgetting
the matrix structure, we may think of X as an RN(N+1)/2-valued random variable, jointly Gaussian with
joint density

1

Z

∏
i<j

exp(−
x2
ij

2(1/N)
)
∏
i

exp(− x2
ii

2(2/N)
)
∏
i≤j

dxij =
1

Z

∏
i,j

exp(−Nxijxji/4)
∏
i,j

dxij

=
1

Z
exp

(
−N

4
Tr[X2]

)
dX.

Note that if U is an orthogonal matrix,

1

Z
exp

(
−N

4
Tr[(UXUT )(UXUT )]

)
d(UXUT ) =

1

Z
exp

(
−N

4
Tr[X2]

)
dX.

So this ensemble is orthogonally invariant. Since X is symmetric,

X = UΛUT ,

where U is a random orthogonal matrix, and Λ is a random diagonal matrix. From orthogonal invariance
it follows (after some work) that U is a Haar orthogonal matrix, with a uniform distribution over the or-
thogonal group, and so eigenvectors of X are uniformly distributed on a sphere. What about eigenvalues?

Third point of view: eigenvalues and spectral measure.

XN is symmetric, so diagonalizable, with (random!) eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λN . Combine these
into an empirical spectral measure

µ̂X =
1

N
(δλ1 + . . .+ δλN )

which is a random measure.

Note:
1

N
Tr[Xk] =

1

N
Tr[(UΛUT )k] =

1

N
Tr[Λk] =

1

N

N∑
i=1

λki =

∫
xk dµ̂(x),

the k’th moment of µ̂.

4



Theorem (Wigner’s Theorem II). Let XN ∼ GOE. Then as N →∞,

µ̂N → σ

weakly, meaning that for any f ∈ Cb(R), ∫
f dµ̂N → f dσ,

and σ is the (Wigner) semicircle law,

dσ(x) =
1

2π

√
4− x21[−2,2] dx.

Figure 1.1: Semicircle law

Again, µ̂N random, so: µ̂N → σ weakly in expectation if ∀f ∈ Cb(R),

E

[∫
f dµ̂N

]
→ f dσ;

weakly in probability if

P

(∣∣∣∣∫ f dµ̂N − f dσ
∣∣∣∣ ≥ δ

)
→ 0;

weakly a.s. if

P

(∫
f dµ̂N 6→ f dσ

)
= 0.

Remark 1.4. It is not hard to check that∫
x2k+1 dσ(x) = 0,

∫
x2k dσ(x) = ck.

So Wigner I says ∫
xk dµ̂N →

∫
xk dσ(x).

Of course this function is not in Cb(R).
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Results so far are about (weighted) averages of eigenvalues. What about individual eigenvalues? Recall
that we defined λ1 ≤ λ2 ≤ . . . ≤ λN , and showed

1

N
(δλ1 + . . .+ δλN )→ σ.

with support [−2, 2], figure omitted.

Theorem. Let X ∼ GOEN . Then λN(XN)→ 2 in probability.

(Füredi, Komlos 1981, Bai, Yin 1988)

Fluctuations.

Recall

1

N
Tr[X2k

N ]→ ck in probability,

λN(XN)→ 2 in probability.

These are analogs of the laws of large numbers. What about the analogs of the Central Limit Theorem?

Theorem.
N

(
1

N
Tr[X2k

N ]− ck
)
→ N (0, ?) in distribution.

In contrast,
N2/3(λN(XN)− 2)→ Tracy-Widom distribution.

Figure 1.2: The Tracy-Widom distribution
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Remark 1.5 (Large deviations). Recall that for large N , µ̂N ≈ σ with large probability. What are the
chances that it is far from σ? Very roughly, for a probability measure ν,

Prob(µ̂N ≈ ν) ∼ e−N
2I(ν),

where
I(ν) =

1

4

∫
x2 dν(x)− 1

2

∫∫
log |x− y| dν(x) dν(y)

= logarithmic energy = free entropy. Here I(σ) minimizes I .

Spacing distributions.

Recall
µ̂N =

1

N
(δλ1 + . . .+ δλN )→ ρ(x) dx,

ρ(x) =
1

2π

√
4− x21[−2,2](x).

So intuitively, ∫ λj

−2

ρ(x) dx ≈ j

N

(in fact true) and
1

N
≈
∫ λj+1

λj

ρ(x) dx ≈ (λj+1 − λj)ρ(λj).

Thus
λj+1 − λj ≈

1

Nρ(λj)
.

So renormalize
sj = Nρ(λj)(λj+1 − λj).

For 0� j � N , independently of j, s ∼ Gaudin distribution. Figure omitted.

This is of interest because of Wigner’s original model: X models the Hamiltonian of a large atom, in
which case λj’s are the energy levels. Physically what is observed are not λj’s but (λi − λj)’s. Figure
omitted.

These properties can also be stated in terms of k-point correlation functions.
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1.2 Other ensembles.

Other Gaussian ensembles.

Gaussian unitary ensemble GUEN .

For 1 ≤ i, j ≤ N , let Bij ∼ N (0, 1) be independent. Define XN by

[XN ]ij =
1√
2N

(Bij +
√
−1Bji), i < j,

[XN ]ji = [XN ]ij =
1√
2N

(Bij −
√
−1Bji), i < j,

[XN ]ii =
1√
N
Bii.

Thus XN is complex Hermitian, its off-diagonal entries are complex Gaussian, and its diagonal entries
are real Gaussian. Its distribution is invariant under conjugation by unitary matrices.

Gaussian symplectic ensemble GSEN .

Recall that the algebra H of quaternions is

{a+ bi1 + ci2 + di3 : a, b, c, d ∈ R}

subject to the relations i21 = i22 = i23 = i1i2i3 = −1. For q ∈ H, we may define the quaternion conjugate
q as in the complex case. The dual Q∗ of a quaternion matrix is its conjugate transpose. A matrix
Q = Q∗ is self-dual. Finally, the symplectic group consists of quaternion matrices such that S∗S =
SS∗ = I . The Gaussian symplectic ensemble consists of self-dual quaternionic matrices whose entries are
properly normalized independent quaternionic Gaussians. Its distribution is invariant under conjugation
by symplectic matrices.

Most results which hold for GOE hold, either exactly or with appropriate modification, for GUE and GSE
(in fact the results for GUE are often neater). Moreover we can include all these in the family of Gaussian
β-ensembles, with β = 1 real/orthogonal, β = 2 complex/unitary, and β = 4 quaternionic/symplectic.

GOE satisfies two properties:

a. Symmetric with independent entries.

b. Orthogonally invariant.

These two properties in fact characterize GOE. So have two natural directions to generalize.
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Wigner ensembles.

[XN ]ij symmetric, independent,

Xij = Xji ∼
1√
N
Y1, Y1 ∼ ν1,

Xii ∼
1√
N
Y2, Y2 ∼ ν2,

Var ν1 <∞, Var ν2 <∞, and possibly with assumptions on higher moments.

Then µ̂N → σ still! Under extra assumptions, also λN(XN)→ 2 and N2/3(λN − 2)→ TW.

Orthogonally invariant ensembles.

Recall for GOE,

XN ∼
1

Z
exp

(
−N

4
Tr[X2]

)
dX.

More generally, may look at

X ∼ 1

Z
exp (−N Tr[V (X)]) dX

for V a nice function. Then µ̂N → µV , the equilibrium measure for the potential V (different from σ),
which can be described using IV (ν). However the spacing distributions, for nice V , do not depend on V ,
and so are universal, as is the convergence to the Tracy-Widom distribution.

Non-symmetric ensembles.

Xij ∼
1√
N
Y, Y ∼ ν

all independent.

X diagonalizable a.s.

µ̂N =
1

N
(δλ1 + . . .+ δλN )

is a measure on C. For nice ν, µ̂N converges to the circular law (Girko 1984, Tao, Vu 2008), figure
omitted.

Can ask similar questions in this context.
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Wishart ensembles.

The oldest appearance of asymptotic theory of random matrices (Wishart 1928).

Consider a k-component Gaussian vector Y ∼ N (0,Σ) with the covariance matrix Σ. How to estimate
Σ?

Take N independent samples Y (1), Y (2), . . . Y (N). The sample covariance estimate is

E[YiYj] ≈
1

N

N∑
n=1

Y
(n)
i Y

(n)
j .

Let Ŷ = (Y1|Y2| . . . |YN), a k ×N matrix. Then

E[YiYj] ≈
1

N

N∑
n=1

ŶinŶjn =
1

N
(Ŷ Ŷ T )ij.

X = 1
N
Ŷ T Ŷ (note order) is the N ×N Wishart(k,N,Σ) matrix. If k is fixed, as N →∞, 1

N
Ŷ Ŷ T → Σ.

What if both k and N are large? Note that X is orthogonally invariant (check), so only its eigenvalues
matter, and they are closely related to the eigenvalues of 1

N
Ŷ Ŷ T . For example if Σ = I , and k

N
→ p, then

µ̂XN
converges to the Marchenko-Pastur distribution.

Connections to other fields.

Wigner, Tracy-Widom, Gaudin, Marchenko-Pastur distributions appear in unexpected contexts with no a
priori connection to random matrices. We only give two examples.

Example 1.6 (Ulam problem). Let α ∈ S(N) be a permutation. Reorder {1, 2, . . . , N} according to α,
and let L(α) be the length of the longest increasing subsequence in it. Pick α uniformly at random. What
can be said about L?

Theorem. (Vershik, Kerov 1977, Baik, Deift, Johansson 1999) As N → ∞, the average length of the
longest increasing subsequence

E[L] ≈ 2
√
N,

and
L− 2

√
N

N1/6
→ Tracy-Widom distribution.

Example 1.7 (Riemann zeta function). ζ(z) = analytic continuation of
∑∞

n=1
1
nz . The Riemann Hypoth-

esis states that all zeros of ζ lie on the critical line z = 1
2

+ iy. Denote the imaginary parts of the zeros by
λ1 ≤ λ2 ≤ λ3 ≤ . . .. The prime number theorem implies that

λn ∼
2πn

log n
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and so
λn+1 − λn ∼

2π

log n
.

So renormalize: roughly,

vn =
log n

2π
(λn+1 − λn)

Then for large n, v appears to follow the (GUE version of the) Gaudin distribution. Extensive numerical
and some theoretical evidence (Montgomery 1973, Odlyzko 1987). No proof!
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Chapter 2

Wigner’s theorem by the method of moments.

The techniques in this chapter go all the way back to Wigner (1955), but continue to be used with great
success.

2.1 Convergence of moments.

Theorem 2.1. LetX be a Wigner matrix with finite moments. That is, for eachN , {Xij : 1 ≤ i ≤ j ≤ N}
are independent,

Xij = Xji ∼
1√
N
Yij, Yij ∼ ν1,

Xii ∼
1√
N
Yii, Yii ∼ ν2,

E[Yij] = 0, Var ν1 = 1, and all the higher moments of ν1 and ν2 are finite. Then for k ≥ 1,

1

N
Tr[X2k

N ]→ ck

and
1

N
Tr[X2k−1

N ]→ 0

in expectation, in probability, and (as long as all the random variables live on the same probability space)
almost surely.

Remark 2.2. The condition Var ν1 = 1 is there purely to simplify the normalization. The condition
that entries are identically distributed can easily be removed as long as the moments of the entries are
uniformly bounded. The condition of equal variances is absolutely essential. The independence condition
can be weakened, but the proof becomes significantly more complicated.

12



Proof of Theorem 2.1 for convergence in expectation.

1

N
Tr[Xk

N ] =
1

N1+k/2

N∑
u(1),...,u(k)=1

Yu(1)u(2)Yu(2)u(3) . . . Yu(k)u(1).

Fix ~u = (u(1), u(2), . . . , u(k)). Let S~u be the set

S~u = {u(1), u(2), . . . , u(k)} .

Consider the multigraph with the vertex set S, and the number of undirected edges between u(i) and u(j)
equal to the multiplicity of the factor Yu(i)u(j) = Yu(j)u(i) in the product above; multiplicity zero means no
edge. Note that this multigraph comes equipped with an Eulerian circuit: the path

u(1), u(2), u(3), . . . u(k), u(1)

passes through each edge of the graph exactly as many times as its multiplicity. Finally, if we forget the
multiplicities, we end up with the underlying (simple) graph. The Eulerian condition implies in particular
that this graph is connected.

We decompose the sum above according to

1

N
E[Tr[Xk

N ]] =
1

N1+k/2

k∑
s=1

∑
~u:|S~u|=s

E[Yu(1)u(2)Yu(2)u(3) . . . Yu(k)u(1)].

Note that each expectation on the right-hand side is independent of N .

First suppose that s < 1 + k/2. Then

|{~u : |S~u| = s}| ≤
(
N

s

)
sk ≤ skN s.

Therefore
1

N1+k/2

k/2∑
s=1

∑
~u:|S~u|=s

E[Yu(1)u(2)Yu(2)u(3) . . . Yu(k)u(1)]→ 0

as N →∞.

Next, note that if some edge in the graph appears with multiplicity 1, then since entries of the matrix are
independent and centered, the corresponding expectation is zero. But if a connected multigraph has k
edges and each edge has multiplicity at least 2, it can have at most 1 + k/2 vertices. Therefore

1

N1+k/2

N∑
s=2+k/2

∑
~u:|S~u|=s

E[Yu(1)u(2)Yu(2)u(3) . . . Yu(k)u(1)] = 0
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and
1

N
E[Tr[Xk

N ]] =
1

N1+k/2

∑
~u:|S~u|=1+k/2

E[Yu(1)u(2)Yu(2)u(3) . . . Yu(k)u(1)].

In particular this is zero for k odd; from now on we assume k to be even. In that case the argument above
shows that the non-zero terms in the sum correspond to graphs with 1 + k/2 vertices and k/2 edges,
each of multiplicity 2. This means that each underlying simple graph is a tree, and the sum is taken over
precisely all labeled ordered rooted trees with 1 + k/2 vertices, with a root (corresponding to u(1)), an
order of leaves at each vertex (corresponding to the order in which they are traversed by the Eulerian
circuit), and 1 + k/2 distinct numbers between 1 and N (labels of the vertices). The number of such
ordered rooted trees is the Catalan number ck/2 (see the lemma below). Note also that a tree cannot have
self-edges, so no terms of the form Yii appear. Thus using independence of entries

1

N
E[Tr[Xk

N ]] =
N(N − 1) . . . (N − k/2)

N1+k/2
Vark[ν1]ck/2 → ck/2

as N →∞.

Lemma 2.3. The number of ordered trees rooted with k + 1 vertices is the Catalan number ck.

Proof. Note that a tree with a fixed Eulerian circuit and root can be identified with an ordered tree, since
drawing the tree with the circuit on the outside corresponds to a unique way to define a depth-first order
on it. Let tk be the number of such trees. By removing the edge (u(1), u(2)), we see that these numbers
satisfy the Catalan recursion

tk =
k−1∑
i=0

titk−i−1,

with t0 = 1, t1 = 1. So tk = ck.

Exercise 2.4. Prove that the Catalan numbers satisfy the Catalan recursion. Here is one possible approach.
Suppose b0 = b1 = 1 and the bk’s satisfy the Catalan recursion. Let F (z) =

∑∞
k=0 bkz

k be their generating
function. Show that F satisfies a quadratic equation. Solve this equation to find a formula for F . Finally,
use the generalized binomial theorem to expand F into a power series, to see that its coefficients are the
Catalan numbers.

To upgrade convergence in expectation to convergence in probability, we recall

Lemma 2.5 (Markov inequality). Let U be a positive random variable with a finite expectation. Then for
any δ > 0

P (U ≥ δ) ≤ 1

δ
E[U ].

Lemma 2.6 (Chebyshev inequality). Let V be a random variable with finite variance. Then for any δ > 0

P (|V − E[V ]| ≥ δ) ≤ 1

δ2
Var[V ].
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Proof of Theorem 2.1 for convergence in probability. Since

P

(∣∣∣∣ 1

N
Tr[Xk]−mk(σ)

∣∣∣∣ ≥ δ

)
≤ P

(∣∣∣∣ 1

N
Tr[Xk]− 1

N
E[Tr[Xk]]

∣∣∣∣ ≥ δ −
∣∣∣∣ 1

N
E[Tr[Xk]]−mk(σ)

∣∣∣∣) ,
we have just shown that

∣∣ 1
N
E[Tr[Xk]]−mk(σ)

∣∣ → 0 as N → ∞, and using Chebyshev’s inequality, it
suffices to show that

Var

[
1

N
Tr[Xk]

]
→ 0.

This is
1

N2
E
[
Tr[Xk] Tr[Xk]

]
− 1

N2
E[Tr[Xk]]E[Tr[Xk]].

We refine our analysis in the previous proof, noting for future reference the speed of decay of various
terms. Denoting

Y~u = Yu(1)u(2)Yu(2)u(3) . . . Yu(k)u(1),

Var

[
1

N
Tr[Xk]

]
=

1

N2+k

k∑
s,t=1

∑
~u,~v:|S~u|=s,|S~v |=t

(E[Y~uY~v]− E[Y~u]E[Y~v]) .

Again we have a multigraph with the vertex set S~u∪S~v, this time covered by a pair of paths which together
traverse each edge according to its multiplicity. So it has at most two connected components with vertex
sets S~u and S~v if these are disjoint, or one component if these intersect. By the same arguments as above,
we can conclude that

the terms with |S~u ∪ S~v| ≤ k go to zero at least as fast as 1
N2 with N → ∞, while the terms with

|S~u ∪ S~v| = 1 + k go to zero as 1
N

.

Thus assume |S~u ∪ S~v| ≥ 1 + k.

E[Y~u]E[Y~v] = 0 unless both |S~u| , |S~v| ≤ 1 + k/2 and the subgraphs restricted to S~u, S~v are trees with
double edges.

E[Y~uY~v] = 0 unless

• |S~u ∪ S~v| = 2 + k and the graph has two components, each of which is a tree with double edges;

• or |S~u ∪ S~v| = 1 + k, |S~u ∩ S~v| = 1, and the graph is a tree with double edges;

• or |S~u ∪ S~v| = 1 + k, |S~u ∩ S~v| = 0, and the graph has two components, one a tree with double
edges, the other with double edges and a single cycle;

• or |S~u ∪ S~v| = 1 + k, |S~u ∩ S~v| = 0, and the graph has two components, each of which is a tree
with double edges, and the total of two triple edges (note that these two edges have to lie in the
same sub-graph);

15



• or |S~u ∪ S~v| = 1 + k, |S~u ∩ S~v| = 0, and the graph has two components, each of which is a tree
with double edges, and a single quadruple edge.

In the case when |S~u ∪ S~v| = 2+k and the graph has two components, each of which is a tree with double
edges, it follows that S~u and S~v are disjoint of size 1 + k/2, and

E[Y~uY~v]− E[Y~u]E[Y~v] = 0.

Finally, suppose |S~u ∪ S~v| = 1 + k, and the graph is a tree with double edges. We have two non-empty
paths whose union traverses each edge exactly twice. Since the graph is a tree, each edge must be traversed
by each path either zero times or twice. So the paths are actually edge-disjoint, although they may contain
common vertices. Then independence again implies that

E[Y~uY~v]− E[Y~u]E[Y~v] = 0.

The same conclusion follows in the other sub-cases. We conclude that

Var

[
1

N
Tr[Xk]

]
=

1

N2+k

k∑
s,t=1

∑
~u,~v:|S~u|=s,|S~v |=t

(E[Y~uY~v]− E[Y~u]E[Y~v])→ 0

at least as fast as 1
N2 .

To upgrade convergence in probability to almost sure convergence, we recall

Lemma 2.7 (The Borel-Cantelli Lemma). Let {EN}∞N=1 be events (measurable subsets) such that

∞∑
N=1

P (EN) <∞.

Then P (ω : ω lies in infinitely many EN) = 0.

Corollary 2.8. Let {xN}∞N=1 be a sequence of random variables. If

∞∑
N=1

P (|xN − a| ≥ δ) <∞

for all δ > 0, then xN → a a.s. In particular, this conclusion follows from the stronger assumption that

∞∑
N=1

Var[xN ] <∞.
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Proof of Theorem 2.1 for almost sure convergence. We note that since the variances decay at least as fast
as 1

N2 ,
∞∑
N=1

Var

[
1

N
Tr[Xk

N ]

]
<∞.

Remark 2.9. One can use more complicated versions of the moment method to prove the Gaussian
fluctuations for moments, and convergence of the largest eigenvalue to 2.

Exercise 2.10. A complex Wigner matrix XN has the form XN = 1√
N
YN . Here YN is a complex Hermi-

tian random matrix, such that the random variables {Yij : 1 ≤ i ≤ j ≤ N} are independent,

Yij = Y ji, i < j

are identically distributed complex random variables with mean zero and variance

E
[
|Yij|2

]
= E

[
(<Yij)2 + (=Yij)2

]
= 1,

and Yii are identically distributed real random variables with mean zero and finite variance. Prove the
analog of Theorem 2.1 for these matrices. You do not need to repeat all the arguments from this section,
just indicate where and how they need to be modified.

What about the quaternionic Wigner matrices, defined similarly? How does non-commutativity of entries
affect the argument? Note that for independent but non-commuting variables x, y, E[xyx] = E[x2]E[y],
but in general e[xyxy] 6= E[x2]E[y2].

Sketch of a solution. The argument, at least for convergence in expectation, basically goes through until
the last step, when the moments are reduced to a sum of terms over trees with Eulerian circuits traversing
each edge exactly twice. For a general graph, it is possible for an edge to be traversed twice in the same
direction (which causes problems in the complex case), and the Y terms corresponding to the same edge
may not be adjacent (which causes problems in the quaternionic case). However for a tree, each edge
traversed twice has to be traversed in opposite directions, and the Y terms corresponding to the same
edge may always be taken to be adjacent by “pruning the leaves.” Instead of a proof, we illustrate these
statements with an example. Consider the term

E[Yu(1)u(2)Yu(2)u(3)Yu(3)u(2)Yu(2)u(4)Yu(4)u(5)Yu(5)u(4)Yu(4)u(6)Yu(6)u(4)Yu(4)u(2)Yu(2)u(1)]

corresponding to the path 1, 2, 3, 2, 4, 5, 4, 6, 4, 2, 1 (draw the corresponding tree!). Then using the very
weak form of independence called singleton independence, the term above is equal to

E[Yu(1)u(2)Yu(2)u(4)Yu(4)u(2)Yu(2)u(1)]E[Yu(2)u(3)Yu(3)u(2)]E[Yu(4)u(5)Yu(5)u(4)]E[Yu(4)u(6)Yu(6)u(4)]

= E[Yu(1)u(2)Yu(2)u(1)]E[Yu(2)u(3)Yu(3)u(2)]E[Yu(2)u(4)Yu(4)u(2)]E[Yu(4)u(5)Yu(5)u(4)]E[Yu(4)u(6)Yu(6)u(4)]

This argument in fact shows that, as long as they satisfy appropriate joint moment bounds and singleton
independence, the entries of the matrix Y can be taken from any non-commutative (operator) algebra, and
the corresponding moments of X will still converge in expectation to the Catalan numbers.
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Exercise 2.11. Let YN be an N × N matrix with independent identically distributed entries, with mean
zero, variance 1, and finite moments. Let XN = 1√

N
YN and ZN = XNX

T
N . Then ZN is a (generalized)

Wishart matrix. For each k, show that

E

[
1

N
Tr[Zk

N ]

]
→ ck

as N → ∞. Thus the moments of the asymptotic empirical spectral distribution of ZN are equal to the
even moments of the semicircular distribution. Use this to conclude that this asymptotic distribution is the
quarter-circle law

dµ(x) =

√
x(4− x)

2πx
1[0,4] dx.

More generally, in the construction above we may start with YN an K ×N matrix, and assume that both
K and N go to infinity in such a way that K/N → α ∈ (0, 1]. For each k, show that E[Zk

N ] converges as
N →∞, and express the answer in terms of the number of certain combinatorial objects. Hint: the answer
involves directed bi-partite graphs. In fact the “combinatorial objects” can be enumerated, showing that

E

[
1

N
Tr[Zk

N ]

]
→

k−1∑
j=0

αj+1

j + 1

(
k

j

)(
k − 1

j

)
.

Here the coefficients of αj are called the Narayana numbers. The distribution with these moments is the
Marchenko-Pastur distribution with parameter α,

dµ(x) =

√
(x− λ−)(λ+ − x)

2παx
1[λ−,λ+] dx,

where λ± = (1±
√
α)2.

2.2 Generalities about weak convergence.

Let C0(R) be the space of continuous functions going to zero at infinity, with the uniform norm. Riesz
Representation Theorem states that the dual Banach space C0(R)′ is isometrically isomorphic to the Ba-
nach space of finite (Radon, complex) measures, with the total variation norm. By definition, a sequence
of finite measures νN → ν in the weak∗ topology if for all f ∈ C0(R),∫

f dνN →
∫
f dν.

For this particular Banach space, this topology is also called the vague topology. According to the Banach-
Alaoglu theorem, the unit ball of the dual space is compact in the weak∗ topology. Since it is also
metrizable in this topology, this unit ball is also sequentially compact. Putting all these results together,
we get
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Proposition 2.12. Any sequence of probability measures has a subsequence which converges vaguely to
a finite measure.

The limit need not be a probability measure. However the weak limit of a sequence of probability mea-
sures is again a probability measure. To upgrade vague to weak convergence, we need the following
notion.

Definition 2.13. A family of measures {νN}∞N=1 is tight if ∀ε > 0 ∃C ∀N

νN(|x| ≥ C) ≤ ε.

Note that the set
{∫

x2 dνN
}∞
N=1

being bounded is a sufficient condition for tightness.

Exercise 2.14. Let {νN}∞N=1 be a sequence of probability measures. The following are equivalent.

a. The sequence is tight and converges vaguely.

b. The sequence converges vaguely to a probability measure.

c. The sequence converges weakly.

Corollary 2.15. Any tight sequence of probability measures has a subsequence converging weakly to a
probability measure.

Lemma 2.16. In a metric space, a sequence {xN}∞N=1 converges to a if and only any of its subsequences
has a further subsequence converging to a.

Lemma 2.17. Suppose g, h are continuous functions such that g ≥ 0 and limx→∞ |h(x)| /g(x) = 0.
Suppose νn → ν weakly and C = sup

{∫
g(x) dνN(x)

}∞
N=1

<∞. Then∫
h dνN →

∫
h dν.

Proof. Fix ε > 0, and choose I = [−K,K] so that |h(x)| /g(x) < ε on Ic. Let J = [−K − 1, K + 1],
and let ϕ be a continuous function such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on I , and ϕ ≡ 0 on J c. Then∫

hϕ dνN →
∫
hϕ dν

while ∫
|h| (1− ϕ) dνN =

∫
|h|
g
g(1− ϕ) dνN ≤ ε

∫
g dνN ≤ εC

and by Fatou’s lemma also ∫
|h| (1− ϕ) dν ≤ εC.

The result follows.
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Corollary 2.18. If for all k,
∫
xk dνN →

∫
xk dν and ν is uniquely determined by its moments, then

νN → ν weakly.

Proof. Any subsequence of {νN}∞N=1 has a further subsequence converging weakly to a probability mea-
sure. Call the limit ν̃. It suffices to show that ν̃ = ν. Indeed, since the sequence

{∫
xk dνN

}∞
N=1

converges, it is bounded; and ∫
|x|k+1 dνN ≤

√∫
x2 dνN

∫
x2k dνN .

Taking g(x) = |x|k+1 and h(x) = xk in the preceding lemma, we conclude that
∫
xk dνN →

∫
xk dν̃ and

so
∫
xk dν̃ =

∫
xk dν. Since ν is uniquely determined by its moments, the measures are equal.

Lemma 2.19. A compactly supported measure is uniquely determined by its moments.

The idea of the proof is that for a compactly supported µ, its Fourier transform (characteristic function)
F(θ) =

∫
eixθ dθ is an analytic function with the power series expansion

F(θ) =
∞∑
n=0

inmn(µ)

n!
θn,

and that any µ is uniquely determined by its Fourier transform. Alternatively, we could use Stieltjes
transforms as in Remark 4.3.

Theorem 2.20. Let X be a Wigner matrix with finite moments as in Theorem 2.1. Then

µ̂XN
→ σ

weakly almost surely.

Proof. Fix ω such that for all k, ∫
xk dµ̂XN (ω) →

∫
xk dσ.

We know that the set of ω where this is false has measure zero. Since σ is compactly supported, for such
ω, µ̂XN (ω) → σ weakly.

2.3 Removing the moment assumptions.

Theorem 2.21. Let X be a Wigner matrix. That is, for each N , {Xij : 1 ≤ i ≤ j ≤ N} are independent,

Xij = Xji ∼
1√
N
Yij, Yij ∼ ν1,
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Xii ∼
1√
N
Yii, Yii ∼ ν2,

E[Yij] = 0, Var ν1 = 1, and Var ν2 <∞. Then

µ̂XN
→ σ

weakly in probability.

The result is obtained by combining the lemmas below. For the proofs we will follow very closely the
presentation in Section 5 of Todd Kemp’s notes, and so omit them here.

Lemma 2.22. In the notation from the preceding theorem, define for a (large) constant C > 0

Ỹij =
1

σij(C)
(Yij1|Yij |≤C − E[Yij1|Yij |≤C ]),

where σij(C)2 = Var(Yij1|Yij |≤C) for i 6= j, and σii(C) = 1 (see Remark 2.29 for an alternative). Then
Yij − Ỹij → 0 in L2 as C →∞.

Definition 2.23. A function f : Rn → R is Lipschitz if

‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
‖x− y‖

+ sup
x
|f(x)| <∞.

The space of Lipschitz functions is denoted by Lip(Rn). We only put in the second term to have
Lip(Rn) ⊂ Cb(Rn).

Lemma 2.24. If
∫
f dµn −

∫
f dνn → 0 for all f ∈ Lip(R), then

∫
f dµn −

∫
f dνn → 0 for all

f ∈ Cb(R).

Lemma 2.25. Let A and B be N × N complex Hermitian (or in particular, real symmetric) matrices.
Denote by λA1 ≤ . . . ≤ λAN and λB1 ≤ . . . ≤ λBN their eigenvalues, and by µ̂A and µ̂B their empirical
spectral measures. Then for any f ∈ Lip(R),∣∣∣∣∫ f dµ̂A −

∫
f dµ̂B

∣∣∣∣ ≤ ‖f‖Lip

(
1

N

N∑
i=1

(λAi − λBi )2

)1/2

.

Lemma 2.26 (Hoffman-Wielandt inequality). For A,B as in the preceding lemma,

N∑
i=1

(λAi − λBi )2 ≤ Tr[(A−B)2].

We will follow Todd Kemp’s notes for the proof, but also outline the proof of the Birkhoff-von Neumann
theorem.
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Theorem 2.27 (Birkhoff-von Neumann). Let D be the space of N × N doubly stochastic matrices. The
extreme points of D are the permutation matrices.

Proof. It is easy to check thatD is convex. Let A not be a permutation matrix. We will show that A is not
an extreme point, that is, it is a convex combination of two matrices in D.

Since A is not a permutation matrix, it has an entry Au(1)u(2) with 0 < Au(1)v(1) < 1. Since columns add
up to 1, there is another entry Au(2)v(1) in the same column with the same property. Since rows add up to
1, there is another entry Au(2)v(2) in the same row with the same property. Continue in this fashion until
we arrive in a row or column previously encountered. By possibly removing the beginning of this path,
we arrive at the family of entries

S =
{
Au(1)v(1), Au(2)v(1), Au(2)v(2), . . . , Au(k)v(k), Au(1)v(k)

}
all of which are strictly between 0 and 1. Note that there is necessarily an even number of them. Let
ε = min {a, 1− a : a ∈ S}. Let B be the matrix whose entries are ε for even numbered elements of S,
−ε for odd numbered elements of S, and 0 otherwise. Then A+B and A−B are both doubly stochastic,
and A = 1

2
(A+B) + 1

2
(A−B).

Exercise 2.28. Let x1 ≤ x2 ≤ . . . ≤ xN and y1 ≤ y2 ≤ . . . yN . Then for any permutation α,∑
xiyα(i) ≤

∑
xiyi.

Proof of Theorem 2.21. Fix f ∈ Lip(R) and ε, δ > 0. By Lemma 2.24, it suffices to show that

P

(∣∣∣∣∫ f dµ̂XN
−
∫
f dσ

∣∣∣∣ ≥ δ

)
≤ ε

for sufficiently large N . For Ỹ as in Lemma 2.22, denote X̃ = 1√
N
Ỹ . Then the entries of X̃ satisfy the

assumptions of Theorem 2.20, and so

P

(∣∣∣∣∫ f dµ̂X̃N
−
∫
f dσ

∣∣∣∣ ≥ δ/2

)
≤ ε/2 (2.1)

for sufficiently large N . On the other hand, combining Lemma 2.25 with the Hoffman-Wielandt inequal-
ity, ∣∣∣∣∫ f dµ̂XN

−
∫
f dµ̂X̃N

∣∣∣∣ ≤ ‖f‖Lip

(
Tr

[
1

N
(XN − X̃N)2

])1/2

.
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Therefore

P

(∣∣∣∣∫ f dµ̂XN
−
∫
f dµ̂X̃N

∣∣∣∣ ≥ δ/2

)
≤ P

(
‖f‖Lip

(
Tr

[
1

N
(XN − X̃N)2

])1/2

≥ δ/2

)

≤
4‖f‖2

Lip

δ2
E

[
Tr

[
1

N
(XN − X̃N)2

]]
=

4‖f‖2
Lip

δ2

1

N2
E
[
Tr
[
(YN − ỸN)2

]]
=

4‖f‖2
Lip

δ2

1

N2
E

[
N∑

i,j=1

(Yij − Ỹij)2

]

=
4‖f‖2

Lip

δ2

1

N2

(
N(N − 1)E[(Y12 − Ỹ12)2] +NE[(Y11 − Ỹ11)2]

)
≤

4‖f‖2
Lip

δ2

(
E[(Y12 − Ỹ12)2] + E[(Y11 − Ỹ11)2]

)
≤ ε/2,

where by Lemma 2.22 the last quantity can be made arbitrarily small by choosing a sufficiently large C.
The result follows by combining with the inequality (2.1).

Remark 2.29. In our cutoff, we could also have taken Ỹii = 0, and the argument would still work.
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Chapter 3

Concentration of measure techniques.

Concentration inequalities are estimates on quantities of the form

F (x1, . . . , xn)− E[F (x1, . . . , xn)],

for (almost) independent and (almost) identically distributed random variables xi with distributions drawn
from some class, and sufficiently nice functions F . Typically, this means that F ∈ Lip(Rn). Our main
interest is in the random variables being entries of a random matrix. The lemma following the remark
contains natural examples of Lipschitz functions of such entries.

Remark 3.1 (Norms). The Frobenius norm of a real matrix A is

‖A‖F =
√

Tr[AAT ] =

√√√√ N∑
i,j=1

a2
ij.

For a symmetric matrix we may re-write this as

‖A‖F =

√
2
∑
i<j

a2
ij +

∑
i

a2
ii.

On the other hand, in the arguments below we will need to identifyAwith a vector in N(N+1)
2

-dimensional
space, with norm

‖A‖ =

√∑
i<j

a2
ij +

∑
i

a2
ii

Clearly ‖A‖F ≤
√

2 ‖A‖. We will also occasionally use the operator norm, defined as

‖A‖op = sup
‖v‖6=0

‖Av‖
‖v‖

= sup
‖u‖,‖v‖6=0

|〈Av, u〉|
‖u‖ ‖v‖

.
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Exercise 3.2. Prove that for any matrix (symmetric or not) ‖A‖op ≤ ‖A‖F . Clearly this implies that the
map A 7→ ‖A‖op is Lipschitz.

Lemma 3.3. Let X be a symmetric N ×N matrix.

a. For each k, the map X 7→ λk(X) is Lipschitz of norm at most
√

2.

b. Let f ∈ Lip(R). Extend f to a map on symmetric matrices by

fTr(X) =
N∑
i=1

f(λi(X)) = Tr[f(X)].

Then fTr is Lipschitz and ‖fTr‖Lip ≤
√

2N‖f‖Lip.

Proof. For part (a),

|λk(A)− λk(B)| ≤

√√√√ N∑
i=1

|λi(A)− λi(B)|2 ≤ ‖A−B‖F ≤
√

2 ‖A−B‖ .

Similarly, for part (b),

|fTr(A)− fTr(B)| =

∣∣∣∣∣
N∑
i=1

f(λi(A))− f(λi(B))

∣∣∣∣∣
≤

N∑
i=1

|f(λi(A))− f(λi(B))|

≤ ‖f‖Lip

N∑
i=1

|λi(A)− λi(B)|

≤ ‖f‖Lip

√
N

√√√√ N∑
i=1

|λi(A)− λi(B)|2

≤ ‖f‖Lip

√
N ‖A−B‖F

≤ ‖f‖Lip

√
2N ‖A−B‖ .

3.1 Gaussian concentration.

Theorem 3.4. Let X = (X1, . . . , Xn) be i.i.d. N (0, σ2) random variables, and F ∈ Lip(Rn). Then for
all λ ∈ R,

E exp (λ(F (X)− E[F (X)])) ≤ exp
(
π2λ2σ2‖F‖2

Lip/8
)
.
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Therefore for all δ > 0,

P (|F (X)− E[F (X)]| ≥ δ) ≤ 2 exp
(
−2δ2/π2σ2‖F‖2

Lip

)
.

We follow the “duplication argument” of Maurey and Pisier as presented in Theorem 2.1.12 of Terry Tao’s
book. For a more conceptual approach using the Ornstein-Uhlenbeck semigroup, see Section 10 in Todd
Kemp’s notes. First we note two basic properties of the multivariate normal distribution.

Exercise 3.5. Let X = (X1, . . . , Xn) be a vector of independent normal random variables, with Xi ∼
N (µi, σ

2
i ).

a.
c ·X = c1X1 + . . .+ cnXn

is also Gaussian, with mean
∑n

i=1 ciµi and variance
∑n

i=1 |ci|
2 σ2

i .

b. Assume in addition that all Xi’s are i.i.d. normal with Xi ∼ N (0, σ2). Let U be an orthogonal
matrix. Then

UX =

(
N∑
j=1

UijXj

)n

i=1

has the same distribution as X , so that its components are independent standard normals. Hint:
recall that for jointly normal variables, uncorrelated implies independent.

Remark 3.6. We briefly recall the notion of conditional expectation. Instead of giving the definition, we
only list two key properties. First, for random variables Y and Z,

E[E[Z|Y ]] = E[Z].

Second, if f, g are functions and X, Y are independent random variables,

E[f(X)g(Y )|Y ] = E[f(X)]g(Y ).

Proof of the theorem. Step I. We first show how the second part of the theorem follows from the first. By
Markov inequality,

P (|F (X)− E[F (X)]| ≥ δ) = P
(
exp(λ |F (X)− E[F (X)]|) ≥ eλδ

)
≤ e−λδE[exp(λ |F (X)− E[F (X)]|)] ≤ 2e−λδ exp

(
π2λ2σ2‖F‖2

Lip/8
)

where we use e|x| ≤ ex + e−x and apply the first part of the theorem to both F and −F . By taking

λ =
4δ

π2σ2‖F‖2
Lip

,
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we get the result.

Step II. We assume for now that F is smooth. By definition of the gradient and of the Lipschitz norm, for
a vector u,

|∇F (x) · u| = lim
h→0

∣∣∣∣F (x+ hu)− F (x)

h

∣∣∣∣ ≤ ‖F‖Lip ‖u‖ .

Taking u = ∇F (x), we conclude that ‖∇F (x)‖ ≤ ‖F‖Lip for all x.

By subtracting a constant from F (which does not change its gradient), we may assume thatE[F (X)] = 0.

Step III. (Duplication trick) Let Y be an independent copy of X . Since E[F (Y )] = 0, we see from
Jensen’s inequality that

E[exp(−λF (Y ))] ≥ exp(−λE[F (Y )]) = 1

and thus (by independence of X and Y )

E[exp(λF (X))] ≤ E[exp(λF (X))]E[exp(−λF (Y ))] = E[exp(λ(F (X)− F (Y )))].

It thus suffices to estimate E[exp(λ(F (X)− F (Y )))], which is natural for Lipschitz F .

We first use the fundamental theorem of calculus along a circular arc to write

F (X)− F (Y ) =

∫ π/2

0

d

dθ
F (Y cos θ +X sin θ) dθ.

Note that Xθ = Y cos θ + X sin θ is another gaussian random variable equivalent to X , as is its deriva-
tive X ′θ = −Y sin θ + X cos θ; furthermore, and crucially, these two random variables are independent.
Applying Jensen’s inequality for the probability density 2

π
1[0,π/2], we get

exp(λ(F (X)− F (Y ))) = exp

(
λ

2

π

∫ π/2

0

π

2

d

dθ
F (Xθ) dθ

)
≤ 2

π

∫ π/2

0

exp

(
λ
π

2

d

dθ
F (Xθ)

)
dθ.

Applying the chain rule and taking expectations, we have

E[exp(λ(F (X)− F (Y )))] ≤ 2

π

∫ π/2

0

E

[
exp

(
λπ

2
∇F (Xθ) ·X ′θ

)]
dθ.

Let us first condition Xθ to be fixed. Recalling that X ′θ is equidistributed with X , we conclude that
λπ
2
∇F (Xθ) ·X ′θ is normally distributed with standard deviation at most

λπ

2

√√√√ N∑
i=1

(∇F (Xθ))2
iσ

2 ≤ π

2
λσ‖F‖Lip.

Therefore its moment generating function

E

[
exp

(
λπ

2
∇F (Xθ) ·X ′θ

)∣∣∣∣Xθ

]
≤ exp

(
π2λ2σ2‖F‖2

Lip/8
)
.
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Taking now the expectation with respect to Xθ, the result follows.

Step IV. To approximate a general Lipschitz function F by smooth functions, we follow the argument
of Todd Kemp in the proof of his Theorem 11.1. Let {ψε : ε > 0} be a smooth compactly supported
approximate identity on Rn. That is, ψ ∈ C∞c (Rn) is a non-negative function with support in the unit ball
B1 and total integral 1, and ψε(x) = ε−nψ(x/ε). Then ψε is also non-negative, has total integral 1, and is
supported in Bε. Let

Fε(x) = (F ∗ ψε)(x) =

∫
Rn

F (x− y)ψε(y) dy.

Then Fε is smooth, and so the theorem has been proven for it. Also,

|F (x)− Fε(x)| =
∣∣∣∣∫ F (x)ψε(y) dy −

∫
F (x− y)ψε(y) dy

∣∣∣∣
≤
∫
|F (x)− F (x− y)|ψε(y) dy

≤ ‖F‖Lip

∫
|y|ψε(y) dy ≤ ε‖F‖Lip

since Fε is supported in Bε. Thus Fε → F uniformly as ε → 0. Then E[Fε(X)] → E[F (X)] and
E exp (λ(Fε(X)− E[Fε(X)])) → E exp (λ(F (X)− E[F (X)])) as ε → 0 by the bounded convergence
theorem (since the distribution of X is a probability measure). Finally, by similar reasoning

|Fε(x)− Fε(y)| =
∣∣∣∣∫ F (x− z)ψε(z) dz −

∫
F (y − z)ψε(z) dz

∣∣∣∣
≤
∫
|F (x− z)− F (y − z)|ψε(z) dz

≤ ‖F‖Lip

∫
|x− y|ψε(z) dy = ‖F‖Lip ‖x− y‖

and so ‖Fε‖Lip ≤ ‖F‖Lip. Therefore

E exp (λ(F (X)− E[F (X)])) = lim
ε↓0

E exp (λ(Fε(X)− E[Fε(X)]))

≤ lim
ε↓0

exp
(
π2λ2σ2‖Fε‖2

Lip/8
)

≤ exp
(
π2λ2σ2‖F‖2

Lip/8
)
.

Exercise 3.7. Let Z = (Z1, . . . , Zn) be i.i.d. N (0, 1) random variables. Let Σ be a positive definite
matrix, and define X = Σ1/2Z. Then X is a jointly normal vector with mean zero and covariance matrix
Σ. Let F ∈ Lip(Rn). Then for all λ ∈ R,

E exp (λ(F (X)− E[F (X)])) ≤ exp
(
π2λ2 ‖Σ‖op ‖F‖

2
Lip/8

)
,
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and so for all δ > 0,

P (|F (X)− E[F (X)]| ≥ δ) ≤ 2 exp
(
−2δ2/π2 ‖Σ‖op ‖F‖

2
Lip

)
.

In particular if Σij = δijσi,

P (|F (X)− E[F (X)]| ≥ δ) ≤ 2 exp
(
−2δ2/π2 max

i
(σ2

i )‖F‖
2
Lip

)
.

3.2 Concentration results for GOE.

Now let XN be a GOE matrix, f ∈ Lip(R), and F = fTr. Note that

F (XN) = N

∫
f dµ̂XN

and for each matrix entry, the variance is at most 2
N

. Then

P

(∣∣∣∣∫ f dµ̂XN
− E

[∫
f dµ̂XN

]∣∣∣∣ ≥ δ

)
= P (|F (XN)− E[F (XN)]| ≥ Nδ)

≤ 2 exp
(
−N22δ2/π2σ2‖F‖2

Lip

)
≤ 2 exp

(
−Nδ2/π2σ2‖f‖2

Lip

)
≤ 2 exp

(
−N2δ2/2π2‖f‖2

Lip

)
.

Similarly,

P (|λk(XN)− E[λk(XN)]| ≥ δ) ≤ 2 exp
(
−δ2/π2σ2

)
= 2 exp

(
−Nδ2/2π2

)
Thus linear statistics concentrate at the rate of δ ∼ 1

N
(which is consistent with our moment method

results) while the eigenvalues appear to concentrate only at the rate of δ ∼ 1√
N

.

Since the operator norm ‖A‖op is less than the Frobenius norm, it also has Lipschitz constant at most
√

2,
and

P
(∣∣∣‖XN‖op − E[‖XN‖op]

∣∣∣ ≥ δ
)
≤ 2 exp

(
−Nδ2/2π2

)
.

This last inequality holds also for non-symmetric Gaussian matrices.

3.3 Other concentration inequalities.

The arguments in the preceding section only worked for Gaussian entries. Here are some alternative
conditions on the matrix entries leading to roughly the same conclusions.
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Definition 3.8. Let µ be a probability measure on Rn. The µ-entropy of a function f is

Entµ(f) =

∫
f log f dµ−

∫
f dµ · log

∫
f dµ.

µ satisfies the logarithmic Sobolev inequality with constant c if, for any continuously differentiable func-
tion f : Rn → R,

Entµ(f 2) ≤ 2c

∫
‖∇f‖2 dµ.

Gaussian measure satisfies LSI, as does any density of the form 1
Z
e−V for sufficiently smooth potential V

(see below), as does the joint distribution of independent random variables each satisfying the LSI.

Lemma 3.9 (Herbst). Suppose the joint distribution of random variables µX satisfies LSI on Rn with
constant c. For F ∈ Lip(Rn),

P (|F (X)− E[F (X)]| ≥ δ) ≤ 2 exp(−δ2/2c‖F‖2
Lip).

Proof. As in the proof of Theorem 3.4, we may assume that E[F (X)] = 0, F is smooth, and it suffices
to show that for all λ,

E exp (λF (X)) ≤ exp
(
cλ2‖F‖2

Lip/2
)
.

Let f(X) = eλF (X)/2, f 2(X) = eλF (X) and ϕ(λ) = E[eλF (X)]. Then

Entµ(f 2) =

∫
eλF (X)λF (X) dµ−

∫
eλF (X) dµ · log

∫
eλF (X) dµ = λϕ′(λ)− ϕ(λ) logϕ(λ)

while

2c

∫
‖∇f‖2 dµ = 2c

∫
eλF (X)λ

2

4
‖∇F‖2 (X) dµ ≤ cλ2

2
‖F‖2

Lip

∫
eλF (X) dµ =

cλ2

2
ϕ(λ)‖F‖2

Lip.

Applying the LSI and dividing both sides by λ2ϕ(λ), we get

ϕ′(λ)

λϕ(λ)
− logϕ(λ)

λ2
≤ c

2
‖F‖2

Lip.

Note that for λ > 0, the left-hand side is precisely d
dλ

logϕ(λ)
λ

. Thus

d

dλ

logϕ(λ)

λ
≤ c

2
‖F‖2

Lip.

Moreover

lim
λ→0

logϕ(λ)

λ
= lim

λ→0

logϕ(λ)− logϕ(0)

λ
=
ϕ′(0)

ϕ(0)
= E[F (X)] = 0.
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Therefore
1

λ0

logϕ(λ0)− 0 =

∫ λ0

0

(
d

dλ

logϕ(λ)

λ

)
dλ ≤

cλ0‖F‖2
Lip

2

and so

ϕ(λ) ≤ exp

(
cλ2‖F‖2

Lip

2

)
,

which is the desired result.

Proposition 3.10 (Corollary of the Bakry-Emery criterion). Let Φ : Rn → R be at least twice continu-
ously differentiable growing sufficiently fast so that the probability measure

µΦ(dx) =
1

Z
exp(−Φ(x1, . . . , xn)) dx1 . . . dxn

is well defined. Write Hess(Φ)ij = ∂i∂jΦ. If for all x,

Hess(Φ)(x) ≥ 1

c
I

as matrices, then µΦ satisfies the LSI with constant c.

Corollary 3.11. Suppose X is

either a Wigner matrix with un-normalized entries satisfying the LSI with constant c

or is drawn from an orthogonally invariant ensemble 1
ZN
e−N Tr[V (X)] dX with V ′′(x) ≥ 1

c
> 0. Then

for any Lipschitz f ,

P

(∣∣∣∣∫ f dµ̂N − E
[∫

f dµ̂N

]∣∣∣∣ ≥ δ

)
≤ 2 exp

(
−N2δ2/4c‖f‖2

Lip

)
and for any k,

P (|λk(XN)− E [λk(XN)]| ≥ δ) ≤ 2 exp
(
−Nδ2/4c

)
The corollary applies for example to V (x) = |x|a, a ≥ 2, but not for a < 2. For 1 ≤ a < 2, we may still
get a weaker form of concentration using the following ideas.

Definition 3.12. Let µ be a probability measure on Rn. The µ-variance of a function f is

Varµ[f ] =

∫ (
f −

∫
f dµ

)2

dµ

µ satisfies the Poincaré inequality with constant m if, for any continuously differentiable f : Rn → R,

Varµ[f ] ≤ 1

m

∫
‖∇f‖2 dµ.
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Exercise 3.13. If µ satisfies the logarithmic Sobolev inequality with constant c, show that it satisfies the
Poincaré inequality with an appropriate constant. Hint: apply LSI to f = 1 + εg.

Proposition 3.14. Suppose the joint distribution of random variables µX satisfies the PI with constant m
on Rn. For F ∈ Lip(Rn),

P (|F (X)− E[F (X)]| ≥ δ) ≤ 2K exp
(
−
√
mδ/
√

2‖F‖Lip

)
,

where K is determined by m.

Proof. We may again assume that F is smooth, and it suffices to show that for sufficiently small |λ|,

E [exp (λ(F (X)− E[F (X)]))] ≤ K.

Apply the PI to f(X) = eλF (X)/2. We get

E[eλF (X)]− E[eλF (X)/2]2 ≤ 1

4m
λ2‖F‖2

LipE[eλF (X)],

so that

E[eλF (X)] ≤
(

1− 1

4m
λ2‖F‖2

Lip

)−1

E[eλF (X)/2]2

for sufficiently small |λ|. That is,

logE[eλF (X)] ≤ − log

(
1− 1

4m
λ2‖F‖2

Lip

)
+ 2E[eλF (X)/2].

Iterating,

logE[eλF (X)] ≤ −
n∑
j=1

2j−1 log

(
1− 1

4jm
λ2‖F‖2

Lip

)
+ 2nE[eλF (X)/2n ]

Since limn→∞ 2nE[eλF (X)/2n ] = E[F (X)], it follows that

logE[eλ(F (X)−E[F (X)])] ≤ −
∞∑
j=1

2j−1 log

(
1− 1

4jm
λ2‖F‖2

Lip

)
Since the right-hand side is an increasing function of λ, by taking λ =

√
m/‖F‖2

Lip we get an upper
estimate

logE[eλ(F (X)−E[F (X)])] ≤ −
∞∑
j=1

2j−1 log

(
1− 1

4j

)
= logK <∞

since −
∑∞

j=1 2j−1 log
(
1− 1

4j

)
∼
∑∞

j=1 2j−1 1
4j

.

For Wigner matrices, having un-normalized entries satisfying the PI with a uniform constant leads to
concentration of the empirical spectral distribution at the rate e−NC .
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Proposition 3.15 (Talagrand). Let the i.i.d. random variables be bounded, with |Xi| ≤ K/2. Suppose
that F is a convex Lipschitz function. Then

P (|F (X)−MF (X)| ≥ δ) ≤ 4 exp
(
−δ2/16K2‖F‖2

Lip

)
,

where MF (X) is the median of F (X).

Remark 3.16. Note that in this case,

|E[F (X)]−MF (X)| ≤ E[|F (X)−MF (X)|]

=

∫ ∞
0

P (|F (X)−MF (X)| > t) dt

≤
∫ ∞

0

4 exp
(
−t2/16K2‖F‖2

Lip

)
= 8
√
πK‖F‖Lip,

which is small if K‖F‖Lip is. It follows that

P (|F (X)− E[F (X)]| ≥ Nδ) ≤ P (|F (X)−MF (X)|+ |E[F (X)]−MF (X)| ≥ Nδ)

≤ P (|F (X)−MF (X)| ≥ Nδ − 8
√
πK‖F‖Lip)

≤ 4 exp
(
−(Nδ − 8

√
πK‖F‖Lip)2/16K2‖F‖2

Lip

)
= 4e−4πeNδ

√
π/K‖F‖Lip exp

(
−N2δ2/16K2‖F‖2

Lip

)
.

For a Wigner matrix with bounded entries and a convex F = fTr, K ∼ 1√
N

and F ∼
√
N , so we have

Gaussian concentration with N .

Obviously (any) matrix norm is a convex function of the matrix.

Exercise 3.17. Let A be a symmetric matrix, with the largest eigenvalue λN(A).

a. Prove that λN(A) = sup {〈Av, v〉 : ‖v‖ = 1}.

b. Prove that λN is a convex function of A.

c. Prove that the smallest eigenvalue λ1 is a concave function of A. Hint: use −A.

Proposition 3.18 (Klein’s Lemma). If f is a convex function, then so is fTr.

Proof. By approximation, we may assume that f is twice differentiable and f ′′ ≥ c > 0. Then

Rf (x, y) = f(x)− f(y)− (x− y)f ′(y) ≥ c

2
(x− y)2.
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Let X have eigenvalues {λj(X)} with unit eigenvectors {ξi(X)}, and similarly for Y . Denote cij =
|〈ξi(X), ξj(Y )〉|2. Then

〈ξi(X), Rf (X, Y )ξi(X)〉 = 〈ξi(X), f(X)− f(Y )− (X − Y )f ′(Y )〉 ξi(X)

= f(λi(X)) +
∑
j

(−cijf(λj(Y ))− cijλi(X)f ′(λj(Y )) + cijλj(Y )f ′(λj(Y )))

=
∑
j

cij (f(λi(X))− f(λj(Y ))− λi(X)f ′(λj(Y )) + λj(Y )f ′(λj(Y )))

=
∑
j

cijRf (λi(X), λj(Y )) ≥ c

2

∑
j

cij(λi(X)− λj(Y ))2,

where we used
∑

j cij = 1. Now summing over i, we obtain

Tr[f(X)− f(Y )− (X − Y )f ′(Y )] ≥ c

2

∑
i,j

cij(λi(X)− λj(Y ))2

Applying this argument to f(x) = x2 with Rx2(x, y) = (x− y)2, we see that∑
i,j

cij(λi(X)− λj(Y ))2 = Tr[(X − Y )2].

Thus finally,
Tr[f(X)− f(Y )− (X − Y )f ′(Y )] ≥ c

2
Tr[(X − Y )2] ≥ 0.

For (X, Y ) = (A, 1
2
(A+B)) this gives

Tr

[
f(A)− f

(
1

2
(A+B)

)
− 1

2
(A−B)f ′

(
1

2
(A+B)

)]
≥ 0

while for (X, Y ) = (B, 1
2
(A+B)) this gives

Tr

[
f(B)− f

(
1

2
(A+B)

)
− 1

2
(B − A)f ′

(
1

2
(A+B)

)]
≥ 0.

Adding these inequalities, we obtain

Tr

[
f(A) + f(B)− 2f

(
1

2
(A+B)

)]
≥ 0

and so
1

2
fTr(A) +

1

2
fTr(B) ≥ fTr

(
1

2
A+

1

2
B

)
.

By cutoff arguments as in Section 2.3 we can thus obtain concentration results (for convex f ) for quite
general Wigner-type matrices.
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Chapter 4

The Stieltjes transform methods.

Stieltjes transform methods in random matrix theory were introduced by Leonid Pastur and collaborators
(1967–) in their study of Wishart matrices. They have been developed by many contributors, and are used
throughout the theory, in the study of many other classes, such as band matrices and spiked models.

4.1 General properties.

The transform method, using Fourier transforms or moment generating functions, is a standard technique
in probability theory. The transform most appropriate for random matrix theory is the Stieltjes transform.

Complex-analytic properties.

For a probability measure µ on R, its Stieltjes transform is the function

Sµ(z) =

∫
R

1

x− z
dµ(x).

Sometimes it is called the Cauchy or the Borel transform, or is defined as
∫
R

1
z−x dµ(x). Note that for any

z ∈ C \ R, ∣∣∣∣ 1

x− z

∣∣∣∣ ≤ 1

|=z|
.

So the function x 7→ 1
x−z is bounded, and Sµ(z) is well defined on this set (in fact it can also be extended

to R \ supp(µ)). It is also clear that Sµ(z) = Sµ(z). Moreover, we may differentiate under the integral to
obtain S ′µ(z) =

∫
R

1
(x−z)2 dµ(x), so Sµ is analytic on C \ R. For later use, we record that for any z ∈ C+,∥∥∥∥x 7→ 1

z − x

∥∥∥∥
Lip

≤ 1

(=z)2
. (4.1)
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Next, we note that

|iySµ(iy) + 1| =
∣∣∣∣∫

R

iy

x− iy
dµ(x) + 1

∣∣∣∣ ≤ ∫
R

|x|√
x2 + y2

dµ(x)→ 0

as y →∞ by Dominated Convergence. Thus

lim
y→∞

iySµ(iy) = −1. (4.2)

Finally, we compute

Sµ(x+ iy) =

∫
R

1

t− x− iy
dµ(t) =

∫
R

t− x
(x− t)2 + y2

dµ(t) + i

∫
R

y

(x− t)2 + y2
dµ(t).

In particular, we note that Sµ maps C+ to itself. Moreover for ε > 0, denote

Py(x) =
1

π

y

x2 + y2
.

Then =Sµ(x + iy) = π(µ ∗ Py)(x). The family {Py : y > 0} is called the Poisson kernel for C+. Note
that Py(x) dx = P1(x/y) d(x/y).

Theorem 4.1 (Stieltjes). Any analytic function S : C+ → C+ satisfying equation (4.2) is a Stieltjes
transform of some probability measure.

We will not prove this theorem, but the measure corresponding to S is identified through the

Lemma 4.2 (Stieltjes Inversion Formula). For any probability measure µ, the measures

µy(dx) =
1

π
=Sµ(x+ iy) dx

converge weakly to µ as y ↓ 0.

Proof. The Poisson kernel is an approximate identity: Py ≥ 0,
∫
R Py(x) dx = 1, and for any ε, δ > 0,

for sufficiently small y,
∫
|x|>δ Py(x) dx < ε. Then by general theory (cf. the proof of Theorem 3.4;

recall details?) µ ∗ Py → µ vaguely. Since µ is a probability measure, we automatically get weak
convergence.

Remark 4.3. Suppose µ is compactly supported in [−a, a]. Then it is easy to see that zSµ(z) → −1 as
z →∞ and not just along the imaginary axis. Moreover the moments |mk(µ)| ≤ ak, and so by the series
version of the Dominated Convergence Theorem

−
∞∑
k=0

mk(µ)

zk+1
= −

∞∑
k=0

∫
xk

zk+1
dµ(x) = −

∫ ∞∑
k=0

xk

zk+1
dµ(x) =

∫
1

x− z
dµ(x) = Sµ(z).

So Sµ(z) is an (ordinary) generating function for moments of µ.
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Proposition 4.4. A sequence of probability measures µN → µ converges weakly to a probability measure
if and only if SµN (z) → Sµ(z) pointwise for every z ∈ C+. It suffices to require convergence on a set
which has an accumulation point.

Proof. Since for every z ∈ C+, the function x 7→ 1
x−z is in C0(R), one direction is clear. Now letA ⊂ C+

be a set with an accumulation point. Suppose SµN (z)→ Sµ(z) for all z ∈ A. Choose a subsequence such
that µNk

→ ν vaguely for some measure ν. Then by the other direction of the argument, Sν(z) = Sµ(z)
for all z ∈ A. By analytic continuation, it follows that Sµ = Sν on C+, and so ν = µ (and in particular it
is a probability measure). Since this is true for any convergent subsequence, the result follows.

The Stieltjes transform of the empirical distribution of a matrix.

For a symmetric or Hermitian N ×N matrix A,

Sµ̂A(z) =

∫
R

1

x− z
dµ̂A(x) =

1

N

N∑
i=1

1

λi(A)− z
=

1

N
Tr
[
(A− zI)−1

]
.

Here the operator (A− zI)−1 is the resolvent of A.

4.2 Convergence of Stieltjes transforms for random matrices.

In this section, we will give another proof of weak convergence of empirical spectral distributions for
general Wigner matrices under a slightly stronger assumption. One approach involves concentration in-
equalities. For example, we could assume that the matrix entries satisfy LSI, and then apply Herbst’s
method; or we could apply the cutoff procedure from Lemma 2.22 to suppose that the matrix entries
are uniformly bounded, and apply Talagrand’s inequality. We instead choose to avoid any sophisticated
concentration techniques by assuming the finiteness of the fourth moments.

Theorem 4.5. Let XN = 1√
N
YN be Wigner matrices as in Theorem 2.21. Thus YN is symmetric and

otherwise has independent entries, {Yij : i < j} are identically distributed with mean zero and variance
1, and {Yii} are identically distributed with mean zero and variance at most m2 ≥ 1. We will additionally
assume that the fourth moment E[Y 4

ij ] = m4 <∞. Then

µ̂XN
→ σ

weakly almost surely.

The rest of the section constitutes the proof of this theorem.
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Let Y (k)
N be YN with the k’th row and column removed, and uk be its k’th column with its k’t entry

removed. So for example

YN =

(
(YN)11 uT1
u1 Y

(1)
N

)
.

Also, let Ỹ (1)
N be the N ×N matrix obtained by adjoining to Y (1)

N a zero row and column. This matrix has
the same eigenvalues as Y (1)

N plus an extra zero eigenvalue. Thus

S
Ỹ

(1)
N /
√
N

(z) =
1

N

N−1∑
j=1

1

λj(Y
(1)
N )/

√
N − z

− 1

N

1

z
=

1

N

N−1∑
j=1

1

λj(YN−1)/
√
N − z

− 1

N

1

z

=
1

N

√
N√

N − 1

N−1∑
j=1

1

λj(YN−1)/
√
N − 1−

√
N√
N−1

z
− 1

N

1

z

=
1

N − 1

√
N − 1√
N

N−1∑
j=1

1

λj(XN−1)−
√
N√
N−1

z
− 1

N

1

z

=

√
N − 1√
N

SXN−1

( √
N√

N − 1
z

)
− 1

N

1

z
.

(4.3)

Denote the Stieltjes transform of the empirical spectral distribution of XN

SN(z) =

∫
1

x− z
dµ̂XN

(x) =
1

N
Tr
[
(XN − zI)−1

]
and its average

SN(z) = E

[∫
1

x− z
dµ̂XN

(x)

]
=

1

N
E
[
Tr
[
(XN − zI)−1

]]
.

Our goal is to prove that SN converges pointwise a.s., and to obtain an equation satisfied by the limiting
function. The main strategy will be to relate SN and SN−1, in two ways. For the first relation, recall that
for N ×N matrices,∣∣∣∣E [∫ f dµ̂A

]
− E

[∫
f dµ̂B

]∣∣∣∣ ≤ E

[∣∣∣∣∫ f dµ̂A −
∫
f dµ̂B

∣∣∣∣] ≤ ‖f‖LipE

[(
Tr

[
1

N
(A−B)2

])1/2
]
.

Applying this to f(x) = 1
x−z , A = XN and B = Ỹ

(1)
N /
√
N , and using equations (4.3) and (4.1), and

Jensen’s inequality,∣∣∣∣∣SN(z)−
√
N − 1√
N

SN−1

( √
N√

N − 1
z

)
+

1

N

1

z

∣∣∣∣∣ =
∣∣∣E[SXN

(z)]− E[S
Ỹ

(1)
N /
√
N

(z)]
∣∣∣

≤ 1

(=z)2
E

( 1

N

2

N

N∑
j=1

Y 2
j1

)1/2
 ≤ 1

(=z)2

1

N

(
E

[
2

N∑
j=1

Y 2
j1

])1/2

≤
√

2m2

(=z)2

1√
N
.

(4.4)
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Now we derive the second relation. Write

SN(z) =
1

N
Tr[(XN − zI)−1] =

1

N

N∑
k=1

1

Vk
,

where
Vk =

1

((XN − zI)−1)kk
=

1((
1√
N
YN − zI

)−1
)
kk

.

Lemma 4.6 (Schur complement). Let

M =

(
A B
C D

)
If D is invertible, then

detM = det(A−BD−1C) · detD.

Proof. It suffices to note that(
A B
C D

)
=

(
A−BD−1C B

0 D

)(
1 0

D−1C 1

)
.

Applying the lemma to

1√
N
YN − zI =

( 1√
N
YN − zI

)
11

1√
N
uT1

1√
N
u1

(
1√
N
Y

(1)
N − zI

)
etc. and using Cramer’s rule,

Vk =
det
(

1√
N
YN − zI

)
det
(

1√
N
Y

(k)
N − zI

) =
1√
N

(YN)kk − z −
1

N
uTk

(
1√
N
Y

(k)
N − zI

)−1

uk. (4.5)

Exercise 4.7. Let u be a vector of independent real random variables with mean zero and variance 1, and
A a deterministic complex matrix. Then

E[uTAu] = Tr[A]

If moreover A is symmetric and E[u4
i ] ≤ m4 for all i, then

Var[uTAu] = E[(uTAu)(uTAu)]− E[uTAu]E[uTAu] ≤ (2 +m4) Tr[AA].
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Therefore

E[V1 | Y (1)
N ] =

1√
N
E[(YN)11 | Y (1)

N ]− z − 1

N
E

[
uT1

(
1√
N
Y

(1)
N − zI

)−1

u1

∣∣∣∣∣ Y (1)
N

]

= −z − 1

N
Tr

[(
1√
N
Y

(1)
N − zI

)−1
]

= −z − 1

N

√
N√

N − 1
Tr

( 1√
N − 1

Y
(1)
N −

√
N√

N − 1
zI

)−1


= −z −
√
N − 1√
N

SN−1

( √
N√

N − 1
z

)
.

(4.6)

and so

E[Vk] = E[V1] = −z −
√
N − 1√
N

SN−1

( √
N√

N − 1
z

)
.

It follows that

SN(z) =
1

N

N∑
k=1

1

Vk
=

1

N

N∑
k=1

(
1

Vk
− 1

E[Vk]

)
+

1

E[V1]

=
1

N

N∑
k=1

(
1

Vk
− 1

E[Vk]

)
− 1

z +
√
N−1√
N
SN−1

( √
N√
N−1

z
) .

Our eventual goal is to conclude from this that

SN(z) ≈ − 1

z + SN(z)
.

We thus want to bound the first term above. Note that since the Stieltjes transform preserves the sign of
the imaginary part, from equation (4.6),

∣∣∣=E[Vk | Y (k)
N ]
∣∣∣ ≥ |=z| a.s. Then

E

[(
SN(z)− 1

E[V1]

)2
]
≤ E

( 1

N

N∑
k=1

∣∣∣∣ 1

Vk
− 1

E[Vk]

∣∣∣∣
)2


≤ 1

N

N∑
k=1

E

[∣∣∣∣ 1

Vk
− 1

E[Vk]

∣∣∣∣2
]

=
1

N

N∑
k=1

E

[
E

[
(Vk − E[Vk])

2

V 2
k E[Vk]2

∣∣∣∣ Y (k)
N

]]
≤ 1

(=z)4
E[(V1 − E[V1])2] =

1

(=z)4
Var[V1].

(4.7)
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Exercise 4.8. For any number c and a random variable x,

Var[x] + (E[x]− c)2 = E[(x− c)2]

and so each term on the left-hand side is ≤ the right-hand side.

It follows that
Var[SN(z)] ≤ 1

(=z)4
Var[V1] (4.8)

and ∣∣∣∣SN(z)− 1

E[V1]

∣∣∣∣2 ≤ 1

(=z)4
Var[V1]. (4.9)

Write
Var[V1] = E

[
Var[V1|Y (1)

N ]
]

+ Var
[
E[V1|Y (1)

N ]
]
,

where
E
[
Var[V1|Y (1)

N ]
]

= E
[
E[V 2

1 |Y
(1)
N ]
]
− E

[
E[V1|Y (1)

N ]2
]

and
Var

[
E[V1|Y (1)

N ]
]

= E
[
E[V1|Y (1)

N ]2
]
−
(
E
[
E[V1|Y (1)

N ]
])2

On the one hand, from (4.6)

Var
[
E[V1|Y (1)

N ]
]

=
N − 1

N
Var

[
SN−1

( √
N√

N − 1
z

)]
≤ Var

[
SN−1

( √
N√

N − 1
z

)]
. (4.10)

On the other hand,

Var[V1|Y (1)
N ] = Var

[
1√
N

(YN)11 − z −
1

N
uT1

(
1√
N
Y

(1)
N − zI

)−1

u1

∣∣∣∣∣ Y (1)
N

]

=
1

N
Var[(YN)11] +

1

N2
Var

[
uT1

(
1√
N
Y

(1)
N − zI

)−1

u1

∣∣∣∣∣ Y (1)
N

]

≤ 1

N
m2 +

1

N2
(2 +m4) Tr

[(
1√
N
Y

(1)
N − zI

)−1(
1√
N
Y

(1)
N − zI

)−1
]

=
1

N
m2 +

1

N2
(2 +m4)

N−1∑
j=1

∣∣∣∣∣λj
((

1√
N
Y

(1)
N − zI

)−1
)∣∣∣∣∣

2

≤ 1

N
m2 +

1

N
(2 +m4)

1

(=z)2

since ∣∣∣∣∣λj
((

1√
N
Y

(1)
N − zI

)−1
)∣∣∣∣∣ =

1∣∣∣λN−j+1

(
1√
N
Y

(1)
N − zI

)∣∣∣ ≤ 1

|=z|
.
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Taking expectations preserves this estimate. Combining with equation (4.10), we get

Var[V1] ≤ Var

[
SN−1

( √
N√

N − 1
z

)]
+

1

N
m2 +

1

N
(2 +m4)

1

(=z)2
.

Thus using equation (4.8), we obtain the estimate

Var[SN(z)] ≤ 1

(=z)4
Var

[
SN−1

( √
N√

N − 1
z

)]
+

1

N
m2

1

(=z)4
+

1

N
(2 +m4)

1

(=z)6

Let
CN = sup {Var[SN(z)] : =z ≥ 2} .

Then denoting b = m2
1
24

+ (2 +m4) 1
26

,

CN ≤
1

24
Var

[
SN−1

( √
N√

N − 1
z

)]
+

1

N
m2

1

24
+

1

N
(2 +m4)

1

26

≤ 1

16
CN−1 +

1

N
b

since =
√
N√
N−1

z ≥ =z for z ∈ C+. Recursively,

CN ≤
1

N
b
N−2∑
j=0

1

16j
+

1

16N−1
C1 ≤

2b

N
+

1

16N−1
C1.

We conclude that for large N , CN ≤ C ′/N ,

sup
=z≥2

Var[SN(z)] ≤ C ′

N
. (4.11)

Also, Var[V1] ≤ 1
16
CN−1 + 1

N
b, so from equation (4.9),

sup
=z≥2

∣∣∣∣∣∣SN(z) +
1

z +
√
N−1√
N
SN−1

( √
N√
N−1

z
)
∣∣∣∣∣∣
2

= sup
=z≥2

∣∣∣∣SN(z)− 1

E[V1]

∣∣∣∣2 ≤ C ′′

N
.

Combining with equation (4.4), we obtain

sup
=z≥2

∣∣∣∣∣∣
√
N − 1√
N

SN−1

( √
N√

N − 1
z

)
− 1

N

1

z
+

1

z +
√
N−1√
N
SN−1

( √
N√
N−1

z
)
∣∣∣∣∣∣ ≤ C ′′′√

N
(4.12)
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First we prove weak convergence of µ̂XN
in expectation. Since their variances are uniformly bounded, this

family is tight. Given any subsequence, we may choose a further subsequence (Nk) such that µ̂XNk
→ µ

weakly in expectation, for some probability measure µ. Then Sµ satisfies

Sµ(z) +
1

z + Sµ(z)
= 0.

Then Sµ(z)2 + zSµ(z) + 1 = 0 (compare with Exercise 2.4), and

Sµ(z) =
−z +

√
z2 − 4

2
,

where we chose the branch of the square root so that Sµ(z) ∼ −1
z

at infinity. By Stieltjes inversion,

dµ(x) = lim
y↓0

1

π
=
−(x+ iy) +

√
(x+ iy)2 − 4

2
dx =

1

2π

√
4− x21[−2,2](x) dx,

that is, µ = σ. Since this is true for any initial subsequence, we conclude that µ̂N → σ weakly in
expectation.

Finally, we prove weak convergence almost surely. Given any increasing subsequence of positive integers,
choose a further subsequence (Nk) so that

∑∞
k=1

1
Nk

< ∞. Then using equation (4.11) and the Borel-
Cantelli lemma, for any fixed z ∈ C+ + 2i, SNk

(z) − SNk
→ 0 a.s. Since SNk

(z) → Sσ(z), it follows
SNk

(z) → Sσ(z) a.s. By a diagonal argument, we may assume this to hold for all z in a countable set
A ⊂ C+ + 2i which has an accumulation point. Therefore µ̂Nk

→ σ weakly a.s. Since this is true for any
initial subsequence, we conclude that µ̂N → σ weakly almost surely.
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Chapter 5

Joint eigenvalue distributions for orthogonally
invariant ensembles.

The exact joint distribution of eigenvalues for the orthogonally/unitarily/simplectically invariant ensem-
bles takes some work to compute, primarily because there is no natural bijective parametrization of such
matrices by eigenvalues and eigenvectors. See various sources on the web page for (different) ways to
do this. In the following section we will use this result without proof, and in the later section will de-
rive it (in the Gaussian case), by first reducing the matrix to a tridiagonal form, where such a bijective
parametrization is in fact available.

5.1 Mean field approximation.

The following is another, heuristic, derivation of the convergence to semicircle law for GOE. It already
appears in the work of Brézin, Itzykson, Parisi, and Zuber (1978). The joint eigenvalue density for a
normalized orthogonally invariant ensemble with potential V is

ρ(λ1, . . . , λN) =
1

ZN

∏
i<j

|λj − λi|β exp

(
−N

N∑
i=1

V (λi)

)

=
1

ZN
exp

[
β
∑
i<j

log |λj − λi| −N
N∑
i=1

V (λi)

]

=
1

ZN
exp

[
β

2
N2

∫∫
log |x− y| dµ̂N(x) dµ̂N(y)−N2

∫
V (x) dµ̂N(x)

]
=

1

ZN
exp

[
−N2IV (µ̂)

]
,
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where
IV (µ) =

∫
V (x) dµ(x)− β

2

∫∫
log |x− y| dµ(x) dµ(y).

For large N , we expect µ̂N to concentrate around the measure µ which minimises IV . Looking at the
perturbations µε = µ+ εν for ν a signed measure of integral zero, if µ is an extremum of IV then

V (x)− β
∫

log |x− y| dµ(y) = C, x ∈ supp(µ).

So (at least formally)

1

β
V ′(x) = p.v.

∫
1

x− y
dµ(y) = πHµ(x), x ∈ supp(µ)

the Hilbert transform of µ. For example, for V (x) = β
4
x2, πHµ(x) = x/2, and µ = σ on [−2, 2]. Indeed,

recall that for dµ(x) = ρ(x) dx,

Sµ(x+ 0i) = −p.v.
∫

1

x− t
dµ(t) + πiρ(x).

Thus
0 =

(
<Sµ(x+ 0i) +

x

2

)
=Sµ(x+ 0i) =

1

2
=
(
Gµ(x+ 0i)2 + (x+ i0)Sµ(x+ 0i)

)
.

Therefore the function Sµ(z)2 + zSµ(z) + 1 analytically extends to R and so, since Sµ(z) = Sµ(z), to all
of C, i.e. it is entire. Moreover, assuming µ is compactly supported, Sµ(z) ∼ −1

z
as z → ∞, and so this

function is bounded. So by Liouville’s theorem it is constant, and by the asymptotics above the constant
is zero. Thus finally, Sµ(z)2 + zSµ(z) + 1 = 0, which we know characterizes σ.

5.2 Beta ensembles.

The initial ideas in this and the next section are due to Hale Trotter (1984) who tridiagonalized the GOE,
and researchers who studied the β-eigenvalue distributions before the β-ensembles were defined. They
were combined and developed in much greater depth by Ioana Dumitriu in her thesis (2002).

Tridiagonalization of Gaussian ensembles for β = 1, 2, 4.

Lemma 5.1 (Householder transformation). Let YN be an complex Hermitian (or in particular real sym-
metric) N ×N matrix, and write it as

YN =

(
y v∗

v YN−1

)
,
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where y ∈ R and YN−1 is (N−1)×(N−1). There is a unitary (or in particular orthogonal) transformation
ŨN−1 such that

ŨN−1v =


‖v‖
0
...
0

 .

Therefore denoting

UN =

(
1 0

0 ŨN−1

)
,

we have

UNYNU
T
N =


y ‖v‖ 0 . . . 0
‖v‖
0
... ŨN−1YN−1Ũ

∗
N−1

0

 .

Proof. In fact one can choose ŨN−1 a reflection in the hyperplane orthogonal to the vectorw = v−‖v‖ e1,

ŨN−1x = x− 2
〈x,w〉
‖w‖2 w,

which is automatically unitary and Hermitian (or orthogonal in the real case). Indeed,

ŨN−1v = ŨN−1

(
1

2
w +

1

2
(v + ‖v‖ e1)

)
= −1

2
w +

1

2
(v + ‖v‖ e1)− 0 = ‖v‖ e1.

A random variable Z has the χk distribution if Z2 has χ2
k distribution, that is, the same distribution as

X2
1 + . . .+X2

k for X1, . . . , Xk independent standard normals.

Theorem 5.2. Let YN be an un-normalized GOE matrix. Then the eigenvalue distribution of YN is the
same as for the random tridiagonal matrix

ỸN =


a1 b1

b1 a2 b2

b2
. . . . . .
. . . . . . bN−1

bN−1 aN

 ,

whose entries are, except for the symmetry, independent with distributions
N (0, 2) χN−1

χN−1 N (0, 2) χN−2

χN−2
. . . . . .
. . . . . . χ1

χ1 N (0, 2)

 .
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Proof. Start with an un-normalized GOEN matrix

YN =

(
Y11 vTN−1

vN−1 YN−1

)
,

Recall that its entries are independent (except for symmetry), Yii ∼ N (0, 2) and Yij ∼ N (0, 1). Using
the transformation from the lemma, we may choose an orthogonal ŨN−1 so that

UNYNU
T
N =


Y11 ‖uN−1‖ 0 . . . 0
‖uN−1‖

0
... ŨN−1YN−1Ũ

T
N−1

0

 .

Here
‖UN−1‖ =

√
Y 2

12 + . . .+ Y 2
1N ,

so it is independent of all the other entries of the matrix (except for symmetry) and has χN−1 distribution.
Moreover ŨN−1YN−1Ũ

T
N−1 is a GOEN−1 matrix. Applying the same procedure recursively, we end up

with a tridiagonal matrix with the claimed entry distributions which is unitarily equivalent to YN .

Exercise 5.3. Show that a similar procedure works for the GUE matrices, except the distributions of
entries become

1√
2


N (0, 2) χ2(N−1)

χ2(N−1) N (0, 2) χ2(N−2)

χ2(N−2)
. . . . . .
. . . . . . χ2

χ2 N (0, 2)

 .

Since the χ2 distribution is infinitely divisible, χβ can actually be defined for any real positive β, with the
density

21−β/2

Γ(β/2)
xβ−1e−x

2/2.

Definition 5.4. For β > 0, the (un-normalized) β-ensemble consists of random symmetric tridiagonal
matrices

ỸN =


a1 b1

b1 a2 b2

b2
. . . . . .
. . . . . . bN−1

bN−1 aN ,


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whose entries are, except for the symmetry, independent with distributions

1√
β


N (0, 2) χ(N−1)β

χ(N−1)β N (0, 2) χ(N−2)β

χ(N−2)β
. . . . . .
. . . . . . χβ

χβ N (0, 2)

 .

Trotter’s proof of convergence to the semicircle law.

Theorem 5.5. The normalized β-ensemble matrices have, for any β, the same asymptotic spectral distri-
bution as the sequence of deterministic matrices

TN =
1√
N


0

√
N − 1√

N − 1 0
√
N − 2

√
N − 2

. . . . . .

. . . . . . 1
1 0

 .

In particular this is the case for normalized GOE/GUE/GSE. The asymptotic spectral distribution of TN
will be shown to be semicircular in the following proposition.

Proof. We note first that since χβ ≥ 0 and E[χ2
β] = β,

E[β(χβ−
√
β)2] ≤ E[(χβ+

√
β)2(χβ−

√
β)2] = E[(χ2

β−β)2] = Var[χ2
β] = β Var[χ2

1] = βE[χ4
1−2χ2

1+1] = 2β.

Thus E[(χβ−
√
β)2] ≤ 2. So in an un-normalized β-matrix ỸN , E[a2

k] = 2 and E[(bk−
√

(N − k)β)2] ≤
2. Then for X̃N = 1√

N
ỸN ,∣∣∣∣∫ f dµ̂X̃N
−
∫
f dσ

∣∣∣∣ ≤ ‖f‖Lip

1√
N

∥∥∥X̃N − TN
∥∥∥
F

=
‖f‖Lip√

β

1

N

√√√√ N∑
k=1

a2
k + 2

N−1∑
k=1

(bk −
√

(N − k)β)2

=
‖f‖Lip√

β

1√
N

√∑N
k=1 a

2
k

N
+ 2

∑N−1
k=1 (bk −

√
(N − k)β)2

N
,

and so using Markov’s inequality,

P

(∣∣∣∣∫ f dµ̂X̃N
−
∫
f dσ

∣∣∣∣ ≥ δ

)
≤ 1

δ

‖f‖Lip√
β

1√
N

√
6→ 0

as N →∞.
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To compute the asymptotic spectral distribution of TN , we use the following theorem.

Theorem 5.6 (Kac, Murdock, Szegő 1953, Trotter 1984, particular case). Let H be the Hilbert space of
sequences h = {hj : j ∈ Z, hj ∈⊂ L2([0, 1])}, with the norm ‖h‖2 =

∑
j ‖hj‖

2 <∞. Denote

σ(h) =
∑
j∈Z

hj(x)e2πijt,

a function in L2([0, 1]2). Note that the map σ is an isometry.

For any square N × N matrix A, define η(A) ∈ H as follows. Consider A as included in an infinite
matrix. hj is a step function, with steps of length 1

N
, and heights given by values of A in the j’th diagonal

(where the main diagonal corresponds to j = 0).

If each AN is normal and η(AN)→ h in H , then the spectral distribution of AN converges weakly to the
distribution of σ(h).

Proposition 5.7. The asymptotic spectral distribution of TN is the semicircular distribution.

Proof. TN has zero diagonal entries, and

Tk,k+1 = Tk+1,k =

√
1− k

N
.

Thus clearly h1(x) = h−1(x) =
√

1− x, and we have

σ(x, t) =
√

1− x2 cos(2πt), (x, t) ∈ [0, 1]2

It remains to compute its distribution. It is clearly symmetric. For a ≥ 2, |{σ(x, t) ≤ a}| = 1. Finally,
for 0 ≤ a < 2, let t̄ ∈ [0, 1/4] satisfy cos(2πt) = a/2. Then∣∣{(x, t) ∈ [0, 1]2 :

√
1− x2 cos(2πt) ≤ a

}∣∣ =
1

2
+ 2

∣∣∣∣{(x, t) ∈ [0, 1]× [0, 1/4] : 1− 1

4
a2 sec2(2πt) ≤ x ≤ 1

}∣∣∣∣
=

1

2
+ 2

∫ 1/4

0

(
1

4
a2 sec2(2πt)1[0,t̄] + 1[t̄,1/4]

)
dt

=
1

2
+

1

4π
a2 tan(2πt)|t̄0 +

1

2
− 2t̄

= 1 +
1

4π
a2

√
1− a2/4

a/2
− 1

π
arccos(a/2)

= 1 +
1

4π

(
a
√

4− a2 − 4 arccos(a/2)
)
.

Differentiating with respect to a, we get

1

4π

(
√

4− a2 − a2

√
4− a2

+ 2
1√

1− a2/4

)
=

1

2π

√
4− a2.
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Remark 5.8. We have proved Wigner’s theorem by four different methods (under various assumptions),
which ultimately reduce to four different characterizations of the semicircle law:

• Its moments are the Catalan numbers.

• Its Stieltjes transform satisfies the quadratic equation Sµ(z)2 + zSµ(z) + 1 = 0.

• It is the minimizer of the logarithmic energy IV (µ) =
∫
x2 dµ(x)− 2

∫∫
log |x− y| dµ(x) dµ(y).

• It is the distribution of σ(x, t) =
√

1− x2 cos(2πt), (x, t) ∈ [0, 1]2.

Remark 5.9. The spectral distribution of TN is the uniform distribution on its eigenvalues, in other words
on the roots of its characteristic polynomial QN(λ) = det(λIN −

√
NTN). By Lemma 5.11, the polyno-

mials QN(λ) satisfy the recursion

QN+1(λ) +NQN−1(λ) = λQN−1(λ),

so they are the (monic) Hermite polynomials. So we have also proved that the density of the re-scaled
roots of the Hermite polynomials converges to the semicircle law.

This is the end of the 2017 course notes.

Exercise 5.10. (unverified) Let YN be a K×N matrix with independentN (0, 1) entries, and assume that
both K and N go to infinity in such a way that K/N → α ∈ (0, 1]. Let XN = 1√

N
YN and ZN = XNX

T
N .

Then ZN is a K ×K Wishart matrix (compare with Exercise 2.11).

a. Show that we may choose orthogonal matrices V ∈ O(K), U ∈ O(N) such that

V YNU
∗ ∼


χK χN−1

χK−1 χN−2

. . . . . .
χ1 χN−K . . .

 .

and so

V YNY
T
N V

T ∼


χ2
K + χ2

N−1 χN−1χK−1

χN−1χK−1 χ2
K−1 + χ2

N−2 χN−2χK−2

χN−2χK−2
. . . . . .
. . . . . . χN−K+1χ1

χN−K+1χ1 χ2
1 + χ2

N−K

 .
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b. Show that the asymptotic spectral distribution of ZN is the same as of

1

N


K +N − 1

√
(N − 1)(K − 1)√

(N − 1)(K − 1) K +N − 3
√

(N − 2)(K − 2)

χN−2
. . . . . .
. . . . . .

√
N −K + 1√

N −K + 1 1 +N −K


c. Show that this distribution is the same as the distribution of

σ(x, t) = 1 + α− 2αx+ 2 cos(2πt)
√

(1− αx)(α− αx).

5.3 Topics for the second part of the course.

Exact eigenvalue distribution for β-ensembles.

We will prove that the joint density of ordered eigenvalues of an un-normalized β-ensemble matrix is

1

ZN
exp

(
−β

4

N∑
i=1

λ2
i

)
∆(λ1, . . . , λN)β.

Along the way we will develop some general results on the spectral theory of finite Jacobi matrices and
orthogonal polynomials.

Asymptotic distributions and asymptotic freeness.

Question. Let (AN)∞N=1 and (BN)∞N=1 be ensembles of self-adjoint random matrices at least one of which
is unitarily invariant. Suppose their empirical spectral distributions converge weakly almost surely:

µ̂AN
→ µ, µ̂BN

→ ν.

Since AN and BN do not commute, one cannot speak directly of their joint distribution. What are their
asymptotic joint moments? What is the asymptotic distribution of AN + BN and (if it makes sense) of
ANBN?

Answer. Under mild assumptions, AN and BN are asymptotically free. This means that there exists
an operator algebra A with a positive linear functional ϕ, and two operators a, b ∈ A which are freely
independent, such that almost surely

1

N
E[Tr[A

u(1)
N B

v(1)
N . . . A

u(k)
N B

v(k)
N ]]→ ϕ[au(1)bv(1) . . . au(k)bv(k)]. (5.1)
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Moveover, using free independence, the joint moments of a and b can be computed in terms of individual
moments of a and b. There are also formulas for expressing µa+b and (in the appropriate setting) µab in
terms of µ, ν.

Reference: (Mingo, Speicher 2016) extracts from Chapters 1, 3, 4.

Fluctuations and second order freeness.

Question. Convergence (5.1) is a version of the law of large numbers. One may then ask a central limit
type question: what is the asymptotic distribution of

E[Tr[A
u(1)
N B

v(1)
N . . . A

u(k)
N B

v(k)
N ]]−Nϕ[au(1)bv(1) . . . au(k)bv(k)]

(note the factor of N ).

Answer. Under appropriate assumptions, these fluctuations are asymptotically Gaussian. Under stronger
assumptions, one can compute their joint covariances for any u,v. Under stronger assumptions, one
may explicitly diagonalize these covariances. One approach is to show that AN and BN are not just
asymptotically free but asymptotically second order free.

Reference: (Mingo, Speicher 2016) Chapter 5.

Band and block matrices and operator-valued freeness.

In many applications one encounters random matrix ensembles which are not unitarily invariant and
whose entries are not independent or identically distributed. Two commonly occurring generalizations
of GOE/GUE matrices are the following.

A Gaussian band random matrix is an Hermitian N × N matrix X = 1√
N
Y , where the entries of Y are

jointly Gaussian with mean zero and covariance

E[YrpYqs] = δrsδpqσ(r/N, p/N).

Here σ(x, y) = σ(y, x) is a sufficiently nice function.

A Gaussian block random matrix is anNd×NdmatrixX = 1√
N
Y considered as a d×dmatrix ofN×N

blocks, such that the blocks (Y (ij))di,j=1 have jointly Gaussian entries with mean zero, (Y (ij))∗ = Y (ji),
and covariance

E[Y (ij)
rp Y (kl)

qs ] = δrsδpqσ(i, j; k, l).

Note that for d = 1 we get a GOE matrix, while for σ(i, j; k, l) = δilδjkσ(i, j), we get a special band
matrix.

One can study asymptotic (joint) distributions of such matrices using operator-valued free probability.

Reference: (Mingo, Speicher 2016) extracts from Chapters 9, 10.
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Spiked models, subordination, and infinitesimal freeness.

Suppose AN is as before, but BN is a diagonal matrix with 5 non-zero eigenvalues (independently of
N ). Then clearly µ̂BN

→ δ0 and µ̂AN+BN
→ µ. Nevertheless, it turns out that one may identify certain

eigenvalues of AN +BN as coming from those of BN . They can be studied using subordination functions
and infinitesimal freeness.

Reference: (Shlyakhtenko 2015) and earlier work by Capitaine, Belinschi, Bercovici, Fevrier.

5.4 Spectral theory of finite Jacobi matrices.

An N ×N Jacobi matrix is a tridiagonal matrix of the form

JN =


a1 b1 0
b1 a2

. . . . . . . . .
bN−1

0 bN−1 aN

 ,

where a1, . . . aN ∈ R and b1, . . . , bN−1 > 0.

Spectral bijection.

Lemma 5.11. Let Qn(λ) be the characteristic polynomial of Jn, Qn(λ) = det(λIn − Jn). Then for all
n ≥ 2

Qn(λ) + anQn−1(λ) + b2
n−1Qn−2(λ) = λQn−1(λ) (5.2)

while setting Q0 = 1, also Q1(λ) + a1Q0 = λQ0.

Proof. Expand the determinant with respect to the last row, and then the last column, to obtain

Qn(λ) = (λ− an)Qn−1(λ)− b2
n−1Qn−2(λ).

Exercise 5.12. Let X be a general symmetric N ×N matrix, with eigenvalues λ1(X) ≤ . . . ≤ λN(X).

a. The eigenvalues of X have the following minimax description:

λN(X) = max
u6=0

〈Xu, u〉
‖u‖2

and for n < N ,

λn(X) = min
V :dimV=n

max
u∈V,u6=0

〈Xu, u〉
‖u‖2

Hint: diagonalize the matrix, and recall that its eigenvectors are orthogonal.

53



b. Let X̃ be X with the last row and column removed. Then the eigenvalues of X and X̃ interlace:

λ1(X) ≤ λ1(X̃) ≤ λ2(X) ≤ λ2(X̃) ≤ . . . ≤ λN−1(X) ≤ λN−1(X̃) ≤ λN(X).

Corollary 5.13. A Jacobi matrix with positive bi’s has distinct eigenvalues.

Proof. We need to show that QN has distinct roots. Suppose λi(JN) = λi+1(JN). Then from the in-
terlacing property, also QN−1(λ(JN)) = 0. From the recursion (5.2) it follows that QN−2(λ(JN)) = 0.
Applying the recursion repeatedly, by induction we get that Q0(λ(JN)) = 0, and so obtain a contradic-
tion.

Since the matrix JN is symmetric, it can be diagonalized, so that J = UΛUT , in other words

JNU = UΛ.

Here Λ is the diagonal matrix whose diagonal entries are the eigenvalues λ1 ≤ . . . ≤ λN , and U is an
orthogonal matrix whose columns ~u1, . . . ~uN are the normalized eigenvectors. Denote

pi = |Ui1|2 ,

so that p1 + . . .+ pN = 1.

Proposition 5.14. The map

ϕ : RN × RN−1
+ → RN ×

{
(p1, . . . , pN−1) : all pi > 0,

N−1∑
i=1

pi < 1

}

given by
ϕ : (a1, . . . aN , b1, . . . bN−1 7→ (λ1, . . . , λN , p1, . . . , pN−1)

is a bijection.

For (p1, . . . , pN−1) as in the proposition, denote pN = 1−
∑N−1

i=1 pi, and

νN =
N∑
i=1

piδλi .

Then νN is a probability measure, such that
∫
f dνN =

∑N
i=1 pif(λi).

Lemma 5.15. For all k,

mk(N) = (Jk)11 =

∫
xk dνN .
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Proof.

(Jk)11 = (UΛkUT )11 =
∑
i

U1iλ
k
iU1i =

∑
i

piλ
k
i =

∫
xk dνN .

Exercise 5.16. Recall that for the empirical spectral measure, we had

1

N
Tr[Jk] =

∫
xk dµ̂JN ,

and the measure also had atoms at the eigenvalues of JN , except the weights of all the atoms were equal
to 1

N
. Show that for any unit vector ξ, the probability measure with moments

〈
Jkξ, ξ

〉
is also atomic

with atoms at the eigenvalues. What is its precise form? Which ξ corresponds to the empirical spectral
measure?

Remark 5.17. For a sequence of random (for example, Wigner) or deterministic (for example, Jacobi)
matrices XN , one can ask whether the sequence of measures from the preceding exercise corresponding
to some vectors ξN converges weakly as N → ∞. Some natural choices for ξN are ξN = e1 (the first
basis vector), ξN = eN (the last basis vector), the trace case from the exercise, or ξN random uniformly
distributed on the unit sphere.

Remark 5.18. Define a family of polynomials as follows: P0 = 1,

a1P0 + b1P1(x) = xP0,

for 1 ≤ n ≤ N − 1,
bn−1Pn−2(x) + anPn−1(x) + bnPn(x) = xPn−1(x),

and
bN−1PN−2(x) + aNPN−1(x) + PN(x) = xPN−1(x).

Then each Pn, 0 ≤ n ≤ N , is a polynomial of degree n. Since all bi’s are positive, each Pn has a positive
leading coefficient. It is easy to see that

Qn(x) = bn . . . b1Pn(x)

for 0 ≤ n ≤ N − 1 and
QN(x) = bN−1 . . . b1PN(x).

In particular PN(λi) = 0 for all 1 ≤ i ≤ N .

Moreover by definition,

JN


P0(x)
P1(x)

...
PN−1(x)

 = x


P0(x)
P1(x)

...
PN−1(x)

−


0
0
...

PN(x)

 .
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So for each i,


P0(λi)
P1(λi)

...
PN−1(λi)

 is an eigenvector of JN with eigenvalue λi. Since all of the eigenspaces are

one-dimensional, and P0 = 1, while the first entry of ~ui is Ui1, it follows that

Uij = Ui1Pj−1(λi).

Lemma 5.19. {P0, . . . , PN−1} are the orthonormal polynomials with respect to the measure νN with
positive leading coefficients.

Proof.∫
Pj−1(x)Pn−1(x) dνN(x) =

N∑
i=1

piPj−1(λi)Pn−1(λi)

=
N∑
i=1

Ui1Pj−1(λi)Ui1Pn−1(λi) =
N∑
i=1

UijUin = (UTU)jn = δj=n.

Lemma 5.20. The orthonormal polynomials with respect to any measure ν with positive leading coeffi-
cients satisfy a three-term recursion as above (which may not terminate, and the b coefficients may not be
strictly positive). If ν is supported on at least N points, then b1, . . . , bN−1 > 0.

Proof. Let {Pn : n ≥ 0} be orthonormal polynomials with respect to a measure ν. Since they are obtained
by a Gram-Schmidt procedure from the basis {xn : n ≥ 0},

xPn−1(x) =
n∑
i=0

αn,iPi(x)

for some coefficients αn,i. Since

〈Pi, xPn−1〉ν =

∫
Pi(x)xPn−1(x) dν(x) = 〈xPi, Pn−1〉ν = 0

for n− 1 > i+ 1, αn,i = 0 for i < n− 2. Denote bn = αn,n, an = αn,n−1 and cn = αn,n−2. Then

cn = 〈xPn−1, Pn−2〉ν = 〈Pn−1, xPn−2〉ν = bn−1.

Thus finally,
xPn−1(x) = bn−1Pn−2(x) + anPn−1(x) + bnPn(x).

Since the leading coefficients of Pn and Pn−1 are positive, bn ≥ 0. If bN = 0, then xPN−1, and so all poly-
nomials of degree N , are in the linear span of {P0, . . . , PN−1}. It follows that the space of polynomials
on the support of ν has dimension at most N , and so this support contains at most N points.
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Proof of Proposition 5.14. It suffices to prove a bijection between matrices JN and measures νN . Starting
with JN , its νN =

∑N
i=1 piδλi is uniquely determined by its eigenvalues and eigenvectors. Conversely,

start with νN . Use Gram-Schmidt orthogonalization to construct orthonormal polynomials with positive
leading coefficients P0, P1, . . . , PN−1. They satisfy a three-term recursion relation, whose coefficients are
determined by

bn = 〈xPn−1, Pn〉νN
and

an = 〈xPn−1, Pn−1〉νN .

The Jacobian of the spectral bijection.

Now that we have proved that ϕ is a bijection, we want to compute its Jacobian determinant. We do this
in two steps, using an intermediate bijection with (m1(N), . . . ,m2N−1(N)).

Proposition 5.21. The Jacobian determinant of the transformation

(a1, b1, a2, b2, . . . , bN−1, aN) 7→ (m1(N), . . . ,m2N−1(N))

is

2N−1

∏N−1
k=1 b

4(N−k)
k∏N−1

k=1 bk
.

Proof. Recall that mk(N) = (Jk)11. Using Motzkin paths, we can observe that

m2k−1(N) = akb
2
k−1 . . . b

2
1 + Polynomial(ak−1, . . . , a1, bk−1, . . . , b1)

and
m2k(N) = b2

kb
2
k−1 . . . b

2
1 + Polynomial(ak, . . . , a1, bk−1, . . . , b1).

It follow that the Jacobian matrix of the transformation

(a1, b1, a2, b2, . . . , bN−1, aN) 7→ (m1(N), . . . ,m2N−1(N)

is upper triangular, and its Jacobian determinant is

N∏
k=2

(b2
k−1 . . . b

2
1)

N−1∏
k=1

(2bkb
2
k−1 . . . b

2
1) = 2N−1

∏N−1
k=1 b

4(N−k)
k∏N−1

k=1 bk
.

Proposition 5.22. The Jacobian determinant of the transformation

(p1, . . . , pN−1, λ1, . . . , λN) 7→ (m1(N), . . . ,m2N−1(N))
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is, up to a sign, (
N∏
i=1

pi

)
∆(λ1, . . . , λN)4,

where
∆(λ1, . . . , λN) =

∏
1≤i<j≤N

(λj − λi)

is the Vandermonde determinant.

Proof.

mk(N) =
N∑
i=1

piλ
k
i =

N−1∑
i=1

piλ
k
i + (1− p1 − . . .− pN−1)λkN

So

∂mk

∂pi
= λki − λkN ,

∂mk

∂λi
= kpiλ

k−1
i , i < N,

∂mk

∂λN
= k(1− p1 − . . .− pN−1)λk−1

N = kpNλ
k−1
N .

and the Jacobian matrix of the transformation

(p1, . . . , pN−1, λ1, . . . , λN) 7→ (m1(N), . . . ,m2N−1(N)

is
λ1 − λN . . . λN−1 − λN p1 . . . pN−1 pN
λ2

1 − λ2
N . . . λ2

N−1 − λ2
N 2p1λ1 . . . 2pN−1λN−1 2pNλN

... . . .
...

... . . .
...

...
λ2N−1

1 − λ2N−1
N . . . λ2N−1

N−1 − λ
2N−1
N (2N − 1)p1λ

2N−2
1 . . . (2N − 1)pN−1λ

2N−2
N−1 (2N − 1)pNλ

2N−2
N

 .

Factoring out p1 . . . pN , we get the matrix
λ1 − λN . . . λN−1 − λN 1 . . . 1 1
λ2

1 − λ2
N . . . λ2

N−1 − λ2
N 2λ1 . . . 2λN−1 2λN

... . . .
...

... . . .
...

...
λ2N−1

1 − λ2N−1
N . . . λ2N−1

N−1 − λ
2N−1
N (2N − 1)λ2N−2

1 . . . (2N − 1)λ2N−2
N−1 (2N − 1)λ2N−2

N

 .
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We need to compute its determinant. Up to a sign,

det


λ1 − λN . . . λN−1 − λN 1 . . . 1 1
λ2

1 − λ2
N . . . λ2

N−1 − λ2
N 2λ1 . . . 2λN−1 2λN

... . . .
...

... . . .
...

...
λ2N−1

1 − λ2N−1
N . . . λ2N−1

N−1 − λ
2N−1
N (2N − 1)λ2N−2

1 . . . (2N − 1)λ2N−2
N−1 (2N − 1)λ2N−2

N



= det


0 . . . 0 1 0 . . . 0 0

λ1 − λN . . . λN−1 − λN λN 1 . . . 1 1
λ2

1 − λ2
N . . . λ2

N−1 − λ2
N λ2

N 2λ1 . . . 2λN−1 2λN
... . . .

...
... . . .

...
...

...
λ2N−1

1 − λ2N−1
N . . . λ2N−1

N−1 − λ
2N−1
N λ2N−1

N (2N − 1)λ2N−2
1 . . . (2N − 1)λ2N−2

N−1 (2N − 1)λ2N−2
N



= det


1 . . . 1 1 0 . . . 0 0
λ1 . . . λN−1 λN 1 . . . 1 1
λ2

1 . . . λ2
N−1 λ2

N 2λ1 . . . 2λN−1 2λN
... . . .

...
... . . .

...
...

...
λ2N−1

1 . . . λ2N−1
N−1 λ2N−1

N (2N − 1)λ2N−2
1 . . . (2N − 1)λ2N−2

N−1 (2N − 1)λ2N−2
N



= det


1 . . . 1 1 0 . . . 0 0
λ1 . . . λN−1 λN 1 . . . 1 1
λ2

1 . . . λ2
N−1 λ2

N 2τ1 . . . 2τN−1 2τN
... . . .

...
... . . .

...
...

...
λ2N−1

1 . . . λ2N−1
N−1 λ2N−1

N (2N − 1)τ 2N−2
1 . . . (2N − 1)τ 2N−2

N−1 (2N − 1)τ 2N−2
N



∣∣∣∣∣∣∣∣∣∣∣
τ1=λ1,...,τN=λN

=
∂N

∂τ1 . . . ∂τN

∣∣∣∣
τ1=λ1,...,τN=λN

det


1 . . . 1 1 1 . . . 1 1
λ1 . . . λN−1 λN τ1 . . . τN−1 τN
λ2

1 . . . λ2
N−1 λ2

N τ 2
1 . . . τ 2

N−1 τ 2
N

... . . .
...

... . . .
...

...
...

λ2N−1
1 . . . λ2N−1

N−1 λ2N−1
N τ 2N−1

1 . . . τ 2N−1
N−1 τ 2N−1

N


The determinant is a Vandermonde determinant∏
i<j

(λj − λi)
∏
i,j

(τj − λi)
∏
i<j

(τj − τi) =
∏
i<j

(λj − λi)
∏
i>j

(τj − λi)
∏
i

(τi − λi)
∏
i<j

(τj − λi)
∏
i<j

(τj − τi)
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So the expression above is

∂N

∂τ1 . . . ∂τN

∣∣∣∣
τ1=λ1,...,τN=λN

∏
i<j

(λj − λi)
∏
i>j

(τj − λi)
∏
i

(τi − λi)
∏
i<j

(τj − λi)
∏
i<j

(τj − τi)

= lim
h1,...,hN→0

∏
i<j(λj − λi)

∏
i>j(λj + hj − λi)

∏
i(λi + hi − λi)

∏
i<j(λj + hj − λi)

∏
i<j(λj + hj − λi − hi)− 0

h1 . . . hN

=
∏
i<j

(λj − λi)
∏
i>j

(λj − λi)
∏
i<j

(λj − λi)
∏
i<j

(λj − λi)

= ±∆(λ1, . . . , λN)4.

Corollary 5.23. The Jacobian determinant of ϕ is, up to a sign,

2N−1

∏N−1
k=1 b

4(N−k)
k

∆(λ1, . . . , λN)4
∏N

i=1 pi
∏N−1

k=1 bk

Proposition 5.24.
N−1∏
k=1

bN−kk =

(
N∏
i=1

pi

)1/2

∆(λ1, . . . , λN).

Consequently the Jacobian determinant of ϕ is, up a sign,

2N−1

∏N
i=1 pi∏N−1
k=1 bk

Proof. Denote by e1 the first basis vector. Let A be the matrix with columns

A = (e1, Je1, . . . , J
N−1e1).

Then A is upper-triangular, with entries 1, b1, . . . ,
∏N−1

k=1 bk on the diagonal. So

detA =
N−1∏
n=0

n∏
k=1

bk =
N−1∏
k=1

bN−kk .

On the other hand, denote ~q = (q1, . . . , qN)T = UT e1 be the first row of U , so that q2
i = pi. Then

A = (UUT e1, UΛUT e1, . . . , UΛN−1UT e1) = U(UT e1,ΛU
T e1, . . . ,Λ

N−1UT e1)

= U(~q,Λ~q, . . . ,ΛN−1~q) = U

 q1 λ1q1 . . . λN−1
1 q1

...
... . . .

...
qN λNqN . . . λN−1

N qN


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and so

detA =

(
N∏
i=1

qi

)
det

1 λ1 . . . λN−1
1

...
... . . .

...
1 λN . . . λN−1

N

 =

(
N∏
i=1

qi

)
∆(λ1, . . . , λN).

We conclude that the Jacobian determinant of ϕ is

2N−1

((∏N
i=1 pi

)
∆(λ1, . . . , λN)

)4

∆(λ1, . . . , λN)4
∏N−1

k=1 bk
= 2N−1

(∏N
i=1 pi

)4

∏N−1
k=1 bk

.

Exact eigenvalue distribution for β-ensembles.

Theorem 5.25. The joint density of ordered eigenvalues of an un-normalized β-ensemble matrix is

1

ZN
exp

(
−β

4

N∑
i=1

λ2
i

)
∆(λ1, . . . , λN)β.

Proof. Recall that for the β-ensembles, ai and bi are independent, with distributions√
βak ∼ N (0, 2)

and √
βbk ∼ χ(N−k)β.

So their individual densities are 1
Z
e−(β/4)a2k and 1

Z
b

(N−k)β−1
k e−(β/2)b2k , and their joint density is

1

Z

N∏
k=1

e−(β/4)a2k

N−1∏
k=1

bkβ−1
k e−(β/2)b2k =

1

Z
exp

(
−β

4

N∑
k=1

a2
k −

β

2

N−1∑
k=1

b2
k

)
N−1∏
k=1

b
(N−k)β−1
k .

We want to express this in terms of λi’s and pi’s. We note that all bk > 0 a.s. (so the results from earlier
in the section apply),

N∑
k=1

a2
k + 2

N−1∑
k=1

b2
k = Tr[JTJ ] =

N∑
i=1

λ2
i ,

and
N−1∏
k=1

b
(N−k)β
k =

(
N∏
i=1

pi

)β/2

∆(λ1, . . . , λN)β.

Since ∣∣Jac(a,b)→(λ,p)

∣∣ = 2N−1

∏N
i=1 pi∏N−1
k=1 bk
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we obtain the density

1

ZN
exp

(
−β

4

N∑
i=1

λ2
i

)(
N∏
i=1

pi

)β/2−1

∆(λ1, . . . , λN)β.

Thus the joint densities of λi’s and pj’s are independent, and the joint distribution of the pi’s may be
integrated out.

To obtain the precise normalization constant in the joint density of eigenvalues we need to trace the
constants carefully throughout the proof, and at the end use the Dirichlet integral

∫ 1

0

∫ 1−p1

0

. . .

∫ 1−
∑N−2

i=1

0

(
N∏
i=1

pi

)β/2−1

dpN−1 . . . dp1 =
Γ(β/2)N

Γ(nβ/2)
.

Another approach to compute

ZN =

∫∫
λ1≤...≤λN

exp

(
−β

4

N∑
i=1

λ2
i

)
∆(λ1, . . . , λN)β dλ1 . . . dλN

=
1

N !

∫
RN

exp

(
−β

4

N∑
i=1

λ2
i

)
|∆(λ1, . . . , λN)|β dλ1 . . . dλN

is to deduce it as a limiting case of the Selberg integral

1

N !

∫ 1

0

. . .

∫ 1

0

N∏
i=1

λa−1
i (1−λi)b−1 |∆(λ1, . . . , λN)|2c dλ1 . . . dλN =

N−1∏
j=0

Γ(a+ jc)Γ(b+ jc)Γ((j + 1)c)

Γ(a+ b+ (N + j − 1)c)Γ(c)
.
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