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Chapter 1

Overview of asymptotic random matrix results.

Brief review of probability theory.

Probability space (Ω,Σ, P ). Here

Ω = set.

Σ = σ-algebra of measurable subsets of Ω.

P = probability measure on (Ω,Σ), P (Ω) = 1.

X = random variable = (real-valued) measurable function on Ω.

E = expectation functional,

E[X] =

∫
X dP =

∫
X(ω) dP (ω)

whenever defined.

µX = distribution of X = probability measure on R,

µX(A) = P (X ∈ A) = P (ω ∈ Ω : X(ω) ∈ A).

Also for f ∈ Cb(R),

E[f(X)] =

∫
f(x) dµX(x).

A random matrix is an N ×N matrix of random variables = MN -valued random variable.

These come up in a variety of models and settings.

Remark 1.1. In this course, our main interest is in the behavior of N × N random X as N → ∞. So
often a “random matrix X” really means a sequence (XN)∞N=1, each XN N × N . There are also many
exact results for finite N , which we will omit.
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1.1 Gaussian orthogonal ensemble GOEN .

Fix N ≥ 1. For 1 ≤ i ≤ j ≤ N , let Bij ∼ N (0, 1) be independent standard normal variables. Define XN

an N ×N matrix by

[XN ]ij = [XN ]ji =
1√
N
Bij, i < j

(so that XN is symmetric), and

[XN ]ii =

√
2√
N
Bii.

Usually the Gaussian Orthogonal Ensemble is defined without the 1√
N

normalization. We include this
normalization from the very beginning, to have

1

N
Tr[XN ] =

1

N

N∑
i=1

Xii

and

E
[

1

N
Tr[XN ]

]
= 0.

1

N
Tr[X2

N ] =
1

N

N∑
i,j=1

XijXji =
1

N

(
2
∑
i<j

1

N
B2
ij +

∑
i

2

N
B2
ii

)
=

2

N2

N∑
i≤j

B2
ij,

and so

E
[

1

N
Tr[X2

N ]

]
=

2

N2

N(N + 1)

2
→ 1.

Theorem (Wigner’s Theorem I). Let XN ∼ GOEN . Then as N →∞,

1

N
Tr[X2k]︸ ︷︷ ︸
random

→ ck︸︷︷︸
number

= Catalan number =
1

k + 1

(
2k

k

)

and
1

N
Tr[X2k+1]→ 0.

We will see a combinatorial interpretation of ck soon.

Convergence in what sense?

Definition 1.2. (xN)∞N=1 random variables.

xN → a in expectation if
E[xN ]→ a.
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xN → a in probability if ∀δ > 0,
P (|xN − a| ≥ δ)→ 0.

xN → a a.s. (almost surely) if
P (xN 6→ a) = 0.

Review the relation between these modes of convergence.

The theorem above holds in all three senses (Wigner 1955, 1958, Grenander ?, Arnold 1967).

Remark 1.3 (Second point of view: matrix-valued distribution). Take X ∼ GOEN as before. Forgetting
the matrix structure, we may think of X as an RN(N+1)/2-valued random variable, jointly Gaussian with
joint density

1

Z

∏
i<j

exp(−
x2
ij

2(1/N)
)
∏
i

exp(− x2
ii

2(2/N)
)
∏
i≤j

dxij =
1

Z

∏
i,j

exp(−Nxijxji/4)
∏
i,j

dxij

=
1

Z
exp

(
−N

4
Tr[X2]

)
dX.

Note that if U is an orthogonal matrix,

1

Z
exp

(
−N

4
Tr[(UXUT )(UXUT )]

)
d(UXUT ) =

1

Z
exp

(
−N

4
Tr[X2]

)
dX.

So this ensemble is orthogonally invariant. Since X is symmetric,

X = UΛUT ,

where U is a random orthogonal matrix, and Λ is a random diagonal matrix. From orthogonal invariance
it follows (after some work) that U is a Haar orthogonal matrix, with a uniform distribution over the or-
thogonal group, and so eigenvectors of X are uniformly distributed on a sphere. What about eigenvalues?

Third point of view: eigenvalues and spectral measure.

XN is symmetric, so diagonalizable, with (random!) eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λN . Combine these
into an empirical spectral measure

µ̂X =
1

N
(δλ1 + . . .+ δλN )

which is a random measure.

Note:
1

N
Tr[Xk] =

1

N
Tr[(UΛUT )k] =

1

N
Tr[Λk] =

1

N

N∑
i=1

λki =

∫
xk dµ̂(x),

the k’th moment of µ̂.
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Theorem (Wigner’s Theorem II). Let XN ∼ GOE. Then as N →∞,

µ̂N → σ

weakly, meaning that for any f ∈ Cb(R), ∫
f dµ̂N → f dσ,

and σ is the (Wigner) semicircle law,

dσ(x) =
1

2π

√
4− x21[−2,2] dx.

Figure 1.1: Semicircle law

Again, µ̂N random, so: µ̂N → σ weakly in expectation if ∀f ∈ Cb(R),

E
[∫

f dµ̂N

]
→ f dσ;

weakly in probability if

P

(∣∣∣∣∫ f dµ̂N − f dσ
∣∣∣∣ ≥ δ

)
→ 0;

weakly a.s. if

P

(∫
f dµ̂N 6→ f dσ

)
= 0.

Remark 1.4. It is not hard to check that∫
x2k+1 dσ(x) = 0,

∫
x2k dσ(x) = ck.

So Wigner I says ∫
xk dµ̂N →

∫
xk dσ(x).

Of course this function is not in Cb(R).
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Results so far are about (weighted) averages of eigenvalues. What about individual eigenvalues? Recall
that we defined λ1 ≤ λ2 ≤ . . . ≤ λN , and showed

1

N
(δλ1 + . . .+ δλN )→ σ.

with support [−2, 2], figure omitted.

Theorem. Let X ∼ GOEN . Then λN(XN)→ 2 in probability.

(Füredi, Komlos 1981, Bai, Yin 1988)

Fluctuations.

Recall

1

N
Tr[X2k

N ]→ ck in probability,

λN(XN)→ 2 in probability.

These are analogs of the laws of large numbers. What about the analogs of the Central Limit Theorem?

Theorem.
N

(
1

N
Tr[X2k

N ]− ck
)
→ N (0, ?) in distribution.

In contrast,
N2/3(λN(XN)− 2)→ Tracy-Widom distribution.

Figure 1.2: The Tracy-Widom distribution
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Remark 1.5 (Large deviations). Recall that for large N , µ̂N ≈ σ with large probability. What are the
chances that it is far from σ? Very roughly, for a probability measure ν,

Prob(µ̂N ≈ ν) ∼ e−N
2I(ν),

where
I(ν) =

1

4

∫
x2 dν(x)− 1

2

∫∫
log |x− y| dν(x) dν(y)

= logarithmic energy = free entropy. Here I(σ) minimizes I .

Spacing distributions.

Recall
µ̂N =

1

N
(δλ1 + . . .+ δλN )→ ρ(x) dx,

ρ(x) =
1

2π

√
4− x21[−2,2](x).

So intuitively, ∫ λj

−2

ρ(x) dx ≈ j

N

(in fact true) and
1

N
≈
∫ λj+1

λj

ρ(x) dx ≈ (λj+1 − λj)ρ(λj).

Thus
λj+1 − λj ≈

1

Nρ(λj)
.

So renormalize
sj = Nρ(λj)(λj+1 − λj).

For 0� j � N , independently of j, s ∼ Gaudin distribution. Figure omitted.

This is of interest because of Wigner’s original model: X models the Hamiltonian of a large atom, in
which case λj’s are the energy levels. Physically what is observed are not λj’s but (λi − λj)’s. Figure
omitted.

These properties can also be stated in terms of k-point correlation functions.
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1.2 Other ensembles.

Other Gaussian ensembles.

Gaussian unitary ensemble GUEN .

For 1 ≤ i, j ≤ N , let Bij ∼ N (0, 1) be independent. Define XN by

[XN ]ij =
1√
2N

(Bij +
√
−1Bji), i < j,

[XN ]ji = [XN ]ij =
1√
2N

(Bij −
√
−1Bji), i < j,

[XN ]ii =
1√
N
Bii.

Thus XN is complex Hermitian, its off-diagonal entries are complex Gaussian, and its diagonal entries
are real Gaussian. Its distribution is invariant under conjugation by unitary matrices.

Gaussian symplectic ensemble GSEN .

Recall that the algebra H of quaternions is

{a+ bi1 + ci2 + di3 : a, b, c, d ∈ R}

subject to the relations i21 = i22 = i23 = i1i2i3 = −1. For q ∈ H, we may define the quaternion conjugate
q as in the complex case. The dual Q∗ of a quaternion matrix is its conjugate transpose. A matrix
Q = Q∗ is self-dual. Finally, the symplectic group consists of quaternion matrices such that S∗S =
SS∗ = I . The Gaussian symplectic ensemble consists of self-dual quaternionic matrices whose entries are
properly normalized independent quaternionic Gaussians. Its distribution is invariant under conjugation
by symplectic matrices.

Most results which hold for GOE hold, either exactly or with appropriate modification, for GUE and GSE
(in fact the results for GUE are often neater). Moreover we can include all these in the family of Gaussian
β-ensembles, with β = 1 real/orthogonal, β = 2 complex/unitary, and β = 4 quaternionic/symplectic.

GOE satisfies two properties:

a. Symmetric with independent entries.

b. Orthogonally invariant.

These two properties in fact characterize GOE. So have two natural directions to generalize.
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Wigner ensembles.

[XN ]ij symmetric, independent,

Xij = Xji ∼
1√
N
Y1, Y1 ∼ ν1,

Xii ∼
1√
N
Y2, Y2 ∼ ν2,

Var ν1 <∞, Var ν2 <∞, and possibly with assumptions on higher moments.

Then µ̂N → σ still! Under extra assumptions, also λN(XN)→ 2 and N2/3(λN − 2)→ TW.

Orthogonally invariant ensembles.

Recall for GOE,

XN ∼
1

Z
exp

(
−N

4
Tr[X2]

)
dX.

More generally, may look at

X ∼ 1

Z
exp (−N Tr[V (X)]) dX

for V a nice function. Then µ̂N → µV , the equilibrium measure for the potential V (different from σ),
which can be described using IV (ν). However the spacing distributions, for nice V , do not depend on V ,
and so are universal, as is the convergence to the Tracy-Widom distribution.

Non-symmetric ensembles.

Xij ∼
1√
N
Y, Y ∼ ν

all independent.

X diagonalizable a.s.

µ̂N =
1

N
(δλ1 + . . .+ δλN )

is a measure on C. For nice ν, µ̂N converges to the circular law (Girko 1984, Tao, Vu 2008), figure
omitted.

Can ask similar questions in this context.
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Wishart ensembles.

The oldest appearance of asymptotic theory of random matrices (Wishart 1928).

Consider a k-component Gaussian vector Y ∼ N (0,Σ) with the covariance matrix Σ. How to estimate
Σ?

Take N independent samples Y (1), Y (2), . . . Y (N). The sample covariance estimate is

E[YiYj] ≈
1

N

N∑
n=1

Y
(n)
i Y

(n)
j .

Let Ŷ = (Y1|Y2| . . . |YN), a k ×N matrix. Then

E[YiYj] ≈
1

N

N∑
n=1

ŶinŶjn =
1

N
(Ŷ Ŷ T )ij.

X = 1
N
Ŷ T Ŷ (note order) is the N ×N Wishart(k,N,Σ) matrix. If k is fixed, as N →∞, 1

N
Ŷ Ŷ T → Σ.

What if both k and N are large? Note that X is orthogonally invariant (check), so only its eigenvalues
matter, and they are closely related to the eigenvalues of 1

N
Ŷ Ŷ T . For example if Σ = I , and k

N
→ p, then

µ̂XN converges to the Marchenko-Pastur distribution.

Connections to other fields.

Wigner, Tracy-Widom, Gaudin, Marchenko-Pastur distributions appear in unexpected contexts with no a
priori connection to random matrices. We only give two examples.

Example 1.6 (Ulam problem). Let α ∈ S(N) be a permutation. Reorder {1, 2, . . . , N} according to α,
and let L(α) be the length of the longest increasing subsequence in it. Pick α uniformly at random. What
can be said about L?

Theorem. (Vershik, Kerov 1977, Baik, Deift, Johansson 1999) As N → ∞, the average length of the
longest increasing subsequence

E[L] ≈ 2
√
N,

and
L− 2

√
N

N1/6
→ Tracy-Widom distribution.

Example 1.7 (Riemann zeta function). ζ(z) = analytic continuation of
∑∞

n=1
1
nz

. The Riemann Hypoth-
esis states that all zeros of ζ lie on the critical line z = 1

2
+ iy. Denote the imaginary parts of the zeros by

λ1 ≤ λ2 ≤ λ3 ≤ . . .. The prime number theorem implies that

λn ∼
2πn

log n
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and so
λn+1 − λn ∼

2π

log n
.

So renormalize: roughly,

vn =
log n

2π
(λn+1 − λn)

Then for large n, v appears to follow the (GUE version of the) Gaudin distribution. Extensive numerical
and some theoretical evidence (Montgomery 1973, Odlyzko 1987). No proof!
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Chapter 2

Wigner’s theorem by the method of moments.

The techniques in this chapter go all the way back to Wigner (1955), but continue to be used with great
success.

2.1 Convergence of moments.

Theorem 2.1. LetX be a Wigner matrix with finite moments. That is, for eachN , {Xij : 1 ≤ i ≤ j ≤ N}
are independent,

Xij = Xji ∼
1√
N
Yij, Yij ∼ ν1,

Xii ∼
1√
N
Yii, Yii ∼ ν2,

E[Yij] = 0, Var ν1 = 1, and all the higher moments of ν1 and ν2 are finite. Then for k ≥ 1,

1

N
Tr[X2k

N ]→ ck

and
1

N
Tr[X2k−1

N ]→ 0

in expectation, in probability, and (as long as all the random variables live on the same probability space)
almost surely.

Remark 2.2. The condition Var ν1 = 1 is there purely to simplify the normalization. The condition
that entries are identically distributed can easily be removed as long as the moments of the entries are
uniformly bounded. The condition of equal variances is absolutely essential. The independence condition
can be weakened, but the proof becomes significantly more complicated.
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Proof of Theorem 2.1 for convergence in expectation.

1

N
Tr[Xk

N ] =
1

N1+k/2

N∑
u(1),...,u(k)=1

Yu(1)u(2)Yu(2)u(3) . . . Yu(k)u(1).

Fix u = (u(1), u(2), . . . , u(k)). Let Su be the set

Su = {u(1), u(2), . . . , u(k)} .

Consider the multigraph with the vertex set S, and the number of undirected edges between u(i) and u(j)
equal to the multiplicity of the factor Yu(i)u(j) = Yu(j)u(i) in the product above; multiplicity zero means no
edge. Note that this multigraph comes equipped with an Eulerian circuit: the path

u(1), u(2), u(3), . . . u(k), u(1)

passes through each edge of the graph exactly as many times as its multiplicity. Finally, if we forget the
multiplicities, we end up with the underlying (simple) graph. The Eulerian condition implies in particular
that this graph is connected.

We decompose the sum above according to

1

N
E[Tr[Xk

N ]] =
1

N1+k/2

k∑
s=1

∑
u:|Su|=s

E[Yu(1)u(2)Yu(2)u(3) . . . Yu(k)u(1)].

Note that each expectation on the right-hand side is independent of N .

First suppose that s < 1 + k/2. Then

|{u : |Su| = s}| ≤
(
N

s

)
sk ≤ skN s.

Therefore
1

N1+k/2

k/2∑
s=1

∑
u:|Su|=s

E[Yu(1)u(2)Yu(2)u(3) . . . Yu(k)u(1)]→ 0

as N →∞.

Next, note that if some edge in the graph appears with multiplicity 1, then since entries of the matrix are
independent and centered, the corresponding expectation is zero. But if a connected multigraph has k
edges and each edge has multiplicity at least 2, it can have at most 1 + k/2 vertices. Therefore

1

N1+k/2

N∑
s=2+k/2

∑
u:|Su|=s

E[Yu(1)u(2)Yu(2)u(3) . . . Yu(k)u(1)] = 0
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and
1

N
E[Tr[Xk

N ]] =
1

N1+k/2

∑
u:|Su|=1+k/2

E[Yu(1)u(2)Yu(2)u(3) . . . Yu(k)u(1)].

In particular this is zero for k odd; from now on we assume k to be even. In that case the argument above
shows that the non-zero terms in the sum correspond to graphs with 1 + k/2 vertices and k/2 edges,
each of multiplicity 2. This means that each underlying simple graph is a tree, and the sum is taken over
precisely all labeled ordered rooted trees with 1 + k/2 vertices, with a root (corresponding to u(1)), an
order of leaves at each vertex (corresponding to the order in which they are traversed by the Eulerian
circuit), and 1 + k/2 distinct numbers between 1 and N (labels of the vertices). The number of such
ordered rooted trees is the Catalan number ck/2 (see the lemma below). Note also that a tree cannot have
self-edges, so no terms of the form Yii appear. Thus using independence of entries

1

N
E[Tr[Xk

N ]] =
N(N − 1) . . . (N − k/2)

N1+k/2
Vark[ν1]ck/2 → ck/2

as N →∞.

Lemma 2.3. The number of ordered trees rooted with k + 1 vertices is the Catalan number ck.

Proof. Note that a tree with a fixed Eulerian circuit and root can be identified with an ordered tree, since
drawing the tree with the circuit on the outside corresponds to a unique way to define a depth-first order
on it. Let tk be the number of such trees. By removing the edge (u(1), u(2)), we see that these numbers
satisfy the Catalan recursion

tk =
k−1∑
i=0

titk−i−1,

with t0 = 1, t1 = 1. So tk = ck.

Exercise 2.4. Prove that the Catalan numbers satisfy the Catalan recursion. Here is one possible approach.
Suppose b0 = b1 = 1 and the bk’s satisfy the Catalan recursion. Let F (z) =

∑∞
k=0 bkz

k be their generating
function. Show that F satisfies a quadratic equation. Solve this equation to find a formula for F . Finally,
use the generalized binomial theorem to expand F into a power series, to see that its coefficients are the
Catalan numbers.

To upgrade convergence in expectation to convergence in probability, we recall

Lemma 2.5 (Markov inequality). Let U be a positive random variable with a finite expectation. Then for
any δ > 0

P (U ≥ δ) ≤ 1

δ
E[U ].

Lemma 2.6 (Chebyshev inequality). Let V be a random variable with finite variance. Then for any δ > 0

P (|V − E[V ]| ≥ δ) ≤ 1

δ2
Var[V ].
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Proof of Theorem 2.1 for convergence in probability. Since

P

(∣∣∣∣ 1

N
Tr[Xk]−mk(σ)

∣∣∣∣ ≥ δ

)
≤ P

(∣∣∣∣ 1

N
Tr[Xk]− 1

N
E[Tr[Xk]]

∣∣∣∣ ≥ δ −
∣∣∣∣ 1

N
E[Tr[Xk]]−mk(σ)

∣∣∣∣) ,
we have just shown that

∣∣ 1
N
E[Tr[Xk]]−mk(σ)

∣∣ → 0 as N → ∞, and using Chebyshev’s inequality, it
suffices to show that

Var

[
1

N
Tr[Xk]

]
→ 0.

This is
1

N2
E
[
Tr[Xk] Tr[Xk]

]
− 1

N2
E[Tr[Xk]] E[Tr[Xk]].

We refine our analysis in the previous proof, noting for future reference the speed of decay of various
terms. Denoting

Yu = Yu(1)u(2)Yu(2)u(3) . . . Yu(k)u(1),

Var

[
1

N
Tr[Xk]

]
=

1

N2+k

k∑
s,t=1

∑
u,v:|Su|=s,|Sv|=t

(E[YuYv]− E[Yu] E[Yv]) .

Again we have a multigraph with the vertex set Su∪Sv, this time covered by a pair of paths which together
traverse each edge according to its multiplicity. So it has at most two connected components with vertex
sets Su and Sv if these are disjoint, or one component if these intersect. By the same arguments as above,
we can conclude that

the terms with |Su ∪ Sv| ≤ k go to zero at least as fast as 1
N2 with N → ∞, while the terms with

|Su ∪ Sv| = 1 + k go to zero as 1
N

.

Thus assume |Su ∪ Sv| ≥ 1 + k.

E[Yu] E[Yv] = 0 unless both |Su| , |Sv| ≤ 1 + k/2 and the subgraphs restricted to Su, Sv are trees with
double edges.

E[YuYv] = 0 unless

• |Su ∪ Sv| = 2 + k and the graph has two components, each of which is a tree with double edges;

• or |Su ∪ Sv| = 1 + k, |Su ∩ Sv| = 1, and the graph is a tree with double edges;

• or |Su ∪ Sv| = 1 + k, |Su ∩ Sv| = 0, and the graph has two components, one a tree with double
edges, the other with double edges and a single cycle;

• or |Su ∪ Sv| = 1 + k, |Su ∩ Sv| = 0, and the graph has two components, each of which is a tree
with double edges, and the total of two triple edges (note that these two edges have to lie in the
same sub-graph);
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• or |Su ∪ Sv| = 1 + k, |Su ∩ Sv| = 0, and the graph has two components, each of which is a tree
with double edges, and a single quadruple edge.

In the case when |Su ∪ Sv| = 2 + k and the graph has two components, each of which is a tree with
double edges, it follows that Su and Sv are disjoint of size 1 + k/2, and

E[YuYv]− E[Yu] E[Yv] = 0.

Finally, suppose |Su ∪ Sv| = 1 + k, and the graph is a tree with double edges. We have two non-empty
paths whose union traverses each edge exactly twice. Since the graph is a tree, each edge must be traversed
by each path either zero times or twice. So the paths are actually edge-disjoint, although they may contain
common vertices. Then independence again implies that

E[YuYv]− E[Yu] E[Yv] = 0.

The same conclusion follows in the other sub-cases. We conclude that

Var

[
1

N
Tr[Xk]

]
=

1

N2+k

k∑
s,t=1

∑
u,v:|Su|=s,|Sv|=t

(E[YuYv]− E[Yu] E[Yv])→ 0

at least as fast as 1
N2 .

To upgrade convergence in probability to almost sure convergence, we recall

Lemma 2.7 (The Borel-Cantelli Lemma). Let {EN}∞N=1 be events (measurable subsets) such that

∞∑
N=1

P (EN) <∞.

Then P (ω : ω lies in infinitely many EN) = 0.

Corollary 2.8. Let {xN}∞N=1 be a sequence of random variables. If

∞∑
N=1

P (|xN − a| ≥ δ) <∞

for all δ > 0, then xN → a a.s. In particular, this conclusion follows from the stronger assumption that
∞∑
N=1

Var[xN ] <∞.

Proof of Theorem 2.1 for almost sure convergence. We note that since the variances decay at least as fast
as 1

N2 ,
∞∑
N=1

Var

[
1

N
Tr[Xk

N ]

]
<∞.
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Remark 2.9. One can use more complicated versions of the moment method to prove the Gaussian
fluctuations for moments, and convergence of the largest eigenvalue to 2.

Exercise 2.10. A complex Wigner matrix XN has the form XN = 1√
N
YN . Here YN is a complex Hermi-

tian random matrix, such that the random variables {Yij : 1 ≤ i ≤ j ≤ N} are independent,

Yij = Y ji, i < j

are identically distributed complex random variables with mean zero and variance

E
[
|Yij|2

]
= E

[
(<Yij)2 + (=Yij)2

]
= 1,

and Yii are identically distributed real random variables with mean zero and finite variance. Prove the
analog of Theorem 2.1 for these matrices. You do not need to repeat all the arguments from this section,
just indicate where and how they need to be modified.

What about the quaternionic Wigner matrices, defined similarly? How does non-commutativity of entries
affect the argument? Note that for independent but non-commuting variables x, y, E[xyx] = E[x2]E[y],
but in general E[xyxy] 6= E[x2]E[y2].

Sketch of a solution. The argument, at least for convergence in expectation, basically goes through until
the last step, when the moments are reduced to a sum of terms over trees with Eulerian circuits traversing
each edge exactly twice. For a general graph, it is possible for an edge to be traversed twice in the same
direction (which causes problems in the complex case), and the Y terms corresponding to the same edge
may not be adjacent (which causes problems in the quaternionic case). However for a tree, each edge
traversed twice has to be traversed in opposite directions, and the Y terms corresponding to the same
edge may always be taken to be adjacent by “pruning the leaves.” Instead of a proof, we illustrate these
statements with an example. Consider the term

E[Yu(1)u(2)Yu(2)u(3)Yu(3)u(2)Yu(2)u(4)Yu(4)u(5)Yu(5)u(4)Yu(4)u(6)Yu(6)u(4)Yu(4)u(2)Yu(2)u(1)]

corresponding to the path 1, 2, 3, 2, 4, 5, 4, 6, 4, 2, 1 (draw the corresponding tree!). Then using the very
weak form of independence called singleton independence, the term above is equal to

E[Yu(1)u(2)Yu(2)u(4)Yu(4)u(2)Yu(2)u(1)]E[Yu(2)u(3)Yu(3)u(2)]E[Yu(4)u(5)Yu(5)u(4)]E[Yu(4)u(6)Yu(6)u(4)]

= E[Yu(1)u(2)Yu(2)u(1)]E[Yu(2)u(3)Yu(3)u(2)]E[Yu(2)u(4)Yu(4)u(2)]E[Yu(4)u(5)Yu(5)u(4)]E[Yu(4)u(6)Yu(6)u(4)]

This argument in fact shows that, as long as they satisfy appropriate joint moment bounds and singleton
independence, the entries of the matrix Y can be taken from any non-commutative (operator) algebra, and
the corresponding moments of X will still converge in expectation to the Catalan numbers.

Exercise 2.11. Let YN be an N × N matrix with independent identically distributed entries, with mean
zero, variance 1, and finite moments. Let XN = 1√

N
YN and ZN = XNX

T
N . Then ZN is a (generalized)

Wishart matrix. For each k, show that

E
[

1

N
Tr[Zk

N ]

]
→ ck

18



as N → ∞. Thus the moments of the asymptotic empirical spectral distribution of ZN are equal to the
even moments of the semicircular distribution. Use this to conclude that this asymptotic distribution is the
quarter-circle law

dµ(x) =

√
x(4− x)

2πx
1[0,4] dx.

More generally, in the construction above we may start with YN an K ×N matrix, and assume that both
K and N go to infinity in such a way that K/N → α ∈ (0, 1]. For each k, show that E[Zk

N ] converges as
N →∞, and express the answer in terms of the number of certain combinatorial objects. Hint: the answer
involves directed bi-partite graphs. In fact the “combinatorial objects” can be enumerated, showing that

E
[

1

N
Tr[Zk

N ]

]
→

k−1∑
j=0

αj+1

j + 1

(
k

j

)(
k − 1

j

)
.

Here the coefficients of αj are called the Narayana numbers. The distribution with these moments is the
Marchenko-Pastur distribution with parameter α,

dµ(x) =

√
(x− λ−)(λ+ − x)

2παx
1[λ−,λ+] dx,

where λ± = (1±
√
α)2.

2.2 Generalities about weak convergence.

Let C0(R) be the space of continuous functions going to zero at infinity, with the uniform norm. Riesz
Representation Theorem states that the dual Banach space C0(R)′ is isometrically isomorphic to the Ba-
nach space of finite (Radon, complex) measures, with the total variation norm. By definition, a sequence
of finite measures νN → ν in the weak∗ topology if for all f ∈ C0(R),∫

f dνN →
∫
f dν.

For this particular Banach space, this topology is also called the vague topology. According to the Banach-
Alaoglu theorem, the unit ball of the dual space is compact in the weak∗ topology. Since it is also
metrizable in this topology, this unit ball is also sequentially compact. Putting all these results together,
we get

Proposition 2.12. Any sequence of probability measures has a subsequence which converges vaguely to
a finite measure.

The limit need not be a probability measure. However the weak limit of a sequence of probability mea-
sures is again a probability measure. To upgrade vague to weak convergence, we need the following
notion.
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Definition 2.13. A family of measures {νN}∞N=1 is tight if ∀ε > 0 ∃C ∀N

νN(|x| ≥ C) ≤ ε.

Note that the set
{∫

x2 dνN
}∞
N=1

being bounded is a sufficient condition for tightness.

Exercise 2.14. Let {νN}∞N=1 be a sequence of probability measures. The following are equivalent.

a. The sequence is tight and converges vaguely.

b. The sequence converges vaguely to a probability measure.

c. The sequence converges weakly.

Corollary 2.15. Any tight sequence of probability measures has a subsequence converging weakly to a
probability measure.

Lemma 2.16. In a metric space, a sequence {xN}∞N=1 converges to a if and only any of its subsequences
has a further subsequence converging to a.

Lemma 2.17. Suppose g, h are continuous functions such that g ≥ 0 and limx→∞ |h(x)| /g(x) = 0.
Suppose νn → ν weakly and C = sup

{∫
g(x) dνN(x)

}∞
N=1

<∞. Then∫
h dνN →

∫
h dν.

Proof. Fix ε > 0, and choose I = [−K,K] so that |h(x)| /g(x) < ε on Ic. Let J = [−K − 1, K + 1],
and let ϕ be a continuous function such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on I , and ϕ ≡ 0 on J c. Then∫

hϕ dνN →
∫
hϕ dν

while ∫
|h| (1− ϕ) dνN =

∫
|h|
g
g(1− ϕ) dνN ≤ ε

∫
g dνN ≤ εC

and by Fatou’s lemma also ∫
|h| (1− ϕ) dν ≤ εC.

The result follows.

Corollary 2.18. If for all k,
∫
xk dνN →

∫
xk dν and ν is uniquely determined by its moments, then

νN → ν weakly.
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Proof. Any subsequence of {νN}∞N=1 has a further subsequence converging weakly to a probability mea-
sure. Call the limit ν̃. It suffices to show that ν̃ = ν. Indeed, since the sequence

{∫
xk dνN

}∞
N=1

converges, it is bounded; and ∫
|x|k+1 dνN ≤

√∫
x2 dνN

∫
x2k dνN .

Taking g(x) = |x|k+1 and h(x) = xk in the preceding lemma, we conclude that
∫
xk dνN →

∫
xk dν̃ and

so
∫
xk dν̃ =

∫
xk dν. Since ν is uniquely determined by its moments, the measures are equal.

Lemma 2.19. A compactly supported measure is uniquely determined by its moments.

The idea of the proof is that for a compactly supported µ, its Fourier transform (characteristic function)
F(θ) =

∫
eixθ dθ is an analytic function with the power series expansion

F(θ) =
∞∑
n=0

inmn(µ)

n!
θn,

and that any µ is uniquely determined by its Fourier transform. Alternatively, we could use Stieltjes
transforms as in Remark 4.3.

Theorem 2.20. Let X be a Wigner matrix with finite moments as in Theorem 2.1. Then

µ̂XN → σ

weakly almost surely.

Proof. Fix ω such that for all k, ∫
xk dµ̂XN (ω) →

∫
xk dσ.

We know that the set of ω where this is false has measure zero. Since σ is compactly supported, for such
ω, µ̂XN (ω) → σ weakly.

2.3 Removing the moment assumptions.

Theorem 2.21. Let X be a Wigner matrix. That is, for each N , {Xij : 1 ≤ i ≤ j ≤ N} are independent,

Xij = Xji ∼
1√
N
Yij, Yij ∼ ν1,

Xii ∼
1√
N
Yii, Yii ∼ ν2,

E[Yij] = 0, Var ν1 = 1, and Var ν2 <∞. Then

µ̂XN → σ

weakly in probability.
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The result is obtained by combining the lemmas below. For the proofs we will follow very closely the
presentation in Section 5 of Todd Kemp’s notes, and so omit them here.

Lemma 2.22. In the notation from the preceding theorem, define for a (large) constant C > 0

Ỹij =
1

σij(C)
(Yij1|Yij |≤C − E[Yij1|Yij |≤C ]),

where σij(C)2 = Var(Yij1|Yij |≤C) for i 6= j, and σii(C) = 1 (see Remark 2.29 for an alternative). Then
Yij − Ỹij → 0 in L2 as C →∞.

Definition 2.23. A function f : Rn → R is Lipschitz if

‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
‖x− y‖

+ sup
x
|f(x)| <∞.

The space of Lipschitz functions is denoted by Lip(Rn). We only put in the second term to have
Lip(Rn) ⊂ Cb(Rn).

Lemma 2.24. If
∫
f dµn −

∫
f dνn → 0 for all f ∈ Lip(R), then

∫
f dµn −

∫
f dνn → 0 for all

f ∈ Cb(R).

Lemma 2.25. Let A and B be N × N complex Hermitian (or in particular, real symmetric) matrices.
Denote by λA1 ≤ . . . ≤ λAN and λB1 ≤ . . . ≤ λBN their eigenvalues, and by µ̂A and µ̂B their empirical
spectral measures. Then for any f ∈ Lip(R),∣∣∣∣∫ f dµ̂A −

∫
f dµ̂B

∣∣∣∣ ≤ ‖f‖Lip

(
1

N

N∑
i=1

(λAi − λBi )2

)1/2

.

Lemma 2.26 (Hoffman-Wielandt inequality). For A,B as in the preceding lemma,

N∑
i=1

(λAi − λBi )2 ≤ Tr[(A−B)2].

We will follow Todd Kemp’s notes for the proof, but also outline the proof of the Birkhoff-von Neumann
theorem.

Theorem 2.27 (Birkhoff-von Neumann). Let D be the space of N × N doubly stochastic matrices. The
extreme points of D are the permutation matrices.

Proof. It is easy to check thatD is convex. Let A not be a permutation matrix. We will show that A is not
an extreme point, that is, it is a convex combination of two matrices in D.

Since A is not a permutation matrix, it has an entry Au(1)u(2) with 0 < Au(1)v(1) < 1. Since columns add
up to 1, there is another entry Au(2)v(1) in the same column with the same property. Since rows add up to
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1, there is another entry Au(2)v(2) in the same row with the same property. Continue in this fashion until
we arrive in a row or column previously encountered. By possibly removing the beginning of this path,
we arrive at the family of entries

S =
{
Au(1)v(1), Au(2)v(1), Au(2)v(2), . . . , Au(k)v(k), Au(1)v(k)

}
all of which are strictly between 0 and 1. Note that there is necessarily an even number of them. Let
ε = min {a, 1− a : a ∈ S}. Let B be the matrix whose entries are ε for even numbered elements of S,
−ε for odd numbered elements of S, and 0 otherwise. Then A+B and A−B are both doubly stochastic,
and A = 1

2
(A+B) + 1

2
(A−B).

Exercise 2.28. Let x1 ≤ x2 ≤ . . . ≤ xN and y1 ≤ y2 ≤ . . . yN . Then for any permutation α,∑
xiyα(i) ≤

∑
xiyi.

Proof of Theorem 2.21. Fix f ∈ Lip(R) and ε, δ > 0. By Lemma 2.24, it suffices to show that

P

(∣∣∣∣∫ f dµ̂XN −
∫
f dσ

∣∣∣∣ ≥ δ

)
≤ ε

for sufficiently large N . For Ỹ as in Lemma 2.22, denote X̃ = 1√
N
Ỹ . Then the entries of X̃ satisfy the

assumptions of Theorem 2.20, and so

P

(∣∣∣∣∫ f dµ̂X̃N −
∫
f dσ

∣∣∣∣ ≥ δ/2

)
≤ ε/2 (2.1)

for sufficiently large N . On the other hand, combining Lemma 2.25 with the Hoffman-Wielandt inequal-
ity, ∣∣∣∣∫ f dµ̂XN −

∫
f dµ̂X̃N

∣∣∣∣ ≤ ‖f‖Lip

(
Tr

[
1

N
(XN − X̃N)2

])1/2

.

Therefore

P

(∣∣∣∣∫ f dµ̂XN −
∫
f dµ̂X̃N

∣∣∣∣ ≥ δ/2

)
≤ P

(
‖f‖Lip

(
Tr

[
1

N
(XN − X̃N)2

])1/2

≥ δ/2

)

≤
4‖f‖2

Lip

δ2
E
[
Tr

[
1

N
(XN − X̃N)2

]]
=

4‖f‖2
Lip

δ2

1

N2
E
[
Tr
[
(YN − ỸN)2

]]
=

4‖f‖2
Lip

δ2

1

N2
E

[
N∑

i,j=1

(Yij − Ỹij)2

]

=
4‖f‖2

Lip

δ2

1

N2

(
N(N − 1)E[(Y12 − Ỹ12)2] +N E[(Y11 − Ỹ11)2]

)
≤

4‖f‖2
Lip

δ2

(
E[(Y12 − Ỹ12)2] + E[(Y11 − Ỹ11)2]

)
≤ ε/2,

23



where by Lemma 2.22 the last quantity can be made arbitrarily small by choosing a sufficiently large C.
The result follows by combining with the inequality (2.1).

Remark 2.29. In our cutoff, we could also have taken Ỹii = 0, and the argument would still work.
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Chapter 3

Concentration of measure techniques.

Concentration inequalities are estimates on quantities of the form

F (x1, . . . , xn)− E[F (x1, . . . , xn)],

for (almost) independent and (almost) identically distributed random variables xi with distributions drawn
from some class, and sufficiently nice functions F . Typically, this means that F ∈ Lip(Rn). Our main
interest is in the random variables being entries of a random matrix. The lemma following the remark
contains natural examples of Lipschitz functions of such entries.

Remark 3.1 (Norms). The Frobenius norm of a real matrix A is

‖A‖F =
√

Tr[AAT ] =

√√√√ N∑
i,j=1

a2
ij.

For a symmetric matrix we may re-write this as

‖A‖F =

√
2
∑
i<j

a2
ij +

∑
i

a2
ii.

On the other hand, in the arguments below we will need to identifyAwith a vector in N(N+1)
2

-dimensional
space, with norm

‖A‖ =

√∑
i<j

a2
ij +

∑
i

a2
ii

Clearly ‖A‖F ≤
√

2 ‖A‖. We will also occasionally use the operator norm, defined as

‖A‖op = sup
‖v‖6=0

‖Av‖
‖v‖

= sup
‖u‖,‖v‖6=0

|〈Av, u〉|
‖u‖ ‖v‖

.
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Exercise 3.2. Prove that for any matrix (symmetric or not) ‖A‖op ≤ ‖A‖F . Clearly this implies that the
map A 7→ ‖A‖op is Lipschitz.

Lemma 3.3. Let X be a symmetric N ×N matrix.

a. For each k, the map X 7→ λk(X) is Lipschitz of norm at most
√

2.

b. Let f ∈ Lip(R). Extend f to a map on symmetric matrices by

fTr(X) =
N∑
i=1

f(λi(X)) = Tr[f(X)].

Then fTr is Lipschitz and ‖fTr‖Lip ≤
√

2N‖f‖Lip.

Proof. For part (a),

|λk(A)− λk(B)| ≤

√√√√ N∑
i=1

|λi(A)− λi(B)|2 ≤ ‖A−B‖F ≤
√

2 ‖A−B‖ .

Similarly, for part (b),

|fTr(A)− fTr(B)| =

∣∣∣∣∣
N∑
i=1

f(λi(A))− f(λi(B))

∣∣∣∣∣
≤

N∑
i=1

|f(λi(A))− f(λi(B))|

≤ ‖f‖Lip

N∑
i=1

|λi(A)− λi(B)|

≤ ‖f‖Lip

√
N

√√√√ N∑
i=1

|λi(A)− λi(B)|2

≤ ‖f‖Lip

√
N ‖A−B‖F

≤ ‖f‖Lip

√
2N ‖A−B‖ .

3.1 Gaussian concentration.

Theorem 3.4. Let X = (X1, . . . , Xn) be i.i.d. N (0, σ2) random variables, and F ∈ Lip(Rn). Then for
all λ ∈ R,

E exp (λ(F (X)− E[F (X)])) ≤ exp
(
π2λ2σ2‖F‖2

Lip/8
)
.
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Therefore for all δ > 0,

P (|F (X)− E[F (X)]| ≥ δ) ≤ 2 exp
(
−2δ2/π2σ2‖F‖2

Lip

)
.

We follow the “duplication argument” of Maurey and Pisier as presented in Theorem 2.1.12 of Terry Tao’s
book. For a more conceptual approach using the Ornstein-Uhlenbeck semigroup, see Section 10 in Todd
Kemp’s notes. First we note two basic properties of the multivariate normal distribution.

Exercise 3.5. Let X = (X1, . . . , Xn) be a vector of independent normal random variables, with Xi ∼
N (µi, σ

2
i ).

a.
c ·X = c1X1 + . . .+ cnXn

is also Gaussian, with mean
∑n

i=1 ciµi and variance
∑n

i=1 |ci|
2 σ2

i .

b. Assume in addition that all Xi’s are i.i.d. normal with Xi ∼ N (0, σ2). Let U be an orthogonal
matrix. Then

UX =

(
N∑
j=1

UijXj

)n

i=1

has the same distribution as X , so that its components are independent standard normals. Hint:
recall that for jointly normal variables, uncorrelated implies independent.

Remark 3.6. We briefly recall the notion of conditional expectation. Instead of giving the definition, we
only list two key properties. First, for random variables Y and Z,

E[E[Z|Y ]] = E[Z].

Second, if f, g are functions and X, Y are independent random variables,

E[f(X)g(Y )|Y ] = E[f(X)]g(Y ).

Proof of the theorem. Step I. We first show how the second part of the theorem follows from the first. By
Markov inequality,

P (|F (X)− E[F (X)]| ≥ δ) = P
(
exp(λ |F (X)− E[F (X)]|) ≥ eλδ

)
≤ e−λδ E[exp(λ |F (X)− E[F (X)]|)] ≤ 2e−λδ exp

(
π2λ2σ2‖F‖2

Lip/8
)

where we use e|x| ≤ ex + e−x and apply the first part of the theorem to both F and −F . By taking

λ =
4δ

π2σ2‖F‖2
Lip

,
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we get the result.

Step II. We assume for now that F is smooth. By definition of the gradient and of the Lipschitz norm, for
a vector u,

|∇F (x) · u| = lim
h→0

∣∣∣∣F (x+ hu)− F (x)

h

∣∣∣∣ ≤ ‖F‖Lip ‖u‖ .

Taking u = ∇F (x), we conclude that ‖∇F (x)‖ ≤ ‖F‖Lip for all x.

By subtracting a constant from F (which does not change its gradient), we may assume that E[F (X)] = 0.

Step III. (Duplication trick) Let Y be an independent copy of X . Since E[F (Y )] = 0, we see from
Jensen’s inequality that

E[exp(−λF (Y ))] ≥ exp(−λE[F (Y )]) = 1

and thus (by independence of X and Y )

E[exp(λF (X))] ≤ E[exp(λF (X))]E[exp(−λF (Y ))] = E[exp(λ(F (X)− F (Y )))].

It thus suffices to estimate E[exp(λ(F (X)− F (Y )))], which is natural for Lipschitz F .

We first use the fundamental theorem of calculus along a circular arc to write

F (X)− F (Y ) =

∫ π/2

0

d

dθ
F (Y cos θ +X sin θ) dθ.

Note that Xθ = Y cos θ + X sin θ is another gaussian random variable equivalent to X , as is its deriva-
tive X ′θ = −Y sin θ + X cos θ; furthermore, and crucially, these two random variables are independent.
Applying Jensen’s inequality for the probability density 2

π
1[0,π/2], we get

exp(λ(F (X)− F (Y ))) = exp

(
λ

2

π

∫ π/2

0

π

2

d

dθ
F (Xθ) dθ

)
≤ 2

π

∫ π/2

0

exp

(
λ
π

2

d

dθ
F (Xθ)

)
dθ.

Applying the chain rule and taking expectations, we have

E[exp(λ(F (X)− F (Y )))] ≤ 2

π

∫ π/2

0

E
[
exp

(
λπ

2
∇F (Xθ) ·X ′θ

)]
dθ.

Let us first condition Xθ to be fixed. Recalling that X ′θ is equidistributed with X , we conclude that
λπ
2
∇F (Xθ) ·X ′θ is normally distributed with standard deviation at most

λπ

2

√√√√ N∑
i=1

(∇F (Xθ))2
iσ

2 ≤ π

2
λσ‖F‖Lip.

Therefore its moment generating function

E
[

exp

(
λπ

2
∇F (Xθ) ·X ′θ

)∣∣∣∣Xθ

]
≤ exp

(
π2λ2σ2‖F‖2

Lip/8
)
.
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Taking now the expectation with respect to Xθ, the result follows.

Step IV. To approximate a general Lipschitz function F by smooth functions, we follow the argument
of Todd Kemp in the proof of his Theorem 11.1. Let {ψε : ε > 0} be a smooth compactly supported
approximate identity on Rn. That is, ψ ∈ C∞c (Rn) is a non-negative function with support in the unit ball
B1 and total integral 1, and ψε(x) = ε−nψ(x/ε). Then ψε is also non-negative, has total integral 1, and is
supported in Bε. Let

Fε(x) = (F ∗ ψε)(x) =

∫
Rn
F (x− y)ψε(y) dy.

Then Fε is smooth, and so the theorem has been proven for it. Also,

|F (x)− Fε(x)| =
∣∣∣∣∫ F (x)ψε(y) dy −

∫
F (x− y)ψε(y) dy

∣∣∣∣
≤
∫
|F (x)− F (x− y)|ψε(y) dy

≤ ‖F‖Lip

∫
|y|ψε(y) dy ≤ ε‖F‖Lip

since Fε is supported in Bε. Thus Fε → F uniformly as ε → 0. Then E[Fε(X)] → E[F (X)] and
E exp (λ(Fε(X)− E[Fε(X)])) → E exp (λ(F (X)− E[F (X)])) as ε → 0 by the bounded convergence
theorem (since the distribution of X is a probability measure). Finally, by similar reasoning

|Fε(x)− Fε(y)| =
∣∣∣∣∫ F (x− z)ψε(z) dz −

∫
F (y − z)ψε(z) dz

∣∣∣∣
≤
∫
|F (x− z)− F (y − z)|ψε(z) dz

≤ ‖F‖Lip

∫
|x− y|ψε(z) dy = ‖F‖Lip ‖x− y‖

and so ‖Fε‖Lip ≤ ‖F‖Lip. Therefore

E exp (λ(F (X)− E[F (X)])) = lim
ε↓0

E exp (λ(Fε(X)− E[Fε(X)]))

≤ lim
ε↓0

exp
(
π2λ2σ2‖Fε‖2

Lip/8
)

≤ exp
(
π2λ2σ2‖F‖2

Lip/8
)
.

Exercise 3.7. Let Z = (Z1, . . . , Zn) be i.i.d. N (0, 1) random variables. Let Σ be a positive definite
matrix, and define X = Σ1/2Z. Then X is a jointly normal vector with mean zero and covariance matrix
Σ. Let F ∈ Lip(Rn). Then for all λ ∈ R,

E exp (λ(F (X)− E[F (X)])) ≤ exp
(
π2λ2 ‖Σ‖op ‖F‖

2
Lip/8

)
,

29



and so for all δ > 0,

P (|F (X)− E[F (X)]| ≥ δ) ≤ 2 exp
(
−2δ2/π2 ‖Σ‖op ‖F‖

2
Lip

)
.

In particular if Σij = δijσi,

P (|F (X)− E[F (X)]| ≥ δ) ≤ 2 exp
(
−2δ2/π2 max

i
(σ2

i )‖F‖
2
Lip

)
.

3.2 Concentration results for GOE.

Now let XN be a GOE matrix, f ∈ Lip(R), and F = fTr. Note that

F (XN) = N

∫
f dµ̂XN

and for each matrix entry, the variance is at most 2
N

. Then

P

(∣∣∣∣∫ f dµ̂XN − E
[∫

f dµ̂XN

]∣∣∣∣ ≥ δ

)
= P (|F (XN)− E[F (XN)]| ≥ Nδ)

≤ 2 exp
(
−N22δ2/π2σ2‖F‖2

Lip

)
≤ 2 exp

(
−Nδ2/π2σ2‖f‖2

Lip

)
≤ 2 exp

(
−N2δ2/2π2‖f‖2

Lip

)
.

Similarly,

P (|λk(XN)− E[λk(XN)]| ≥ δ) ≤ 2 exp
(
−δ2/π2σ2

)
= 2 exp

(
−Nδ2/2π2

)
Thus linear statistics concentrate at the rate of δ ∼ 1

N
(which is consistent with our moment method

results) while the eigenvalues appear to concentrate only at the rate of δ ∼ 1√
N

.

Since the operator norm ‖A‖op is less than the Frobenius norm, it also has Lipschitz constant at most
√

2,
and

P
(∣∣∣‖XN‖op − E[‖XN‖op]

∣∣∣ ≥ δ
)
≤ 2 exp

(
−Nδ2/2π2

)
.

This last inequality holds also for non-symmetric Gaussian matrices.

3.3 Other concentration inequalities.

The arguments in the preceding section only worked for Gaussian entries. Here are some alternative
conditions on the matrix entries leading to roughly the same conclusions.
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Definition 3.8. Let µ be a probability measure on Rn. The µ-entropy of a function f is

Entµ(f) =

∫
f log f dµ−

∫
f dµ · log

∫
f dµ.

µ satisfies the logarithmic Sobolev inequality with constant c if, for any continuously differentiable func-
tion f : Rn → R,

Entµ(f 2) ≤ 2c

∫
‖∇f‖2 dµ.

Gaussian measure satisfies LSI, as does any density of the form 1
Z
e−V for sufficiently smooth potential V

(see below), as does the joint distribution of independent random variables each satisfying the LSI.

Lemma 3.9 (Herbst). Suppose the joint distribution of random variables µX satisfies LSI on Rn with
constant c. For F ∈ Lip(Rn),

P (|F (X)− E[F (X)]| ≥ δ) ≤ 2 exp(−δ2/2c‖F‖2
Lip).

Proof. As in the proof of Theorem 3.4, we may assume that E[F (X)] = 0, F is smooth, and it suffices to
show that for all λ,

E exp (λF (X)) ≤ exp
(
cλ2‖F‖2

Lip/2
)
.

Let f(X) = eλF (X)/2, f 2(X) = eλF (X) and ϕ(λ) = E[eλF (X)]. Then

Entµ(f 2) =

∫
eλF (X)λF (X) dµ−

∫
eλF (X) dµ · log

∫
eλF (X) dµ = λϕ′(λ)− ϕ(λ) logϕ(λ)

while

2c

∫
‖∇f‖2 dµ = 2c

∫
eλF (X)λ

2

4
‖∇F‖2 (X) dµ ≤ cλ2

2
‖F‖2

Lip

∫
eλF (X) dµ =

cλ2

2
ϕ(λ)‖F‖2

Lip.

Applying the LSI and dividing both sides by λ2ϕ(λ), we get

ϕ′(λ)

λϕ(λ)
− logϕ(λ)

λ2
≤ c

2
‖F‖2

Lip.

Note that for λ > 0, the left-hand side is precisely d
dλ

logϕ(λ)
λ

. Thus

d

dλ

logϕ(λ)

λ
≤ c

2
‖F‖2

Lip.

Moreover

lim
λ→0

logϕ(λ)

λ
= lim

λ→0

logϕ(λ)− logϕ(0)

λ
=
ϕ′(0)

ϕ(0)
= E[F (X)] = 0.
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Therefore
1

λ0

logϕ(λ0)− 0 =

∫ λ0

0

(
d

dλ

logϕ(λ)

λ

)
dλ ≤

cλ0‖F‖2
Lip

2

and so

ϕ(λ) ≤ exp

(
cλ2‖F‖2

Lip

2

)
,

which is the desired result.

Proposition 3.10 (Corollary of the Bakry-Emery criterion). Let Φ : Rn → R be at least twice continu-
ously differentiable growing sufficiently fast so that the probability measure

µΦ(dx) =
1

Z
exp(−Φ(x1, . . . , xn)) dx1 . . . dxn

is well defined. Write Hess(Φ)ij = ∂i∂jΦ. If for all x,

Hess(Φ)(x) ≥ 1

c
I

as matrices, then µΦ satisfies the LSI with constant c.

Corollary 3.11. Suppose X is

either a Wigner matrix with un-normalized entries satisfying the LSI with constant c

or is drawn from an orthogonally invariant ensemble 1
ZN
e−N Tr[V (X)] dX with V ′′(x) ≥ 1

c
> 0. Then

for any Lipschitz f ,

P

(∣∣∣∣∫ f dµ̂N − E
[∫

f dµ̂N

]∣∣∣∣ ≥ δ

)
≤ 2 exp

(
−N2δ2/4c‖f‖2

Lip

)
and for any k,

P (|λk(XN)− E [λk(XN)]| ≥ δ) ≤ 2 exp
(
−Nδ2/4c

)
The corollary applies for example to V (x) = |x|a, a ≥ 2, but not for a < 2. For 1 ≤ a < 2, we may still
get a weaker form of concentration using the following ideas.

Definition 3.12. Let µ be a probability measure on Rn. The µ-variance of a function f is

Varµ[f ] =

∫ (
f −

∫
f dµ

)2

dµ

µ satisfies the Poincaré inequality with constant m if, for any continuously differentiable f : Rn → R,

Varµ[f ] ≤ 1

m

∫
‖∇f‖2 dµ.
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Exercise 3.13. If µ satisfies the logarithmic Sobolev inequality with constant c, show that it satisfies the
Poincaré inequality with an appropriate constant. Hint: apply LSI to f = 1 + εg.

Proposition 3.14. Suppose the joint distribution of random variables µX satisfies the PI with constant m
on Rn. For F ∈ Lip(Rn),

P (|F (X)− E[F (X)]| ≥ δ) ≤ 2K exp
(
−
√
mδ/
√

2‖F‖Lip

)
,

where K is determined by m.

Proof. We may again assume that F is smooth, and it suffices to show that for sufficiently small |λ|,

E [exp (λ(F (X)− E[F (X)]))] ≤ K.

Apply the PI to f(X) = eλF (X)/2. We get

E[eλF (X)]− E[eλF (X)/2]2 ≤ 1

4m
λ2‖F‖2

Lip E[eλF (X)],

so that

E[eλF (X)] ≤
(

1− 1

4m
λ2‖F‖2

Lip

)−1

E[eλF (X)/2]2

for sufficiently small |λ|. That is,

logE[eλF (X)] ≤ − log

(
1− 1

4m
λ2‖F‖2

Lip

)
+ 2E[eλF (X)/2].

Iterating,

logE[eλF (X)] ≤ −
n∑
j=1

2j−1 log

(
1− 1

4jm
λ2‖F‖2

Lip

)
+ 2n E[eλF (X)/2n ]

Since limn→∞ 2n E[eλF (X)/2n ] = E[F (X)], it follows that

logE[eλ(F (X)−E[F (X)])] ≤ −
∞∑
j=1

2j−1 log

(
1− 1

4jm
λ2‖F‖2

Lip

)
Since the right-hand side is an increasing function of λ, by taking λ =

√
m/‖F‖2

Lip we get an upper
estimate

logE[eλ(F (X)−E[F (X)])] ≤ −
∞∑
j=1

2j−1 log

(
1− 1

4j

)
= logK <∞

since −
∑∞

j=1 2j−1 log
(
1− 1

4j

)
∼
∑∞

j=1 2j−1 1
4j

.

For Wigner matrices, having un-normalized entries satisfying the PI with a uniform constant leads to
concentration of the empirical spectral distribution at the rate e−NC .
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Proposition 3.15 (Talagrand). Let the i.i.d. random variables be bounded, with |Xi| ≤ K/2. Suppose
that F is a convex Lipschitz function. Then

P (|F (X)−MF (X)| ≥ δ) ≤ 4 exp
(
−δ2/16K2‖F‖2

Lip

)
,

where MF (X) is the median of F (X).

Remark 3.16. Note that in this case,

|E[F (X)]−MF (X)| ≤ E[|F (X)−MF (X)|]

=

∫ ∞
0

P (|F (X)−MF (X)| > t) dt

≤
∫ ∞

0

4 exp
(
−t2/16K2‖F‖2

Lip

)
= 8
√
πK‖F‖Lip,

which is small if K‖F‖Lip is. It follows that

P (|F (X)− E[F (X)]| ≥ Nδ) ≤ P (|F (X)−MF (X)|+ |E[F (X)]−MF (X)| ≥ Nδ)

≤ P (|F (X)−MF (X)| ≥ Nδ − 8
√
πK‖F‖Lip)

≤ 4 exp
(
−(Nδ − 8

√
πK‖F‖Lip)2/16K2‖F‖2

Lip

)
= 4e−4πeNδ

√
π/K‖F‖Lip exp

(
−N2δ2/16K2‖F‖2

Lip

)
.

For a Wigner matrix with bounded entries and a convex F = fTr, K ∼ 1√
N

and F ∼
√
N , so we have

Gaussian concentration with N .

Obviously (any) matrix norm is a convex function of the matrix.

Exercise 3.17. Let A be a symmetric matrix, with the largest eigenvalue λN(A).

a. Prove that λN(A) = sup {〈Av, v〉 : ‖v‖ = 1}.

b. Prove that λN is a convex function of A.

c. Prove that the smallest eigenvalue λ1 is a concave function of A. Hint: use −A.

Proposition 3.18 (Klein’s Lemma). If f is a convex function, then so is fTr.

Proof. By approximation, we may assume that f is twice differentiable and f ′′ ≥ c > 0. Then

Rf (x, y) = f(x)− f(y)− (x− y)f ′(y) ≥ c

2
(x− y)2.
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Let X have eigenvalues {λj(X)} with unit eigenvectors {ξi(X)}, and similarly for Y . Denote cij =
|〈ξi(X), ξj(Y )〉|2. Then

〈ξi(X), Rf (X, Y )ξi(X)〉 = 〈ξi(X), f(X)− f(Y )− (X − Y )f ′(Y )〉 ξi(X)

= f(λi(X)) +
∑
j

(−cijf(λj(Y ))− cijλi(X)f ′(λj(Y )) + cijλj(Y )f ′(λj(Y )))

=
∑
j

cij (f(λi(X))− f(λj(Y ))− λi(X)f ′(λj(Y )) + λj(Y )f ′(λj(Y )))

=
∑
j

cijRf (λi(X), λj(Y )) ≥ c

2

∑
j

cij(λi(X)− λj(Y ))2,

where we used
∑

j cij = 1. Now summing over i, we obtain

Tr[f(X)− f(Y )− (X − Y )f ′(Y )] ≥ c

2

∑
i,j

cij(λi(X)− λj(Y ))2

Applying this argument to f(x) = x2 with Rx2(x, y) = (x− y)2, we see that∑
i,j

cij(λi(X)− λj(Y ))2 = Tr[(X − Y )2].

Thus finally,
Tr[f(X)− f(Y )− (X − Y )f ′(Y )] ≥ c

2
Tr[(X − Y )2] ≥ 0.

For (X, Y ) = (A, 1
2
(A+B)) this gives

Tr

[
f(A)− f

(
1

2
(A+B)

)
− 1

2
(A−B)f ′

(
1

2
(A+B)

)]
≥ 0

while for (X, Y ) = (B, 1
2
(A+B)) this gives

Tr

[
f(B)− f

(
1

2
(A+B)

)
− 1

2
(B − A)f ′

(
1

2
(A+B)

)]
≥ 0.

Adding these inequalities, we obtain

Tr

[
f(A) + f(B)− 2f

(
1

2
(A+B)

)]
≥ 0

and so
1

2
fTr(A) +

1

2
fTr(B) ≥ fTr

(
1

2
A+

1

2
B

)
.

By cutoff arguments as in Section 2.3 we can thus obtain concentration results (for convex f ) for quite
general Wigner-type matrices.
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Chapter 4

The Stieltjes transform methods.

Stieltjes transform methods in random matrix theory were introduced by Leonid Pastur and collaborators
(1967–) in their study of Wishart matrices. They have been developed by many contributors, and are used
throughout the theory, in the study of many other classes, such as band matrices and spiked models.

4.1 General properties.

The transform method, using Fourier transforms or moment generating functions, is a standard technique
in probability theory. The transform most appropriate for random matrix theory is the Stieltjes transform.

Complex-analytic properties.

For a probability measure µ on R, its Stieltjes transform is the function

Sµ(z) =

∫
R

1

x− z
dµ(x).

Sometimes it is called the Cauchy or the Borel transform, or is defined as
∫
R

1
z−x dµ(x). Note that for any

z ∈ C \ R, ∣∣∣∣ 1

x− z

∣∣∣∣ ≤ 1

|=z|
.

So the function x 7→ 1
x−z is bounded, and Sµ(z) is well defined on this set (in fact it can also be extended

to R \ supp(µ)). It is also clear that Sµ(z) = Sµ(z). Moreover, we may differentiate under the integral to
obtain S ′µ(z) =

∫
R

1
(x−z)2 dµ(x), so Sµ is analytic on C \ R. For later use, we record that for any z ∈ C+,∥∥∥∥x 7→ 1

z − x

∥∥∥∥
Lip

≤ 1

(=z)2
. (4.1)
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Next, we note that

|iySµ(iy) + 1| =
∣∣∣∣∫

R

iy

x− iy
dµ(x) + 1

∣∣∣∣ ≤ ∫
R

|x|√
x2 + y2

dµ(x)→ 0

as y →∞ by Dominated Convergence. Thus

lim
y→∞

iySµ(iy) = −1. (4.2)

Finally, we compute

Sµ(x+ iy) =

∫
R

1

t− x− iy
dµ(t) =

∫
R

t− x
(x− t)2 + y2

dµ(t) + i

∫
R

y

(x− t)2 + y2
dµ(t).

In particular, we note that Sµ maps C+ to itself. Moreover for ε > 0, denote

Py(x) =
1

π

y

x2 + y2
.

Then =Sµ(x + iy) = π(µ ∗ Py)(x). The family {Py : y > 0} is called the Poisson kernel for C+. Note
that Py(x) dx = P1(x/y) d(x/y).

Theorem 4.1 (Stieltjes). Any analytic function S : C+ → C+ satisfying equation (4.2) is a Stieltjes
transform of some probability measure.

We will not prove this theorem, but the measure corresponding to S is identified through the

Lemma 4.2 (Stieltjes Inversion Formula). For any probability measure µ, the measures

µy(dx) =
1

π
=Sµ(x+ iy) dx

converge weakly to µ as y ↓ 0.

Proof. The Poisson kernel is an approximate identity: Py ≥ 0,
∫
R Py(x) dx = 1, and for any ε, δ > 0,

for sufficiently small y,
∫
|x|>δ Py(x) dx < ε. Then by general theory (cf. the proof of Theorem 3.4;

recall details?) µ ∗ Py → µ vaguely. Since µ is a probability measure, we automatically get weak
convergence.

Remark 4.3. Suppose µ is compactly supported in [−a, a]. Then it is easy to see that zSµ(z) → −1 as
z →∞ and not just along the imaginary axis. Moreover the moments |mk(µ)| ≤ ak, and so by the series
version of the Dominated Convergence Theorem

−
∞∑
k=0

mk(µ)

zk+1
= −

∞∑
k=0

∫
xk

zk+1
dµ(x) = −

∫ ∞∑
k=0

xk

zk+1
dµ(x) =

∫
1

x− z
dµ(x) = Sµ(z).

So Sµ(z) is an (ordinary) generating function for moments of µ.
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Proposition 4.4. A sequence of probability measures µN → µ converges weakly to a probability measure
if and only if SµN (z) → Sµ(z) pointwise for every z ∈ C+. It suffices to require convergence on a set
which has an accumulation point.

Proof. Since for every z ∈ C+, the function x 7→ 1
x−z is in C0(R), one direction is clear. Now letA ⊂ C+

be a set with an accumulation point. Suppose SµN (z)→ Sµ(z) for all z ∈ A. Choose a subsequence such
that µNk → ν vaguely for some measure ν. Then by the other direction of the argument, Sν(z) = Sµ(z)
for all z ∈ A. By analytic continuation, it follows that Sµ = Sν on C+, and so ν = µ (and in particular it
is a probability measure). Since this is true for any convergent subsequence, the result follows.

The Stieltjes transform of the empirical distribution of a matrix.

For a symmetric or Hermitian N ×N matrix A,

Sµ̂A(z) =

∫
R

1

x− z
dµ̂A(x) =

1

N

N∑
i=1

1

λi(A)− z
=

1

N
Tr
[
(A− zI)−1

]
.

Here the operator (A− zI)−1 is the resolvent of A.

4.2 Convergence of Stieltjes transforms for random matrices.

In this section, we will give another proof of weak convergence of empirical spectral distributions for
general Wigner matrices under a slightly stronger assumption. One approach involves concentration in-
equalities. For example, we could assume that the matrix entries satisfy LSI, and then apply Herbst’s
method; or we could apply the cutoff procedure from Lemma 2.22 to suppose that the matrix entries
are uniformly bounded, and apply Talagrand’s inequality. We instead choose to avoid any sophisticated
concentration techniques by assuming the finiteness of the fourth moments.

Theorem 4.5. Let XN = 1√
N
YN be Wigner matrices as in Theorem 2.21. Thus YN is symmetric and

otherwise has independent entries, {Yij : i < j} are identically distributed with mean zero and variance
1, and {Yii} are identically distributed with mean zero and variance at most m2 ≥ 1. We will additionally
assume that the fourth moment E[Y 4

ij ] = m4 <∞. Then

µ̂XN → σ

weakly almost surely.

The rest of the section constitutes the proof of this theorem.
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Let Y (k)
N be YN with the k’th row and column removed, and uk be its k’th column with its k’t entry

removed. So for example

YN =

(
(YN)11 uT1
u1 Y

(1)
N

)
.

Also, let Ỹ (1)
N be the N ×N matrix obtained by adjoining to Y (1)

N a zero row and column. This matrix has
the same eigenvalues as Y (1)

N plus an extra zero eigenvalue. Thus

S
Ỹ

(1)
N /
√
N

(z) =
1

N

N−1∑
j=1

1

λj(Y
(1)
N )/

√
N − z

− 1

N

1

z
=

1

N

N−1∑
j=1

1

λj(YN−1)/
√
N − z

− 1

N

1

z

=
1

N

√
N√

N − 1

N−1∑
j=1

1

λj(YN−1)/
√
N − 1−

√
N√
N−1

z
− 1

N

1

z

=
1

N − 1

√
N − 1√
N

N−1∑
j=1

1

λj(XN−1)−
√
N√
N−1

z
− 1

N

1

z

=

√
N − 1√
N

SXN−1

( √
N√

N − 1
z

)
− 1

N

1

z
.

(4.3)

Denote the Stieltjes transform of the empirical spectral distribution of XN

SN(z) =

∫
1

x− z
dµ̂XN (x) =

1

N
Tr
[
(XN − zI)−1

]
and its average

SN(z) = E
[∫

1

x− z
dµ̂XN (x)

]
=

1

N
E
[
Tr
[
(XN − zI)−1

]]
.

Our goal is to prove that SN converges pointwise a.s., and to obtain an equation satisfied by the limiting
function. The main strategy will be to relate SN and SN−1, in two ways. For the first relation, recall that
for N ×N matrices,∣∣∣∣E [∫ f dµ̂A

]
− E

[∫
f dµ̂B

]∣∣∣∣ ≤ E
[∣∣∣∣∫ f dµ̂A −

∫
f dµ̂B

∣∣∣∣] ≤ ‖f‖Lip E

[(
Tr

[
1

N
(A−B)2

])1/2
]
.

Applying this to f(x) = 1
x−z , A = XN and B = Ỹ

(1)
N /
√
N , and using equations (4.3) and (4.1), and

Jensen’s inequality,∣∣∣∣∣SN(z)−
√
N − 1√
N

SN−1

( √
N√

N − 1
z

)
+

1

N

1

z

∣∣∣∣∣ =
∣∣∣E[SXN (z)]− E[S

Ỹ
(1)
N /
√
N

(z)]
∣∣∣

≤ 1

(=z)2
E

( 1

N

2

N

N∑
j=1

Y 2
j1

)1/2
 ≤ 1

(=z)2

1

N

(
E

[
2

N∑
j=1

Y 2
j1

])1/2

≤
√

2m2

(=z)2

1√
N
.

(4.4)
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Now we derive the second relation. Write

SN(z) =
1

N
Tr[(XN − zI)−1] =

1

N

N∑
k=1

1

Vk
,

where
Vk =

1

((XN − zI)−1)kk
=

1((
1√
N
YN − zI

)−1
)
kk

.

Lemma 4.6 (Schur complement). Let

M =

(
A B
C D

)
If D is invertible, then

detM = det(A−BD−1C) · detD.

Proof. It suffices to note that(
A B
C D

)
=

(
A−BD−1C B

0 D

)(
1 0

D−1C 1

)
.

Applying the lemma to

1√
N
YN − zI =

( 1√
N
YN − zI

)
11

1√
N
uT1

1√
N
u1

(
1√
N
Y

(1)
N − zI

)
etc. and using Cramer’s rule,

Vk =
det
(

1√
N
YN − zI

)
det
(

1√
N
Y

(k)
N − zI

) =
1√
N

(YN)kk − z −
1

N
uTk

(
1√
N
Y

(k)
N − zI

)−1

uk. (4.5)

Exercise 4.7. Let u be a vector of independent real random variables with mean zero and variance 1, and
A a deterministic complex matrix. Then

E[uTAu] = Tr[A]

If moreover A is symmetric and E[u4
i ] ≤ m4 for all i, then

Var[uTAu] = E[(uTAu)(uTAu)]− E[uTAu]E[uTAu] ≤ (2 +m4) Tr[AA].
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Therefore

E[V1 | Y (1)
N ] =

1√
N

E[(YN)11 | Y (1)
N ]− z − 1

N
E

[
uT1

(
1√
N
Y

(1)
N − zI

)−1

u1

∣∣∣∣∣ Y (1)
N

]

= −z − 1

N
Tr

[(
1√
N
Y

(1)
N − zI

)−1
]

= −z − 1

N

√
N√

N − 1
Tr

( 1√
N − 1

Y
(1)
N −

√
N√

N − 1
zI

)−1


= −z −
√
N − 1√
N

SN−1

( √
N√

N − 1
z

)
.

(4.6)

and so

E[Vk] = E[V1] = −z −
√
N − 1√
N

SN−1

( √
N√

N − 1
z

)
.

It follows that

SN(z) =
1

N

N∑
k=1

1

Vk
=

1

N

N∑
k=1

(
1

Vk
− 1

E[Vk]

)
+

1

E[V1]

=
1

N

N∑
k=1

(
1

Vk
− 1

E[Vk]

)
− 1

z +
√
N−1√
N
SN−1

( √
N√
N−1

z
) .

Our eventual goal is to conclude from this that

SN(z) ≈ − 1

z + SN(z)
.

We thus want to bound the first term above. Note that since the Stieltjes transform preserves the sign of
the imaginary part, from equation (4.6),

∣∣∣=E[Vk | Y (k)
N ]
∣∣∣ ≥ |=z| a.s. Then

E

[(
SN(z)− 1

E[V1]

)2
]
≤ E

( 1

N

N∑
k=1

∣∣∣∣ 1

Vk
− 1

E[Vk]

∣∣∣∣
)2


≤ 1

N

N∑
k=1

E

[∣∣∣∣ 1

Vk
− 1

E[Vk]

∣∣∣∣2
]

=
1

N

N∑
k=1

E
[
E
[

(Vk − E[Vk])
2

V 2
k E[Vk]2

∣∣∣∣ Y (k)
N

]]
≤ 1

(=z)4
E[(V1 − E[V1])2] =

1

(=z)4
Var[V1].

(4.7)
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Exercise 4.8. For any number c and a random variable x,

Var[x] + (E[x]− c)2 = E[(x− c)2]

and so each term on the left-hand side is ≤ the right-hand side.

It follows that
Var[SN(z)] ≤ 1

(=z)4
Var[V1] (4.8)

and ∣∣∣∣SN(z)− 1

E[V1]

∣∣∣∣2 ≤ 1

(=z)4
Var[V1]. (4.9)

Write
Var[V1] = E

[
Var[V1|Y (1)

N ]
]

+ Var
[
E[V1|Y (1)

N ]
]
,

where
E
[
Var[V1|Y (1)

N ]
]

= E
[
E[V 2

1 |Y
(1)
N ]
]
− E

[
E[V1|Y (1)

N ]2
]

and
Var

[
E[V1|Y (1)

N ]
]

= E
[
E[V1|Y (1)

N ]2
]
−
(
E
[
E[V1|Y (1)

N ]
])2

On the one hand, from (4.6)

Var
[
E[V1|Y (1)

N ]
]

=
N − 1

N
Var

[
SN−1

( √
N√

N − 1
z

)]
≤ Var

[
SN−1

( √
N√

N − 1
z

)]
. (4.10)

On the other hand,

Var[V1|Y (1)
N ] = Var

[
1√
N

(YN)11 − z −
1

N
uT1

(
1√
N
Y

(1)
N − zI

)−1

u1

∣∣∣∣∣ Y (1)
N

]

=
1

N
Var[(YN)11] +

1

N2
Var

[
uT1

(
1√
N
Y

(1)
N − zI

)−1

u1

∣∣∣∣∣ Y (1)
N

]

≤ 1

N
m2 +

1

N2
(2 +m4) Tr

[(
1√
N
Y

(1)
N − zI

)−1(
1√
N
Y

(1)
N − zI

)−1
]

=
1

N
m2 +

1

N2
(2 +m4)

N−1∑
j=1

∣∣∣∣∣λj
((

1√
N
Y

(1)
N − zI

)−1
)∣∣∣∣∣

2

≤ 1

N
m2 +

1

N
(2 +m4)

1

(=z)2

since ∣∣∣∣∣λj
((

1√
N
Y

(1)
N − zI

)−1
)∣∣∣∣∣ =

1∣∣∣λN−j+1

(
1√
N
Y

(1)
N − zI

)∣∣∣ ≤ 1

|=z|
.
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Taking expectations preserves this estimate. Combining with equation (4.10), we get

Var[V1] ≤ Var

[
SN−1

( √
N√

N − 1
z

)]
+

1

N
m2 +

1

N
(2 +m4)

1

(=z)2
.

Thus using equation (4.8), we obtain the estimate

Var[SN(z)] ≤ 1

(=z)4
Var

[
SN−1

( √
N√

N − 1
z

)]
+

1

N
m2

1

(=z)4
+

1

N
(2 +m4)

1

(=z)6

Let
CN = sup {Var[SN(z)] : =z ≥ 2} .

Then denoting b = m2
1
24

+ (2 +m4) 1
26

,

CN ≤
1

24
Var

[
SN−1

( √
N√

N − 1
z

)]
+

1

N
m2

1

24
+

1

N
(2 +m4)

1

26

≤ 1

16
CN−1 +

1

N
b

since =
√
N√
N−1

z ≥ =z for z ∈ C+. Recursively,

CN ≤
1

N
b
N−2∑
j=0

1

16j
+

1

16N−1
C1 ≤

2b

N
+

1

16N−1
C1.

We conclude that for large N , CN ≤ C ′/N ,

sup
=z≥2

Var[SN(z)] ≤ C ′

N
. (4.11)

Also, Var[V1] ≤ 1
16
CN−1 + 1

N
b, so from equation (4.9),

sup
=z≥2

∣∣∣∣∣∣SN(z) +
1

z +
√
N−1√
N
SN−1

( √
N√
N−1

z
)
∣∣∣∣∣∣
2

= sup
=z≥2

∣∣∣∣SN(z)− 1

E[V1]

∣∣∣∣2 ≤ C ′′

N
.

Combining with equation (4.4), we obtain

sup
=z≥2

∣∣∣∣∣∣
√
N − 1√
N

SN−1

( √
N√

N − 1
z

)
− 1

N

1

z
+

1

z +
√
N−1√
N
SN−1

( √
N√
N−1

z
)
∣∣∣∣∣∣ ≤ C ′′′√

N
(4.12)
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First we prove weak convergence of µ̂XN in expectation. Since their variances are uniformly bounded, this
family is tight. Given any subsequence, we may choose a further subsequence (Nk) such that µ̂XNk → µ
weakly in expectation, for some probability measure µ. Then Sµ satisfies

Sµ(z) +
1

z + Sµ(z)
= 0.

Then Sµ(z)2 + zSµ(z) + 1 = 0 (compare with Exercise 2.4), and

Sµ(z) =
−z +

√
z2 − 4

2
,

where we chose the branch of the square root so that Sµ(z) ∼ −1
z

at infinity. By Stieltjes inversion,

dµ(x) = lim
y↓0

1

π
=
−(x+ iy) +

√
(x+ iy)2 − 4

2
dx =

1

2π

√
4− x21[−2,2](x) dx,

that is, µ = σ. Since this is true for any initial subsequence, we conclude that µ̂N → σ weakly in
expectation.

Finally, we prove weak convergence almost surely. Given any increasing subsequence of positive integers,
choose a further subsequence (Nk) so that

∑∞
k=1

1
Nk

< ∞. Then using equation (4.11) and the Borel-
Cantelli lemma, for any fixed z ∈ C+ + 2i, SNk(z) − SNk → 0 a.s. Since SNk(z) → Sσ(z), it follows
SNk(z) → Sσ(z) a.s. By a diagonal argument, we may assume this to hold for all z in a countable set
A ⊂ C+ + 2i which has an accumulation point. Therefore µ̂Nk → σ weakly a.s. Since this is true for any
initial subsequence, we conclude that µ̂N → σ weakly almost surely.
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Chapter 5

Joint eigenvalue distributions for orthogonally
invariant ensembles.

The exact joint distribution of eigenvalues for the orthogonally/unitarily/simplectically invariant ensem-
bles takes some work to compute, primarily because there is no natural bijective parametrization of such
matrices by eigenvalues and eigenvectors. See various sources on the web page for (different) ways to
do this. In the following section we will use this result without proof, and in the later section will de-
rive it (in the Gaussian case), by first reducing the matrix to a tridiagonal form, where such a bijective
parametrization is in fact available.

5.1 Mean field approximation.

The following is another, heuristic, derivation of the convergence to semicircle law for GOE. It already
appears in the work of Brézin, Itzykson, Parisi, and Zuber (1978). The joint eigenvalue density for a
normalized orthogonally invariant ensemble with potential V is

ρ(λ1, . . . , λN) =
1

ZN

∏
i<j

|λj − λi|β exp

(
−N

N∑
i=1

V (λi)

)

=
1

ZN
exp

[
β
∑
i<j

log |λj − λi| −N
N∑
i=1

V (λi)

]

=
1

ZN
exp

[
β

2
N2

∫∫
log |x− y| dµ̂N(x) dµ̂N(y)−N2

∫
V (x) dµ̂N(x)

]
=

1

ZN
exp

[
−N2IV (µ̂)

]
,
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where
IV (µ) =

∫
V (x) dµ(x)− β

2

∫∫
log |x− y| dµ(x) dµ(y).

For large N , we expect µ̂N to concentrate around the measure µ which minimises IV . Looking at the
perturbations µε = µ+ εν for ν a signed measure of integral zero, if µ is an extremum of IV then

V (x)− β
∫

log |x− y| dµ(y) = C, x ∈ supp(µ).

So (at least formally)

1

β
V ′(x) = p.v.

∫
1

x− y
dµ(y) = πHµ(x), x ∈ supp(µ)

the Hilbert transform of µ. For example, for V (x) = β
4
x2, πHµ(x) = x/2, and µ = σ on [−2, 2]. Indeed,

recall that for dµ(x) = ρ(x) dx,

Sµ(x+ 0i) = −p.v.
∫

1

x− t
dµ(t) + πiρ(x).

Thus
0 =

(
<Sµ(x+ 0i) +

x

2

)
=Sµ(x+ 0i) =

1

2
=
(
Gµ(x+ 0i)2 + (x+ i0)Sµ(x+ 0i)

)
.

Therefore the function Sµ(z)2 + zSµ(z) + 1 analytically extends to R and so, since Sµ(z) = Sµ(z), to all
of C, i.e. it is entire. Moreover, assuming µ is compactly supported, Sµ(z) ∼ −1

z
as z → ∞, and so this

function is bounded. So by Liouville’s theorem it is constant, and by the asymptotics above the constant
is zero. Thus finally, Sµ(z)2 + zSµ(z) + 1 = 0, which we know characterizes σ.

5.2 Beta ensembles.

The initial ideas in this and the next section are due to Hale Trotter (1984) who tridiagonalized the GOE,
and researchers who studied the β-eigenvalue distributions before the β-ensembles were defined. They
were combined and developed in much greater depth by Ioana Dumitriu in her thesis (2002).

Tridiagonalization of Gaussian ensembles for β = 1, 2, 4.

Lemma 5.1 (Householder transformation). Let YN be an complex Hermitian (or in particular real sym-
metric) N ×N matrix, and write it as

YN =

(
y v∗

v YN−1

)
,
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where y ∈ R and YN−1 is (N−1)×(N−1). There is a unitary (or in particular orthogonal) transformation
ŨN−1 such that

ŨN−1v =


‖v‖
0
...
0

 .

Therefore denoting

UN =

(
1 0

0 ŨN−1

)
,

we have

UNYNU
T
N =


y ‖v‖ 0 . . . 0
‖v‖
0
... ŨN−1YN−1Ũ

∗
N−1

0

 .

Proof. In fact one can choose ŨN−1 a reflection in the hyperplane orthogonal to the vectorw = v−‖v‖ e1,

ŨN−1x = x− 2
〈x,w〉
‖w‖2 w,

which is automatically unitary and Hermitian (or orthogonal in the real case). Indeed,

ŨN−1v = ŨN−1

(
1

2
w +

1

2
(v + ‖v‖ e1)

)
= −1

2
w +

1

2
(v + ‖v‖ e1)− 0 = ‖v‖ e1.

A random variable Z has the χk distribution if Z2 has χ2
k distribution, that is, the same distribution as

X2
1 + . . .+X2

k for X1, . . . , Xk independent standard normals.

Theorem 5.2. Let YN be an un-normalized GOE matrix. Then the eigenvalue distribution of YN is the
same as for the random tridiagonal matrix

ỸN =


a1 b1

b1 a2 b2

b2

. . .
. . .

. . .
. . . bN−1

bN−1 aN

 ,
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whose entries are, except for the symmetry, independent with distributions
N (0, 2) χN−1

χN−1 N (0, 2) χN−2

χN−2

. . .
. . .

. . .
. . . χ1

χ1 N (0, 2)

 .

Proof. Start with an un-normalized GOEN matrix

YN =

(
Y11 vTN−1

vN−1 YN−1

)
,

Recall that its entries are independent (except for symmetry), Yii ∼ N (0, 2) and Yij ∼ N (0, 1). Using
the transformation from the lemma, we may choose an orthogonal ŨN−1 so that

UNYNU
T
N =


Y11 ‖uN−1‖ 0 . . . 0
‖uN−1‖

0
... ŨN−1YN−1Ũ

T
N−1

0

 .

Here
‖UN−1‖ =

√
Y 2

12 + . . .+ Y 2
1N ,

so it is independent of all the other entries of the matrix (except for symmetry) and has χN−1 distribution.
Moreover ŨN−1YN−1Ũ

T
N−1 is a GOEN−1 matrix. Applying the same procedure recursively, we end up

with a tridiagonal matrix with the claimed entry distributions which is unitarily equivalent to YN .

Exercise 5.3. Show that a similar procedure works for the GUE matrices, except the distributions of
entries become

1√
2


N (0, 2) χ2(N−1)

χ2(N−1) N (0, 2) χ2(N−2)

χ2(N−2)

. . .
. . .

. . .
. . . χ2

χ2 N (0, 2)

 .

Since the χ2 distribution is infinitely divisible, χβ can actually be defined for any real positive β, with the
density

21−β/2

Γ(β/2)
xβ−1e−x

2/2.
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Definition 5.4. For β > 0, the (un-normalized) β-ensemble consists of random symmetric tridiagonal
matrices

ỸN =


a1 b1

b1 a2 b2

b2

. . .
. . .

. . .
. . . bN−1

bN−1 aN ,


whose entries are, except for the symmetry, independent with distributions

1√
β


N (0, 2) χ(N−1)β

χ(N−1)β N (0, 2) χ(N−2)β

χ(N−2)β

. . .
. . .

. . .
. . . χβ
χβ N (0, 2)

 .

Trotter’s proof of convergence to the semicircle law.

Theorem 5.5. The normalized β-ensemble matrices have, for any β, the same asymptotic spectral distri-
bution as the sequence of deterministic matrices

TN =
1√
N


0

√
N − 1√

N − 1 0
√
N − 2

√
N − 2

. . .
. . .

. . .
. . . 1
1 0

 .

In particular this is the case for normalized GOE/GUE/GSE. The asymptotic spectral distribution of TN
will be shown to be semicircular in the following proposition.

Proof. We note first that since χβ ≥ 0 and E[χ2
β] = β,

E[β(χβ −
√
β)2] ≤ E[(χβ +

√
β)2(χβ −

√
β)2]

= E[(χ2
β − β)2] = Var[χ2

β] = β Var[χ2
1] = β E[χ4

1 − 2χ2
1 + 1] = 2β.

Thus E[(χβ−
√
β)2] ≤ 2. So in an un-normalized β-matrix ỸN , E[a2

k] = 2 and E[(bk−
√

(N − k)β)2] ≤ 2.
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Then for X̃N = 1√
N
ỸN ,∣∣∣∣∫ f dµ̂X̃N −

∫
f dσ

∣∣∣∣ ≤ ‖f‖Lip

1√
N

∥∥∥X̃N − TN
∥∥∥
F

=
‖f‖Lip√

β

1

N

√√√√ N∑
k=1

a2
k + 2

N−1∑
k=1

(bk −
√

(N − k)β)2

=
‖f‖Lip√

β

1√
N

√∑N
k=1 a

2
k

N
+ 2

∑N−1
k=1 (bk −

√
(N − k)β)2

N
,

and so using Markov’s inequality,

P

(∣∣∣∣∫ f dµ̂X̃N −
∫
f dσ

∣∣∣∣ ≥ δ

)
≤ 1

δ

‖f‖Lip√
β

1√
N

√
6→ 0

as N →∞.

To compute the asymptotic spectral distribution of TN , we use the following theorem.

Theorem 5.6 (Kac, Murdock, Szegő 1953, Trotter 1984, particular case). Let H be the Hilbert space of
sequences h = {hj : j ∈ Z, hj ∈⊂ L2([0, 1])}, with the norm ‖h‖2 =

∑
j ‖hj‖

2 <∞. Denote

σ(h) =
∑
j∈Z

hj(x)e2πijt,

a function in L2([0, 1]2). Note that the map σ is an isometry.

For any square N × N matrix A, define η(A) ∈ H as follows. Consider A as included in an infinite
matrix. hj is a step function, with steps of length 1

N
, and heights given by values of A in the j’th diagonal

(where the main diagonal corresponds to j = 0).

If each AN is normal and η(AN)→ h in H , then the spectral distribution of AN converges weakly to the
distribution of σ(h).

Proposition 5.7. The asymptotic spectral distribution of TN is the semicircular distribution.

Proof. TN has zero diagonal entries, and

Tk,k+1 = Tk+1,k =

√
1− k

N
.

Thus clearly h1(x) = h−1(x) =
√

1− x, and we have

σ(x, t) =
√

1− x2 cos(2πt), (x, t) ∈ [0, 1]2
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It remains to compute its distribution. It is clearly symmetric. For a ≥ 2, |{σ(x, t) ≤ a}| = 1. Finally,
for 0 ≤ a < 2, let t̄ ∈ [0, 1/4] satisfy cos(2πt) = a/2. Then∣∣{(x, t) ∈ [0, 1]2 :

√
1− x2 cos(2πt) ≤ a

}∣∣
=

1

2
+ 2

∣∣∣∣{(x, t) ∈ [0, 1]× [0, 1/4] : 1− 1

4
a2 sec2(2πt) ≤ x ≤ 1

}∣∣∣∣
=

1

2
+ 2

∫ 1/4

0

(
1

4
a2 sec2(2πt)1[0,t̄] + 1[t̄,1/4]

)
dt

=
1

2
+

1

4π
a2 tan(2πt)|t̄0 +

1

2
− 2t̄

= 1 +
1

4π
a2

√
1− a2/4

a/2
− 1

π
arccos(a/2)

= 1 +
1

4π

(
a
√

4− a2 − 4 arccos(a/2)
)
.

Differentiating with respect to a, we get

1

4π

(
√

4− a2 − a2

√
4− a2

+ 2
1√

1− a2/4

)
=

1

2π

√
4− a2.

Remark 5.8. We have proved Wigner’s theorem by four different methods (under various assumptions),
which ultimately reduce to four different characterizations of the semicircle law:

• Its moments are the Catalan numbers.

• Its Stieltjes transform satisfies the quadratic equation Sµ(z)2 + zSµ(z) + 1 = 0.

• It is the minimizer of the logarithmic energy IV (µ) =
∫
x2 dµ(x)− 2

∫∫
log |x− y| dµ(x) dµ(y).

• It is the distribution of σ(x, t) =
√

1− x2 cos(2πt), (x, t) ∈ [0, 1]2.

Remark 5.9. The spectral distribution of TN is the uniform distribution on its eigenvalues, in other words
on the roots of its characteristic polynomial QN(λ) = det(λIN −

√
NTN). By Lemma 5.11, the polyno-

mials QN(λ) satisfy the recursion

QN+1(λ) +NQN−1(λ) = λQN−1(λ),

so they are the (monic) Hermite polynomials. So we have also proved that the density of the re-scaled
roots of the Hermite polynomials converges to the semicircle law.

This is the end of the 2017 course notes.
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Exercise 5.10. (unverified) Let YN be a K×N matrix with independentN (0, 1) entries, and assume that
both K and N go to infinity in such a way that K/N → α ∈ (0, 1]. Let XN = 1√

N
YN and ZN = XNX

T
N .

Then ZN is a K ×K Wishart matrix (compare with Exercise 2.11).

a. Show that we may choose orthogonal matrices V ∈ O(K), U ∈ O(N) such that

V YNU
∗ ∼


χK χN−1

χK−1 χN−2

. . .
. . .

χ1 χN−K . . .

 .

and so

V YNY
T
N V

T ∼


χ2
K + χ2

N−1 χN−1χK−1

χN−1χK−1 χ2
K−1 + χ2

N−2 χN−2χK−2

χN−2χK−2

. . .
. . .

. . .
. . . χN−K+1χ1

χN−K+1χ1 χ2
1 + χ2

N−K

 .

b. Show that the asymptotic spectral distribution of ZN is the same as of

1

N


K +N − 1

√
(N − 1)(K − 1)√

(N − 1)(K − 1) K +N − 3
√

(N − 2)(K − 2)

χN−2

. . .
. . .

. . .
. . .

√
N −K + 1√

N −K + 1 1 +N −K


c. Show that this distribution is the same as the distribution of

σ(x, t) = 1 + α− 2αx+ 2 cos(2πt)
√

(1− αx)(α− αx).

5.3 Spectral theory of finite Jacobi matrices.

An N ×N Jacobi matrix is a tridiagonal matrix of the form

JN =


a1 b1 0
b1 a2

. . .
. . .

. . .

bN−1

0 bN−1 aN

 ,

where a1, . . . aN ∈ R and b1, . . . , bN−1 > 0.
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Spectral bijection.

Lemma 5.11. Let Qn(λ) be the characteristic polynomial of Jn, Qn(λ) = det(λIn − Jn). Then for all
n ≥ 2

Qn(λ) + anQn−1(λ) + b2
n−1Qn−2(λ) = λQn−1(λ) (5.1)

while setting Q0 = 1, also Q1(λ) + a1Q0 = λQ0.

Proof. Expand the determinant with respect to the last row, and then the last column, to obtain

Qn(λ) = (λ− an)Qn−1(λ)− b2
n−1Qn−2(λ).

Exercise 5.12. LetX be a general real symmetric (or complex Hermitian)N×N matrix, with eigenvalues
λ1(X) ≤ . . . ≤ λN(X).

a. The eigenvalues of X have the following minimax description:

λN(X) = max
u6=0

〈Xu, u〉
‖u‖2

and for n < N ,

λn(X) = min
V :dimV=n

max
u∈V,u6=0

〈Xu, u〉
‖u‖2

Hint: diagonalize the matrix, and recall that its eigenvectors are orthogonal.

b. Let X̃ be X with the last row and column removed. Then the eigenvalues of X and X̃ interlace:

λ1(X) ≤ λ1(X̃) ≤ λ2(X) ≤ λ2(X̃) ≤ . . . ≤ λN−1(X) ≤ λN−1(X̃) ≤ λN(X).

Corollary 5.13. A Jacobi matrix with positive bi’s has distinct eigenvalues.

Proof. We need to show that QN has distinct roots. Suppose λi(JN) = λi+1(JN). Then from the inter-
lacing property, also QN−1(λi(JN)) = 0. From the recursion (5.1) it follows that QN−2(λi(JN)) = 0.
Applying the recursion repeatedly, by induction we get that Q0(λi(JN)) = 0, and so obtain a contradic-
tion.

Since the matrix JN is symmetric, it can be diagonalized, so that J = UΛUT , in other words

JNU = UΛ.

Here Λ is the diagonal matrix whose diagonal entries are the eigenvalues λ1 ≤ . . . ≤ λN , and U is an
orthogonal matrix whose columns u1, . . .uN are the normalized eigenvectors. Denote

pi = |U1i|2 ,

so that p1 + . . .+ pN = 1.
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Proposition 5.14. The map

ϕ : RN × RN−1
+ → RN ×

{
(p1, . . . , pN−1) : all pi > 0,

N−1∑
i=1

pi < 1

}

given by
ϕ : (a1, . . . aN , b1, . . . bN−1) 7→ (λ1, . . . , λN , p1, . . . , pN−1)

is a bijection.

For (p1, . . . , pN−1) as in the proposition, denote pN = 1−
∑N−1

i=1 pi, and

νN =
N∑
i=1

piδλi .

Then νN is a probability measure, such that
∫
f dνN =

∑N
i=1 pif(λi).

Lemma 5.15. For all k,

mk(N) = (Jk)11 =

∫
xk dνN .

Proof.

(Jk)11 = (UΛkUT )11 =
∑
i

U1iλ
k
iU1i =

∑
i

piλ
k
i =

∫
xk dνN .

Exercise 5.16. Recall that for the empirical spectral measure, we had

1

N
Tr[Jk] =

∫
xk dµ̂JN ,

and the measure also had atoms at the eigenvalues of JN , except the weights of all the atoms were equal
to 1

N
. Show that for any unit vector ξ, the probability measure with moments

〈
Jkξ, ξ

〉
is also atomic

with atoms at the eigenvalues. What is its precise form? Which ξ corresponds to the empirical spectral
measure?

Remark 5.17. For a sequence of random (for example, Wigner) or deterministic (for example, Jacobi)
matrices XN , one can ask whether the sequence of measures from the preceding exercise corresponding
to some vectors ξN converges weakly as N → ∞. Some natural choices for ξN are ξN = e1 (the first
basis vector), ξN = eN (the last basis vector), the trace case from the exercise, or ξN random uniformly
distributed on the unit sphere.

Remark 5.18. Define a family of polynomials as follows: P0 = 1,

a1P0 + b1P1(x) = xP0,
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for 1 ≤ n ≤ N − 1,
bn−1Pn−2(x) + anPn−1(x) + bnPn(x) = xPn−1(x),

and
bN−1PN−2(x) + aNPN−1(x) + PN(x) = xPN−1(x).

Then each Pn, 0 ≤ n ≤ N , is a polynomial of degree n. Since all bi’s are positive, each Pn has a positive
leading coefficient. It is easy to see that

Qn(x) = bn . . . b1Pn(x)

for 0 ≤ n ≤ N − 1 and
QN(x) = bN−1 . . . b1PN(x).

In particular PN(λi) = 0 for all 1 ≤ i ≤ N .

Moreover by definition,

JN


P0(x)
P1(x)
...

PN−1(x)

 = x


P0(x)
P1(x)
...

PN−1(x)

−


0
0
...

PN(x)

 .

So for each i,


P0(λi)
P1(λi)
...

PN−1(λi)

 is an eigenvector of JN with eigenvalue λi. Since all of the eigenspaces are

one-dimensional, and P0 = 1, while the first entry of ui is U1i, it follows that

Uji = U1iPj−1(λi).

Lemma 5.19. {P0, . . . , PN−1} are the orthonormal polynomials with respect to the measure νN with
positive leading coefficients.

Proof.∫
Pj−1(x)Pn−1(x) dνN(x) =

N∑
i=1

piPj−1(λi)Pn−1(λi)

=
N∑
i=1

U1iPj−1(λi)U1iPn−1(λi) =
N∑
i=1

UjiUni = (UUT )jn = δj=n.

Lemma 5.20. The orthonormal polynomials with respect to any measure ν with positive leading coeffi-
cients satisfy a three-term recursion as above (which may not terminate, and the b coefficients may not be
strictly positive). If ν is supported on at least N points, then b1, . . . , bN−1 > 0.
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Proof. Let {Pn : n ≥ 0} be orthonormal polynomials with respect to a measure ν. Since they are obtained
by a Gram-Schmidt procedure from the basis {xn : n ≥ 0},

xPn−1(x) =
n∑
i=0

αn,iPi(x)

for some coefficients αn,i. Since

〈Pi, xPn−1〉ν =

∫
Pi(x)xPn−1(x) dν(x) = 〈xPi, Pn−1〉ν = 0

for n− 1 > i+ 1, αn,i = 0 for i < n− 2. Denote bn = αn,n, an = αn,n−1 and cn = αn,n−2. Then

cn = 〈xPn−1, Pn−2〉ν = 〈Pn−1, xPn−2〉ν = bn−1.

Thus finally,
xPn−1(x) = bn−1Pn−2(x) + anPn−1(x) + bnPn(x).

Since the leading coefficients of Pn and Pn−1 are positive, bn ≥ 0. If bN = 0, then xPN−1, and so all poly-
nomials of degree N , are in the linear span of {P0, . . . , PN−1}. It follows that the space of polynomials
on the support of ν has dimension at most N , and so this support contains at most N points.

Proof of Proposition 5.14. It suffices to prove a bijection between matrices JN and measures νN . Starting
with JN , its νN =

∑N
i=1 piδλi is uniquely determined by its eigenvalues and eigenvectors. Conversely,

start with νN . Use Gram-Schmidt orthogonalization to construct orthonormal polynomials with positive
leading coefficients P0, P1, . . . , PN−1. They satisfy a three-term recursion relation, whose coefficients are
determined by

bn = 〈xPn−1, Pn〉νN
and

an = 〈xPn−1, Pn−1〉νN .

The Jacobian of the spectral bijection.

Now that we have proved that ϕ is a bijection, we want to compute its Jacobian determinant. We do this
in two steps, using an intermediate bijection with (m1(N), . . . ,m2N−1(N)).

Proposition 5.21. The Jacobian determinant of the transformation

(a1, b1, a2, b2, . . . , bN−1, aN) 7→ (m1(N), . . . ,m2N−1(N))

is

2N−1

∏N−1
k=1 b

4(N−k)
k∏N−1

k=1 bk
.
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Proof. Recall that mk(N) = (Jk)11. Using Motzkin paths, we can observe that

m2k−1(N) = akb
2
k−1 . . . b

2
1 + Polynomial(ak−1, . . . , a1, bk−1, . . . , b1)

and
m2k(N) = b2

kb
2
k−1 . . . b

2
1 + Polynomial(ak, . . . , a1, bk−1, . . . , b1).

It follow that the Jacobian matrix of the transformation

(a1, b1, a2, b2, . . . , bN−1, aN) 7→ (m1(N), . . . ,m2N−1(N)

is upper triangular, and its Jacobian determinant is

N∏
k=2

(b2
k−1 . . . b

2
1)

N−1∏
k=1

(2bkb
2
k−1 . . . b

2
1) = 2N−1

∏N−1
k=1 b

4(N−k)
k∏N−1

k=1 bk
.

Proposition 5.22. The Jacobian determinant of the transformation

(p1, . . . , pN−1, λ1, . . . , λN) 7→ (m1(N), . . . ,m2N−1(N))

is, up to a sign, (
N∏
i=1

pi

)
∆(λ1, . . . , λN)4,

where
∆(λ1, . . . , λN) =

∏
1≤i<j≤N

(λj − λi)

is the Vandermonde determinant.

Proof.

mk(N) =
N∑
i=1

piλ
k
i =

N−1∑
i=1

piλ
k
i + (1− p1 − . . .− pN−1)λkN

So

∂mk

∂pi
= λki − λkN ,

∂mk

∂λi
= kpiλ

k−1
i , i < N,

∂mk

∂λN
= k(1− p1 − . . .− pN−1)λk−1

N = kpNλ
k−1
N .

and the Jacobian matrix of the transformation

(p1, . . . , pN−1, λ1, . . . , λN) 7→ (m1(N), . . . ,m2N−1(N)
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is
λ1 − λN . . . λN−1 − λN p1 . . . pN−1 pN
λ2

1 − λ2
N . . . λ2

N−1 − λ2
N 2p1λ1 . . . 2pN−1λN−1 2pNλN

... . . .
...

... . . .
...

...
λ2N−1

1 − λ2N−1
N . . . λ2N−1

N−1 − λ
2N−1
N (2N − 1)p1λ

2N−2
1 . . . (2N − 1)pN−1λ

2N−2
N−1 (2N − 1)pNλ

2N−2
N

 .

Factoring out p1 . . . pN , we get the matrix
λ1 − λN . . . λN−1 − λN 1 . . . 1 1
λ2

1 − λ2
N . . . λ2

N−1 − λ2
N 2λ1 . . . 2λN−1 2λN

... . . .
...

... . . .
...

...
λ2N−1

1 − λ2N−1
N . . . λ2N−1

N−1 − λ
2N−1
N (2N − 1)λ2N−2

1 . . . (2N − 1)λ2N−2
N−1 (2N − 1)λ2N−2

N

 .

We need to compute its determinant. Up to a sign,

det


λ1 − λN . . . λN−1 − λN 1 . . . 1 1
λ2

1 − λ2
N . . . λ2

N−1 − λ2
N 2λ1 . . . 2λN−1 2λN

... . . .
...

... . . .
...

...
λ2N−1

1 − λ2N−1
N . . . λ2N−1

N−1 − λ
2N−1
N (2N − 1)λ2N−2

1 . . . (2N − 1)λ2N−2
N−1 (2N − 1)λ2N−2

N



= det


0 . . . 0 1 0 . . . 0 0

λ1 − λN . . . λN−1 − λN λN 1 . . . 1 1
λ2

1 − λ2
N . . . λ2

N−1 − λ2
N λ2

N 2λ1 . . . 2λN−1 2λN
... . . .

...
... . . .

...
...

...
λ2N−1

1 − λ2N−1
N . . . λ2N−1

N−1 − λ
2N−1
N λ2N−1

N (2N − 1)λ2N−2
1 . . . (2N − 1)λ2N−2

N−1 (2N − 1)λ2N−2
N



= det


1 . . . 1 1 0 . . . 0 0
λ1 . . . λN−1 λN 1 . . . 1 1
λ2

1 . . . λ2
N−1 λ2

N 2λ1 . . . 2λN−1 2λN
... . . .

...
... . . .

...
...

...
λ2N−1

1 . . . λ2N−1
N−1 λ2N−1

N (2N − 1)λ2N−2
1 . . . (2N − 1)λ2N−2

N−1 (2N − 1)λ2N−2
N



= det


1 . . . 1 1 0 . . . 0 0
λ1 . . . λN−1 λN 1 . . . 1 1
λ2

1 . . . λ2
N−1 λ2

N 2τ1 . . . 2τN−1 2τN
... . . .

...
... . . .

...
...

...
λ2N−1

1 . . . λ2N−1
N−1 λ2N−1

N (2N − 1)τ 2N−2
1 . . . (2N − 1)τ 2N−2

N−1 (2N − 1)τ 2N−2
N



∣∣∣∣∣∣∣∣∣∣∣
τ1=λ1,...,τN=λN

=
∂N

∂τ1 . . . ∂τN

∣∣∣∣
τ1=λ1,...,τN=λN

det


1 . . . 1 1 1 . . . 1 1
λ1 . . . λN−1 λN τ1 . . . τN−1 τN
λ2

1 . . . λ2
N−1 λ2

N τ 2
1 . . . τ 2

N−1 τ 2
N

... . . .
...

... . . .
...

...
...

λ2N−1
1 . . . λ2N−1

N−1 λ2N−1
N τ 2N−1

1 . . . τ 2N−1
N−1 τ 2N−1

N
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The determinant is a Vandermonde determinant∏
i<j

(λj − λi)
∏
i,j

(τj − λi)
∏
i<j

(τj − τi) =
∏
i<j

(λj − λi)
∏
i>j

(τj − λi)
∏
i

(τi − λi)
∏
i<j

(τj − λi)
∏
i<j

(τj − τi)

So the expression above is

∂N

∂τ1 . . . ∂τN

∣∣∣∣
τ1=λ1,...,τN=λN

∏
i<j

(λj − λi)
∏
i>j

(τj − λi)
∏
i

(τi − λi)
∏
i<j

(τj − λi)
∏
i<j

(τj − τi)

= lim
h1,...,hN→0

∏
i<j(λj − λi)

∏
i>j(λj + hj − λi)

∏
i(λi + hi − λi)

∏
i<j(λj + hj − λi)

∏
i<j(λj + hj − λi − hi)− 0

h1 . . . hN

=
∏
i<j

(λj − λi)
∏
i>j

(λj − λi)
∏
i<j

(λj − λi)
∏
i<j

(λj − λi)

= ±∆(λ1, . . . , λN)4.

Corollary 5.23. The Jacobian determinant of ϕ is, up to a sign,

2N−1

∏N−1
k=1 b

4(N−k)
k

∆(λ1, . . . , λN)4
∏N

i=1 pi
∏N−1

k=1 bk

Proposition 5.24.
N−1∏
k=1

bN−kk =

(
N∏
i=1

pi

)1/2

∆(λ1, . . . , λN).

Consequently the Jacobian determinant of ϕ is, up a sign,

2N−1

∏N
i=1 pi∏N−1
k=1 bk

Proof. Denote by e1 the first basis vector. Let A be the matrix with columns

A = (e1, Je1, . . . , J
N−1e1).

Then A is upper-triangular, with entries 1, b1, . . . ,
∏N−1

k=1 bk on the diagonal. So

detA =
N−1∏
n=0

n∏
k=1

bk =
N−1∏
k=1

bN−kk .

On the other hand, denote q = (q1, . . . , qN)T = UT e1 the first row of U , so that q2
i = pi. Then

A = (UUT e1, UΛUT e1, . . . , UΛN−1UT e1) = U(UT e1,ΛU
T e1, . . . ,Λ

N−1UT e1)

= U(q,Λq, . . . ,ΛN−1q) = U

 q1 λ1q1 . . . λN−1
1 q1

...
... . . .

...
qN λNqN . . . λN−1

N qN
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and so

detA =

(
N∏
i=1

qi

)
det

1 λ1 . . . λN−1
1

...
... . . .

...
1 λN . . . λN−1

N

 =

(
N∏
i=1

qi

)
∆(λ1, . . . , λN).

We conclude that the Jacobian determinant of ϕ is

2N−1

((∏N
i=1 pi

)
∆(λ1, . . . , λN)

)4

∆(λ1, . . . , λN)4
∏N−1

k=1 bk
= 2N−1

(∏N
i=1 pi

)4

∏N−1
k=1 bk

.

Exact eigenvalue distribution for β-ensembles.

Theorem 5.25. The joint density of ordered eigenvalues of an un-normalized β-ensemble matrix is

1

ZN
exp

(
−β

4

N∑
i=1

λ2
i

)
∆(λ1, . . . , λN)β.

Proof. Recall that for the β-ensembles, ai and bi are independent, with distributions√
βak ∼ N (0, 2)

and √
βbk ∼ χ(N−k)β.

So their individual densities are 1
Z
e−(β/4)a2k and 1

Z
b

(N−k)β−1
k e−(β/2)b2k , and their joint density is

1

Z

N∏
k=1

e−(β/4)a2k

N−1∏
k=1

bkβ−1
k e−(β/2)b2k =

1

Z
exp

(
−β

4

N∑
k=1

a2
k −

β

2

N−1∑
k=1

b2
k

)
N−1∏
k=1

b
(N−k)β−1
k .

We want to express this in terms of λi’s and pi’s. We note that all bk > 0 a.s. (so the results from earlier
in the section apply),

N∑
k=1

a2
k + 2

N−1∑
k=1

b2
k = Tr[JTJ ] =

N∑
i=1

λ2
i ,

and
N−1∏
k=1

b
(N−k)β
k =

(
N∏
i=1

pi

)β/2

∆(λ1, . . . , λN)β.

Since ∣∣Jac(a,b)→(λ,p)

∣∣ = 2N−1

∏N
i=1 pi∏N−1
k=1 bk
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we obtain the density

1

ZN
exp

(
−β

4

N∑
i=1

λ2
i

)(
N∏
i=1

pi

)β/2−1

∆(λ1, . . . , λN)β.

Thus the joint densities of λi’s and pj’s are independent, and the joint distribution of the pi’s may be
integrated out.

To obtain the precise normalization constant in the joint density of eigenvalues we need to trace the
constants carefully throughout the proof, and at the end use the Dirichlet integral

∫ 1

0

∫ 1−p1

0

. . .

∫ 1−
∑N−2
i=1

0

(
N∏
i=1

pi

)β/2−1

dpN−1 . . . dp1 =
Γ(β/2)N

Γ(nβ/2)
.

Another approach to compute

ZN =

∫∫
λ1≤...≤λN

exp

(
−β

4

N∑
i=1

λ2
i

)
∆(λ1, . . . , λN)β dλ1 . . . dλN

=
1

N !

∫
RN

exp

(
−β

4

N∑
i=1

λ2
i

)
|∆(λ1, . . . , λN)|β dλ1 . . . dλN

is to deduce it as a limiting case of the Selberg integral

1

N !

∫ 1

0

. . .

∫ 1

0

N∏
i=1

λa−1
i (1−λi)b−1 |∆(λ1, . . . , λN)|2c dλ1 . . . dλN =

N−1∏
j=0

Γ(a+ jc)Γ(b+ jc)Γ((j + 1)c)

Γ(a+ b+ (N + j − 1)c)Γ(c)
.
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Chapter 6

Asymptotic distributions, asymptotic freeness,
and free convolution.

Motivating question 1. Let (AN)∞N=1 and (BN)∞N=1 be (families of) self-adjoint random matrices with the
distribution of (BN) unitarily invariant. Suppose their empirical spectral distributions converge weakly
almost surely:

µ̂AN → µ, µ̂BN → ν.

Note that, roughly speaking, we are pickingBN “uniformly at random” from all self-adjoint matrices with
distribution ≈ ν. Suppose each AN , BN have mutually independent entries.

Since AN and BN do not commute, one cannot speak directly of their joint distribution. What are their
asymptotic joint moments? Are they determined purely by µ and ν?

Answer. Under mild assumptions, AN and BN are asymptotically free. This means that there exists
an operator algebra A with a positive linear functional ϕ, and two operators a, b ∈ A which are freely
independent, such that almost surely

1

N
Tr[A

u(1)
N B

v(1)
N . . . A

u(k)
N B

v(k)
N ]→ ϕ[au(1)bv(1) . . . au(k)bv(k)]. (6.1)

Motivating question 2. Fix a large N . Let A be an N ×N (non-random) Hermitian matrix, with spectral
distribution µ̂A ≈ µ. We interpret A as the “true signal”. Let B be an N × N normalized GUE matrix,
with spectral distribution µ̂B ≈ σ, the semicircular distribution. We interpret B as “noise”. What is the
approximate spectral distribution of “signal plus noise” A+B?

Answer. Under mild assumptions, the joint distribution of A and B is approximately the same as for
freely independent operators a and b above, and the spectral distribution of A + B is approximately the
distribution of a + b. This distribution is the additive free convolution µ � σ, and can be computed by
combinatorial and complex-analytic methods.

Reference: (Mingo, Speicher 2016) extracts from Chapters 1, 3, 4.
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6.1 Freeness.

Spaces and distributions.

Definition 6.1. A non-commutative probability space (ncps) is a pair (A, ϕ). Here A is a complex unital
algebra with an involution ∗, and ϕ is a state onA: a complex linear functional which is unital (ϕ [1] = 1),
self-adjoint (ϕ[a∗] = ϕ[a]), and positive (ϕ [a∗a] ≥ 0).

A state is tracial (or a trace) if for all a, b ∈ A, ϕ[ab] = ϕ[ba].

There are other versions of this definition, some with more, some with less conditions. In particular,
we may sometimes assume that A consists of bounded operators on some Hilbert space, and is either
norm closed (a C∗-algebra) or weakly closed (a von Neumann algebra). In this case we would put extra
continuity assumptions on ϕ.

Example 6.2. In all cases below, the conditions on ϕ are easy to verify.

a. Matrices: A = MN(C), a∗ is the usual adjoint, ϕ = 1
N

Tr or more generally ϕ[a] = 〈aξ, ξ〉 for a
unit vector ξ.

b. Commutative probability space: A = L∞(Ω,Σ, P ), a∗ = ā, ϕ[a] = E[a].

c. Random matrices: A = MN(C) ⊗ L∞(Ω,Σ, P ) = MN(L∞(Ω,Σ, P )), ϕ = 1
N
E ◦Tr. Note that

here we only consider bounded random entries; see remarks below for the discussion of affiliated
operators.

d. Infinite-dimensional spaces: A = B(H), the space of all bounded operators on a Hilbert space H ,
and ϕ[a] = 〈aξ, ξ〉 for a unit vector ξ ∈ H . Note that none of these states are tracial, and in fact
B(H) has no continuous tracial states. So it is important to note that there exist finite von Neumann
algebras: infinite-dimensional, weakly closed ∗-aubalgebras of B(H) which do have continuous
tracial states.

Definition 6.3. An element a ∈ A is self-adjoint if a∗ = a. For a self-adjoint element, the sequence of its
moments

(mn(a))∞n=0 = (ϕ [an])∞n=0

is positive definite. Therefore by Bochner’s theorem, there exists a probability measure µa on R (the
distribution of a) such that

mn(a) = mn(µ) =

∫
R
xn dµa(x).

Remark 6.4. In many situations of interest to us, A is a von Neumann algebra, so that its elements are
bounded operators on a Hilbert space. Their distributions are thus compactly supported. If we want to
realize a general probability measure on R as a distribution, we need to consider unbounded self-adjoint
operators. For such an operator a, we have a well-defined (bounded, self-adjoint) operator f(a) for any
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bounded continuous function f ∈ Cb(R). If all of these operators lie inA, we say that a is affiliated toA,
and define its distribution by ∫

f dµa = ϕ [f(a)] .

One can also define µa using the spectral measure corresponding to a, assuming that all the spectral
projections of a are in A. One can define the “affiliated” relation for non-self-adjoint operators. If A is a
von Neumann algebra and ϕ is a tracial state, then operators affiliated to A themselves form an algebra.

Definition 6.5. Star-subalgebras A1,A2, . . . ,Ak in an ncps (A, ϕ) are free (or freely independent) if
whenever ϕ[a1] = ϕ[a2] = . . . = ϕ[an] = 0, ai ∈ Au(i), u(1) 6= u(2) 6= u(3) 6= . . . (neighbours distinct),
then also

ϕ [a1a2 . . . an] = 0.

Elements a1, a2, . . . , ak are free if the star-subalgebras they generate are free.

Note that for self-adjoint ai, these are conditions on their joint moments: for any polynomials P1, . . . , Pn,

ϕ

[
n∏
i=1

(
Pi(au(i))− ϕ

[
Pi(au(i))

])]
= 0.

For general ai we need to consider more general polynomials Pi(a, a∗).

Theorem 6.6. Given ncps (Ai, ϕi)ki=1, there exists an ncps (A, ϕ) = ∗ki=1(Ai, ϕi), called their reduced
free product, such that

• there are embeddings Ji : Ai → A such that ϕ ◦ Ji = ϕi

• (Ji(Ai))ki=1 are free with respect to ϕ.

Thus we may construct free copies of given nc random variables.

Example 6.7. Let a, b ∈ (A, ϕ) be free. How to compute ϕ [abab]?

Write a◦ = a− ϕ [a]. Note

ϕ
[
(a◦)2

]
= ϕ

[
a2 − 2aϕ [a] + ϕ [a]2

]
= ϕ

[
a2
]
− ϕ [a]2 .

Then
ϕ [abab] = ϕ [(a◦ + ϕ [a])(b◦ + ϕ [b])(a◦ + ϕ [a])(b◦ + ϕ [b])] .

Using freeness and linearity, this reduces to

ϕ [abab] = ϕ [a]ϕ [b]ϕ [a]ϕ [b] + ϕ [a]2 ϕ
[
(b◦)2

]
+ ϕ [b]2 ϕ

[
(a◦)2

]
= ϕ [a]ϕ [b]ϕ [a]ϕ [b] + ϕ [a]2 (ϕ

[
b2
]
− ϕ [b]2) + ϕ [b]2 (ϕ

[
a2
]
− ϕ [a]2)

= ϕ
[
a2
]
ϕ [b]2 + ϕ [a]2 ϕ

[
b2
]
− ϕ [a]2 ϕ [b]2 .

Moral: not a good way to compute.
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Free cumulants.

Definition 6.8. For an ncps (A, ϕ), the n’th moment functional is the C-multi-linear functional on A,

Mϕ
n (a1, . . . , an) = ϕ[a1 . . . an].

Note that
mn(a) = Mn(a, a, . . . , a).

Definition 6.9. Let π be a (set) partition of n, that is, a decomposition of {1, 2, . . . , n} into disjoint non-
empty subsets, called blocks. Denote all such partitions by P(n). For a family of multi-linear functionals
(Fi)

∞
i=1, denote by Fπ the n-linear functional

Fπ(a1, . . . , an) =
∏
V ∈π

F|V |(ai : i ∈ V ).

For example, for the partition π = {(1, 3), (2, 4), 5},

Fπ(a1, a2, a3, a4, a5) = F2(a1, a3)F2(a2, a4)F1(a5).

Definition 6.10. For an ncps (A, ϕ), define the n’th cumulant functional Cn implicitly by

Mϕ
n (a1, a2, . . . , an) =

∑
π∈P(n)

Cϕ
π (a1, a2, . . . , an).

For example,
M1(a1) = C1(a1)

is the mean,

M2(a1, a2) = C2(a1, a2) + C1(a1)C1(a2), C2(a1, a2) = M2(a1, a2)−M1(a1)M1(a2)

is the covariance. The implicit relation can be inverted using Möbius inversion. Again, the n’th cumulant
of a single element is

cn(a) = Cn(a, a, . . . , a).

Since it depends only on the moments, we may define cn(µ) = cn(a) where µ = µa.

Definition 6.11. A partition is non-crossing if its blocks in a natural graphical representation do not cross.
For example, {(1, 3), (2, 4)} is crossing while {(1, 4), (2, 3)} is non-crossing. Denote all non-crossing
partitions of n by NC(n).

For an ncps (A, ϕ), define the n’th free cumulant functional Rϕ
n implicitly by

Mϕ
n (a1, a2, . . . , an) =

∑
π∈NC(n)

Rϕ
π(a1, a2, . . . , an)

and the n’th free cumulant of a single element by rn(a) = Rn(a, a, . . . , a). Then the first free cumulant is
still the mean and the second the covariance, but free cumulants differ from cumulants starting with order
n = 4.
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Exercise 6.12. Let a be a bounded random variable with distribution µ. Show that
∞∑
n=1

(iθ)n

n!
cn(a) = log

∫
R
eiθx dµ(x),

the logarithm of the characteristic function of µ. More generally, for a k-tuple of (commuting) random
variables a1, . . . , ak with the joint distribution µ on Rk, in the series expansion of

log

∫
Rk
ei

∑
θjxj dµ(x1, . . . , xk),

the coefficient of (iθ1)u(1) . . . (iθk)
u(k) is

1

u(1)!u(2)! . . . u(k)!
Cn( a1︸︷︷︸

u(1) times

, . . . , ak︸︷︷︸
u(k) times

)

(note that unlike free cumulants, cumulants depend only on the quantity of each of their arguments and not
on their order). Conclude that these random variables are independent if and only if their mixed cumulants
vanish, in the sense of the theorem below.

Theorem 6.13. In a ncps (A, ϕ), star-subalgebras A1,A2, . . . ,Ak are free if and only if “their mixed
free cumulants vanish”:

Rn[a1, a2, . . . , an] = 0

unless all ai belong to the same Aj .

Proof. (Easy direction) Suppose all mixed free cumulants vanish. Take (ai ∈ Au(i))
n
i=1, u(1) 6= u(2) 6=

. . ., with ϕ[ai] = 0. Then
ϕ [a1a2 . . . an] =

∑
π∈NC(n)

Rπ[a1, a2, . . . , an].

It remains to note that any non-crossing partition π contains a block which is an interval, that is, con-
sists of several consecutive elements. So each term on the right-hand side contains a factor of the form
R`[ai, ai+1, . . . , ai+`−1]. If ` = 1, this factor is zero since R1[ai] = ϕ[ai] = 0. If ` > 1, this factor is a
mixed free cumulant, and so vanishes as well. If follows that the left-hand side is zero.

(Hard direction: sketch) The difficulty is that in the free cumulant formula, we neither assume that ele-
ments are centered nor that they are alternating. We first show that if n ≥ 2 and any of a1, a2, . . . , an is a
scalar, then

R[a1, a2, . . . , an] = 0.

Decomposing each ai = (ai−ϕ[ai])+ϕ[ai] and using multi-linearity, we may then assume that each ai is
centered. Next, group ai’s into consecutive products so that different consecutive products lie in different
algebras. Using the combinatorial formula for free cumulants with products as entries, we can then reduce
to the case when ai’s are alternating. But for this case the result is easy.

For the full proof, see Theorem 5.24 in the Free Probability Notes.
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Example 6.14. For a N (0, t) random variable, the characteristic function is etθ2/2. Thus according to
Exercise 6.12, its cumulants are c2 = t, cn = 0 for n 6= 2.

Exercise 6.15. Recall that a family (xi)
k
i=1 of random variables is jointly Gaussian with mean zero and

covariance matrix Σ if the characteristic function of their joint distribution is exp(θ ·Σθ). Compute all the
joint cumulants of this family. Deduce the Wick formula

M
[
xu(1), xu(2), . . . , xu(2n)

]
=

∑
{(i1,j1),...,(in,jn)}∈P2(2n)

Σu(i1),u(j1) . . .Σu(in),u(jn),

where P2 denotes the pair partitions (perfect matchings).

Example 6.16. Which distribution µt has free cumulants r2 = t, rn = 0 for n 6= 2? Note that its moments
are

m2n+1(µt) = 0, m2n = t |NC2(2n)| ,

where NC2 denotes the non-crossing pairings. It is not hard to construct a bijection with trees and use
Lemma 2.3 to show that |NC2(2n)| is the n’th Catalan number. It follows that µt is the semicircular
distribution with variance t,

dµt(x) =
1

2πt

√
4t− x21[−2

√
t,2
√
t](x) dx.

Exercise 6.17. Derive the result in Example 6.7 using free cumulants.

Exercise 6.18. A standard free semicircular system is a family s1, . . . , sk ∈ (A, ϕ) of self-adjoint free
random variables each of which has the standard semicircular distribution. Show that

ϕ
[
su(1)su(2) . . . su(n)

]
=
∣∣∣{π ∈ NC2(n) | i π∼ j ⇒ u(i) = u(j)

}∣∣∣ .
Exercise 6.19. Let s1 and s2 be two free standard semicircular variables. Denote c = 1√

2
(s1 + is2). c is

called a (standard) circular variable, and is the free analog of a complex Gaussian variable.

a. Prove that
R[c, c∗] = R[c∗, c] = 1,

and the rest of the joint cumulants of c and c∗ (including those of order 2) are zero.

b. Let ε = (ε(1), . . . , ε(n)), where each ε(i) is either blank or ∗. Write down the expression (in terms
of non-crossing partitions and ε) for

M [cε(1), cε(2), . . . , cε(n)].
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6.2 Free convolution

Definition 6.20. Let µ and ν be probability measures on R. Let a and b be freely independent operators
in (or affiliated to) an ncps, with distributions µ and ν, respectively. The distribution of a + b depends
only on µ and ν and not on the choice of a and b, and is µ� ν, the (additive) free convolution of µ and ν.

There is a related notion of multiplicative free convolution µ � ν, arising from a product of freely inde-
pendent operators. We will not pursue the corresponding theory.

This section addresses various approaches to computing µ� ν.

Cumulant approach

Corollary 6.21. If a, b are free, then

rn[a+ b] = rn[a] + rn[b].

Thus
rn[µ� ν] = rn[µ] + rn[µ]

Proof. Using multi-linearity and the vanishing of mixed free cumulants,

rn[a+ b] = R[a+ b, a+ b, . . . , a+ b]

=
∑

R[a or b, . . . , a or b] = R[a, . . . , a] +R[b, . . . , b] = rn[a] + rn[b].

Example 6.22. From Example 6.14 it follows that σt+s = σt � σs, so semicircular distributions form a
free convolution semigroup.

We can thus, in principle, compute arbitrary free cumulants, and so arbitrary moments, of µ� σt. But the
computation may involve complicated combinatorics. For example: what is(

1

2
δ−a +

1

2
δa

)�2

?

Cauchy transform approach

Definition 6.23. For a probability measure µ on R, its Cauchy transform is the function

Gµ(z) =

∫
R

1

z − x
dµ(x).
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Note that Sµ(z) = −Gµ(z) is the Stieltjes transform discussed in Chapter 4. So from the results in that
chapter, we deduce that Gµ is an analytic function from C+ to C− and

lim
y→+∞

iyGµ(iy) = 1;

that we may recover µ as a weak limit

µ = lim
y↓0

1

π
=Gµ(x+ iy) dx

(Stieltjes inversion formula); and that if µ is compactly supported, then zGµ(z)→ 1 as z →∞, and

∞∑
k=0

mk(µ)

zk+1
= Gµ(z).

Exercise 6.24. Let µ be compactly supported. Denote

Rµ(z) =
∞∑
n=1

rn(µ)zn−1.

Show that Gµ and 1
z

+Rµ(z) are inverses of each other under composition (as formal power series). Hint:
show that this is equivalent to the relation

mn =
n∑
k=1

rk

i(1)+...+i(k)=n−k∑
i(1),...,i(k)=0

mi(1) . . .mi(k).

It will sometimes be more convenient to work with functions Fµ(z) = 1
Gµ(z)

(the F -transform) and
ϕµ(z) = Rµ(1/z) (sometimes called the Voiculescu transform). For compactly supported measures, it
follows that F and z + ϕ(z) are compositional inverses as formal power series. Note also that Fµ is an
analytic function from C+ to itself, such that limy→+∞

Fµ(iy)

iy
= 1.

Theorem 6.25. Let F be an analytic self-map of C+. Then F has a Nevanlinna representation:

F (z) = α + βz +

∫
R

1 + uz

u− z
dτ(u),

where α ∈ R, β ≥ 0, and τ is a finite positive measure on R.

It is not hard to deduce this result from the Herglotz representation

η(z) = iα +
1

2π

∫ π

−π

eiθ + z

eiθ − z
dτ(θ),

where η is a self-map of the unit disk. This in turn is the Poisson kernel formula for the disk (compare
with the proof of the Stieltjes inversion formula in Chapter 4).
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Exercise 6.26. Let F be an analytic self-map of C+.

a. Show that the limit limy→+∞
F (iy)
iy

exists (compare with the properties of the Stieltjes transform in
the beginning of Chapter 4).

b. Suppose the limit in part (a) is 1. Show that F increases the imaginary part,

=F (z) ≥ =z,

and F (z) = z(1 + o(1)) as z → ∞ nontangentially to R, meaning in such a way that <z/=z
remains bounded.

Solution for the second claim in part (b). From the Nevanlinna representation, we need to show that

1

z

∫
R

1 + uz

u− z
dτ(u)→ 0

as z →∞ nontangentially. That is, the limit is taken over z = x+ iy with
∣∣∣xy ∣∣∣ ≤M . For any fixed u ∈ R,

1

z

1 + uz

u− z
→ 0

as z →∞ (nontangentially or not). Also,∣∣∣∣ 1 + uz

z(u− z)

∣∣∣∣ =

∣∣∣∣1 +
1 + z2

z(u− z)

∣∣∣∣ ≤ 1 +
|1 + z2|
y2

≤ 1 +
1

y2
+ (1 +M2)

is uniformly bounded over all u and z → ∞ nontangentially. The result follows from the dominated
convergence theorem.

It follows that for a general probability measure µ, Fµ has a compositional inverse F−1
µ on a truncated

Stolz angle
Γα,β = {z : α=z > |<z| ,=z > β} .

So we may always define ϕµ = F−1
µ (z)− z on such a region. We may then attempt to define µ� ν by

ϕµ�ν = ϕµ + ϕν

on their common domain. For compactly supported measures, the free cumulant approach implies that
this can be done. That is, for any compactly supported µ and ν, the function z + ϕµ(z) + ϕν(z) has
a compositional inverse which can be analytically continued to a function from C+ to C+, and is an
F -transform of a probability measure (which can be recovered via Stieltjes inversion). In a beautiful
paper, (Bercovici, Voiculescu 1993) proved that this can be done in general, using unbounded operator
techniques.
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Example 6.27. Let µ = 1
2
δ−a + 1

2
δa be a Bernoulli distribution. Its Cauchy transform is

Gµ(z) =
1

2

1

z − a
+

1

2

1

z + a
=

z

z2 − a2
,

and its F transform Fµ(z) = z − a2

z
, so that

F−1
µ (w) =

w +
√
w2 + 4a2

2

(the branch of the square root chosen so that F−1(w) = w + o(w) at infinity), and

ϕµ(w) =

√
w2 + 4a2 − w

2
.

Thus

ϕµ�t =
t
√
w2 + 4a2 − tw

2

and

F−1
µ�σt =

t
√
w2 + 4a2 − (t− 2)w

2
.

It follows that

Fµ�t(z) =
(t− 2)z + t

√
z2 − 4a2(t− 1)

2(t− 1)

and

Gµ�t(z) =
(t− 2)z − t

√
z2 − 4a2(t− 1)

2(a2t2 − z2)
.

By Stieltjes inversion it follows that

µ�t =
1

2π

t
√

(4a2(t− 1)− x2)+

2(a2t2 − x2)
dx+

(
1− t

2

)
+

(δ−at + δat)

for t ≥ 1. Note that these convolution powers are thus defined for all t ≥ 1! In particular, for t = 2,

Gµ�µ(z) =
z − 2

√
z2 − 4a2

2(4a2 − z2)

and so
µ� µ =

1

2π

1√
4a2 − x2

dx,

the standard arcsine distribution.

71



Subordination function approach

Proposition 6.28. (Voiculescu 1993, Biane 1998, Voiculescu 2000, Belinschi, Bercovici 2007) Let µ1, µ2

be probability measures on R. Then Fµ1�µ2 is analytically subordinate to Fµ1: there is an analytic map
ω1 : C+ → C+ (the subordination function) such that

Fµ1�µ2(z) = Fµ1(ω1(z)).

Similarly, there is a function ω2 such that Fµ1�µ2(z) = Fµ2(ω2(z)). Both functions satisfy =ω(z) ≥ =z
and ω(z) = z(1 + o(1)) as z →∞ nontangentially to R.

Note that the same subordination relation will then hold for the Cauchy transforms.

Of course, on a domain

ω1(z) = F−1
µ1

(Fµ1�µ2(z)) = Fµ1�µ2(z) + ϕµ1(Fµ1�µ2(z)).

The point is that ω1 can be analytically continued to a function from C+ to itself. Instead of proving
this directly, we take a different approach, which in particular will allow us to (if necessary) compute ωj
numerically, thereby leading to numerical valued of Gµ1�µ2 and µ1 � µ2. Subordination functions have
also proven useful in the study of qualitative properties of free convolution, limit theorems etc.

The following is a version of the Denjoy-Wolff theorem.

Theorem 6.29. Let f be an analytic self map of the unit disk D, neither a constant nor an automorphism
of the disk. Then for any initial z0 ∈ D, the iterates f ◦n(z0) converge (uniformly on compact sets) to
the Denjoy-Wolff point z in the closed unit disk D. If z ∈ D, then z is the unique fixed point of f , and
|f ′(z)| < 1.

The case of z ∈ D is easy to prove using Schwarz Lemma. By using the Cayley transform i1+z
1−z , we may

translate this result to C+ and its closure.

To simplify notation, we will denote Fj = Fµj and Hj(z) = Fj(z)− z.

Proposition 6.30. Let
gz(w) = g1(z, w) = z +H2(z +H1(w)).

Then for any z ∈ C+, the map gz has a unique fixed point ω1 ∈ C+, to which its iterations converge. As a
function of z, ω1 is analytic, and increases the imaginary part.

Proof. (Sketch) Recall that Fj increases the imaginary part. Therefore Hj maps C+ to itself. It follows
that for each z, gz maps C+ to z + C+. In particular, it is not an automorphism of C+, and its iterations
cannot converge to a point in R. We omit the argument showing they do not converge to infinity. The
existence of the fixed point then follows from the Denjoy-Wolff theorem. Since∣∣∣∣∂(w − g1(z, w))

∂w

∣∣∣∣ = 1− |g′z(w)| > 0,

analyticity follows from the implicit function theorem.
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Theorem 6.31. There are analytic functions ω1, ω2 : C+ → C+ such that

F1(ω1(z)) = F2(ω2(z))

and
ω1(z) + ω2(z) = z + F1(ω1(z)).

Moreover such functions are unique. They both increase the imaginary part, and satisfy

lim
y→+∞

ωj(iy)

iy
= 1.

Proof. Define ω1(z) as the unique fixed point

g1(z, ω1(z)) = ω1(z),

and define
ω2(z) = z + F1(ω1(z))− ω1(z).

Then both functions are analytic, map C+ to itself, and increase the imaginary part. The second equation
is clearly satisfied. Also,

F2(ω2(z))− F1(ω1(z)) = F2(z +H1(ω1))− F1(ω1(z))

= z + F2(z +H1(ω1))− (z +H1(ω1(z))) + ω1(z) = g(z, ω1(z))− ω1(z) = 0,

so the first equation is satisfied as well. Conversely, the second equation implies the relation between ω1

and ω2, while the first equation implies that ω1 is the fixed point of g1(z, ·), and so is unique. Exchanging
1 and 2, ω2 is the fixed point of

g2(z, ·) = z +H1(z +H2(·)),

and so is unique as well. Finally, by the Nevanlinna representation, the limit ` = limy→+∞
ω2(iy)
iy

exists.

Since ω1 increases the imaginary part, limy→+∞
ω1(iy)
iy
≥ 1, and ω1(iy) goes to infinity nontangentially as

y →∞. On the other hand,

`+ lim
y→+∞

ω1(iy)

iy
= lim

y→+∞

ω1(iy) + ω2(iy)

iy
= lim sup

y→+∞

iy + F2(ω2(iy))

iy

= 1 + lim sup
y→+∞

F2(ω2(iy))

ω2(iy)
· ω2(iy)

iy
= 1 + `,

which implies that the limit for ω1 (and so by symmetry also for ω2) is 1.

Finally, we verify that F = F1 ◦ ω1 = F2 ◦ ω2 is in fact Fµ1�µ2 . Since both functions are analytic, it
suffices to show they, or their inverses, coincide on a domain. Indeed, from the second equation in the
theorem,

F−1(z) = ω1(F−1(z)) + ω2(F−1(z)) + z = F−1
1 (z) + F−1

2 (z)− z,
that is,

F−1(z)− z = ϕµ1(z) + ϕµ2(z).
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6.3 Asymptotic freeness.

Definition 6.32. Let (a1, . . . , ak) ⊂ (A, ϕ). Their ∗-distribution is the state µa1,...,ak on the space of
non-commutative polynomials C〈x1, x

∗
1, . . . , xk, x

∗
k〉 defined by

µa1,...,ak [P (x1, x
∗
1, . . . , xk, x

∗
k)] = ϕ [P (a1, a

∗
1, . . . , ak, a

∗
k)]

(check that this is a state!). If ai’s are self-adjoint, their joint distribution is the state µa1,...,ak on the space
of non-commutative polynomials C〈x1, . . . , xk〉 (where the formal variables xi are now considered self
adjoint).

Note that the joint distribution may be identified with the collection of all joint moments, and the ∗-
distribution with the collection of all joint ∗-moments.

Definition 6.33. Let a(N)
1 , a

(N)
2 , . . . , a

(N)
k ∈ (AN , ϕN) be self-adjoint.

a. We say that
(a

(N)
1 , . . . , a

(N)
k )→ (a1, . . . , ak) ⊂ (A, ϕ)

in distribution if for each u,

ϕN

[
a

(N)
u(1)a

(N)
u(2) . . . a

(N)
u(n)

]
→ ϕ

[
au(1)au(2) . . . au(n)

]
as N →∞. Equivalently,

RϕN
[
a

(N)
u(1), a

(N)
u(2), . . . , a

(N)
u(n)

]
→ Rϕ

[
au(1), au(2), . . . , au(n)

]
or for all P ∈ C〈xi〉ki=1,

ϕN

[
P (a

(N)
1 , a

(N)
2 , . . . , a

(N)
k )

]
→ ϕ [P (a1, a2, . . . , ak)] .

In this case we say that (a
(N)
1 , a

(N)
2 , . . . , a

(N)
k ) have the asymptotic distribution

µa1,a2,...,ak .

Note that limits of tracial joint distributions are tracial. Convergence in ∗-distribution (for non-self-
adjoint elements) is defined similarly.

b. a(N)
1 , a

(N)
2 , . . . , a

(N)
k are asymptotically free if (a1, . . . , ak) from part (a) are free in (A, ϕ). Equiva-

lently,
RϕN

[
a

(N)
u(1), a

(N)
u(2), . . . , a

(N)
u(n)

]
N→∞−→ 0

unless all u(1) = u(2) = . . . = u(n).
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c. Random matrices X(N)
1 , X

(N)
2 , . . . , X

(N)
k are almost surely asymptotically free if for each u,

1

N
Tr
[
X

(N)
u(1)X

(N)
u(2) . . . X

(N)
u(n)

]
→ ϕ

[
au(1)au(2) . . . au(n)

]
almost surely as N →∞, and (a1, . . . , ak) ⊂ (A, ϕ) are free.

d. Suppose all AN , A are actually C∗-algebras, and so have norms. Note that this is the case for
random matrices. We say that

(a
(N)
1 , . . . , a

(N)
k )→ (a1, . . . , ak) ⊂ (A, ϕ)

strongly in distribution if they converge in distribution and in addition, for each non-commutative
polynomial P in k variables,∥∥∥P (a

(N)
1 , a

(N)
2 , . . . , a

(N)
k )

∥∥∥
AN
→ ‖P (a1, a2, . . . , ak)‖A

as N →∞. a(N)
1 , a

(N)
2 , . . . , a

(N)
k are strongly asymptotically free if (a1, . . . , ak) ⊂ (A, ϕ) are free.

Remark 6.34. Consider the case of a single Hermitian random matrix XN . Fix ε > 0. If XN → σ
in distribution, in particular, the proportion of eigenvalues of XN in (2 + ε,∞) goes to zero. But this
interval may still contain o(N) eigenvalues, for any N : XN may have outliers. If XN → σ strongly in
distribution, then for sufficiently large N , XN has no eigenvalues larger than 2 + ε (no outliers). As noted
on page 7 of the notes (Füredi, Komlos 1981, Bai, Yin 1988), GOE/GUE matrices have no outliers. In the
last chapter, we will analyse matrix models which do have outliers.

Theorem 6.35. (Voiculescu 1991, 1998) Let X1, . . . , Xk be entry-wise independent (normalized) GUE
matrices, and D1, . . . , Dq be non-random matrices with an asymptotic (tracial) joint distribution µd1,...,dq .

a. X1, . . . , Xk are asymptotically freely independent. Consequently, in distribution

(X1, . . . , Xk)→ (s1, . . . , sk),

where (s1, . . . , sk) is a free semicircular system.

b. More generally, in distribution

(X1, . . . , Xk, D1, . . . , Dq)→ (s1, . . . , sk, d1, . . . , dq),

where s1, . . . , sk are free semicircular elements free from d1, . . . , dq.

Proof of part (a). We follow the ideas from the proof of Theorem 2.1. For X(i) = 1√
N
Y (i), consider

1

N
E
[
Tr
[
Xu(1) . . . xu(n)

]]
=

1

N1+n/2

N∑
i(1),i(2),...,i(n)=1

E
[
Y
u(1)
i(1)i(2) . . . Y

u(n)
i(n)i(1)

]
.
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Using the Wick formula from Exercise 6.15, this is zero if n is odd. Replacing n by 2n, as in the proof
of Theorem 2.1, the only terms which survive in the large N limit are those corresponding to trees with
n + 1 vertices, each edge traversed exactly twice. Consider instead a 2n-gon, with vertices labeled by
i(1), . . . , i(2n), entries corresponding to the factors in the product above. Wick formula gives a pairing
between edges of this 2n-gon. It is not hard to see that the corresponding graph is a tree as above if
any only if the corresponding pairing is non-crossing. Recalling additionally that different matrices have
independent entries, the expression above is asymptotically equal to∣∣∣{π ∈ NC2(n) | i π∼ j ⇒ u(i) = u(j)

}∣∣∣ .
Now compare with Exercise 6.18.

Exercise 6.36. For the full proof of part (b), see Theorem 11.41 in the Free Probability Notes. We only
give an illustrative example. LetX be GUE, andD(1), . . . , D(4) (for eachN ) fixed (non-random) matrices.
Consider

1

N
E ◦Tr

[
XD(1)XD(2)XD(3)XD(4)

]
.

According to the Wick formula, this expression is again a sum of three terms, corresponding to the pair
partitions {(1, 2), (3.4)}, {(1, 4), (2, 3)}, and {(1, 3)(2, 4)}. The first one is

1

N
E
[
Xi(1)i(2)Di(2)i(2)Xi(2)i(1)Di(1)i(3)Xi(3)i(4)Di(4)i(4)Xi(4)i(3)Di(3)i(1)

]
=

1

N

1

N2

∑
i(2)

Di(2)i(2)

∑
i(4)

Di(4)i(4)

∑
i(1),i(3)

Di(1)i(3)Di(3)i(1)

=

(
1

N
Tr[D(1)]

)(
1

N
Tr[D(3)]

)(
1

N
Tr[D(2)D(4)]

)
.

Similarly, the second term is
(

1
N

Tr[D(2)]
) (

1
N

Tr[D(4)]
) (

1
N

Tr[D(1)D(3)]
)
. In the third term,

1

N
E
[
Xi(1)i(2)Di(2)i(3)Xi(3)i(4)Di(4)i(2)Xi(2)i(1)Di(1)i(4)Xi(4)i(3)Di(3)i(1)

]
=

1

N2

(
1

N
Tr
[
D(1)D(4)D(3)D(2)

])
.

Note the order! However this last term disappears in the large N limit. Now let s be a standard semicir-
cular variable, free from d1, d2, d3, d4. Show (probably by expanding in terms of free cumulants) that

ϕ [sd1sd2sd3sd4] = ϕ[d1]ϕ[d3]ϕ[d2d4] + ϕ[d2]ϕ[d4]ϕ[d1d3].

Remark 6.37. If (D1, . . . , Dq) converge almost surely in distribution, so do (X1, . . . , Xk, D1, . . . , Dq). If
(D1, . . . , Dq) converge strongly in distribution, so do (X1, . . . , Xk, D1, . . . , Dq) (Haagerup, Thorbjørnsen
2005, Male 2011). The same conclusions hold if Xi’s are GOE matrices (Schultz 2005). We will see in
the last chapter that there are differences between GUE and GOE matrices in the subleading order in N .
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Similar results hold for Wigner matrices with finite fourth moment (Dykema 1993, Capitaine, Donati-
Martin 2007, Anderson 2013), at least in the case when

∥∥∥D(N)
i

∥∥∥ are uniformly bounded, and random
permutation matrices (Nica 1993, Bordenave, Collins 2018). They fail for heavy Wigner matrices (Ryan
1998, Male 2017).

Exercise 6.38. Let XN be a normalized N × N complex Ginibre matrix, that is, XN = 1√
N
YN , where

entries of YN are independent complex Gaussian variables (no symmetry). Show that XN converges in
∗-distribution to a circular variable. That is, if c and ε are as in Exercise 6.19, then

lim
N→∞

1

N
E
[
Tr
[
X
ε(1)
N . . . X

ε(n)
N

]]
= ϕ

[
cε(1) . . . xε(n)

]
.

Exercise 6.39. In a ncps (A, ϕ), let {si}Ni=1 be free standard semicircular variables, and {ci,j}1≤i<j≤N be
free circular variables free from them. Form a matrix S with entries

Sii = si, Sij = cij if i < j, Sij = c∗ij if i > j;

thus S is a free analog of a GUE matrix. Show that as an element of the ncps (MN(A), 1
N
ϕ ◦ Tr), S has

the semicircular distribution (exactly, for any N ).

Definition 6.40. An element u ∈ (A, ϕ) is a Haar unitary if uu∗ = u∗u = 1 and

ϕ [un] = ϕ [(u∗)n] = δn=0.

For example, a CUE matrix (of any size) has this property.

Theorem 6.41. Let U1, . . . , Uk be independent N × N CUE (Haar unitary) matrices, and (D1, . . . , Dq)
non-random matrices converging in ∗-distribution to (d1, . . . , dq) ⊂ (A, ϕ). Then in ∗-distribution,

(U1, . . . , Uk, D1, . . . , Dq)→ (u1, . . . , uk, d1, . . . , dq),

where u1, . . . , uk are free Haar unitaries free from {d1, . . . , dq}.

Methods of proof. The original proof of Voiculescu used the fact that (ignoring invertibility issues of the
moment), for XN a GUE matrix, UN = XN(X∗NXN)−1/2 is a Haar unitary matrix. Approximating x/ |x|
by bounded continuous functions, asymptotic freeness of Haar unitary matrices follows from the asymp-
totic freeness of GUE matrices. Alternatively, one may use the Weingarten calculus methods discussed in
class.

Remark 6.42. If (D1, . . . , Dq) converge strongly in distribution, so do (U1, . . . , Uk, D1, . . . , Dq) (Collins,
Male 2014) The conditions on Ui in the theorem can be considerably weakened, as shown for example by
(Anderson, Farrell 2014).

Exercise 6.43. Suppose {u1, . . . , uk} are free Haar unitaries. Suppose the family (ai)
k
i=0 is freely inde-

pendent from the family (ui)
k
i=1 (note that ai’s need not be free among themselves). Then the family

a0, u1a1u
∗
1, . . . , ukaku

∗
k is free. In fact the full strength of the assumption that ui are Haar unitaries is not

necessary; what weaker condition suffices?
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Corollary 6.44. Let AN , BN be N ×N (non-random) matrices such that AN and BN converge in distri-
bution as N →∞. Let UN be an N ×N CUE matrix . Then UNANU∗N and BN are asymptotically free.
Consequently,

µ̂AN+BN → µ� ν

weakly.

Remark 6.45. If AN and BN (with a finite asymptotic absolute first moment) converge in distribution
almost surely, so does AN +BN (Speicher 1993, Pastur and Vasilchuk 2000).

Example 6.46. Let A2N be a 2N × 2N matrix

A2N =

(
IN 0
0 −IN

)
,

and U2N be a CUE matrix. Note that

µ̂A2N
= µ̂U2NA2NU

∗
2N

=
1

2
(δ−1 + δ1) .

Then according to Example 6.27,

µ̂A2N+U2NA2NU
∗
2N
→ 1

π

1√
(4− x2)+

dx

weakly almost surely as N →∞.

6.4 Extra section: proofs of asymptotic freeness

Unlike the rest of the notes, this section is not self-contained, but relies on the topics covered in Dr. Berko-
laiko’s part of the course. Our goal is to prove

Proposition 6.47. Let AN , BN be N × N (non-random) Hermitian matrices such that AN and BN con-
verge in distribution as N →∞. That is, for some a, b ∈ (A, ϕ),

1

N
Tr[AkN ]→ ϕ[ak],

1

N
Tr[Bk

N ]→ ϕ[bk].

Let UN be an N ×N CUE (Haar unitary) matrix. Then UNANU∗N and BN are asymptotically free.

To prove asymptotic freeness of UNANU∗N and BN , we want to show that for any (polynomial) functions
fj, gj with ϕ[fj(a)] = ϕ[gj(b)] = 0, the expression

1

N
E ◦Tr [f1(UNANU

∗
N)g1(BN) . . . gn−1(BN)fn(UNANU

∗
N)gn(Bn)]

=
1

N
E ◦Tr [UNf1(AN)U∗Ng1(BN) . . . gn−1(BN)UNfn(AN)U∗Ngn(BN)]
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goes to zero. To simplify notation, denote A(i) = fi(AN), B(i) = gi(BN). Thus we need to compute

1

N
E ◦Tr

[
UA(1)U∗B(1)UA(2)U∗B(2) . . . UA(n)U∗B(n)

]
=

1

N

∑
i,j
u,v

E
[
Ui(1)j(1)A

(1)
j(1)v(1)Ūu(1)v(1)B

(1)
u(1)i(2) . . . Ui(n)j(n)A

(n)
j(n)v(n)Ūu(n)v(n)B

(n)
u(n)i(1)

]

=
1

N

∑
i,j
u,v

A
(1)
j(1)v(1)B

(1)
u(1)i(2)A

(2)
j(2)v(2)B

(2)
u(2)i(3) . . . A

(n)
j(n)v(n)B

(n)
u(n)i(1)

E
[
Ui(1)j(1)Ūu(1)v(1)Ui(2)j(2)Ūu(2)v(2) . . . Ui(n)j(n)Ūu(n)v(n)

]
Using the notation from class and the definition of the Weingarten function, this equals

1

N

∑
i,j
u,v

A
(1)
j(1)v(1)B

(1)
u(1)i(2)A

(2)
j(2)v(2)B

(2)
u(2)i(3) . . . A

(n)
j(n)v(n)B

(n)
u(n)i(1)I

N
i,u;j,v

=
1

N

∑
i,j
u,v

A
(1)
j(1)v(1)B

(1)
u(1)i(2)A

(2)
j(2)v(2)B

(2)
u(2)i(3) . . . A

(n)
j(n)v(n)B

(n)
u(n)i(1)

∑
β∈Sn:iβ=u
α∈Sn:jα=v

WgNn (βα−1)

=
1

N

∑
i,j
u,v

A
(1)
j(1)v(1)B

(1)
u(1)i(2)A

(2)
j(2)v(2)B

(2)
u(2)i(3) . . . A

(n)
j(n)v(n)B

(n)
u(n)i(1)

∑
α,β∈Sn

δi(β(1))=u(1) . . . δi(β(n))=u(n)δj(α(1))=v(1) . . . δj(α(n))=v(n) WgNn (βα−1)

=
1

N

∑
α,β∈Sn

WgNn (βα−1)
∑
j

A
(1)
j(1)j(α(1)) . . . A

(n)
j(n)j(α(n))

∑
u

B
(1)

u(1)u(β−1γ(1))B
(n)

u(n)u(β−1γ(n)),

where γ = (12 . . . n) is the long cycle. For a permutation α and matrices {Xi}, we can write

Trα [X1, . . . , Xn] =
∏

cycles of α

Tr

 ∏
i∈ cycle

Xi

 .
For example,

Tr(152)(34) [X1, X2, X3, X4, X5] = Tr [X1X5X2] Tr [X3X4] .

Note that this is well-defined because Tr is cyclically symmetric. Then the expression above is

1

N

∑
α,β∈Sn

WgNn (βα−1) Trα
[
A(1), . . . , A(n)

]
Trβ−1γ

[
B(1), . . . , B(n)

]
.

Using the notation from class that |α| is the number of cycles of α, this equals to

1

N

∑
α,β∈Sn

WgNn (βα−1)N |α|+|β−1γ|
(

1

N |α|
Trα

[
A(1), . . . , A(n)

])( 1

N |β−1γ| Trβ−1γ

[
B(1), . . . , B(n)

])
.
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Recalling the Weingarten function asymptotics

WgNn (α) = µ(α)
1

N2n−|α| +O

(
1

N2n−|α|+2

)
and the limiting distributions of AN , BN , the expression above is, asymptotically∑
α,β∈Sn

µ(βα−1)
1

N2n+1−|βα−1|−|α|−|β−1γ| (1 + o(1))ϕα [f1(a), . . . , fn(a)]ϕβ−1γ [g1(b), . . . , gn(b)] . (6.2)

So the question is, is it true that for all α, β,

2n+ 1−
∣∣βα−1

∣∣− |α| − ∣∣β−1γ
∣∣ ≥ 0, (6.3)

and for what α, β do we have equality?

Lemma 6.48. Let α ∈ Sn, and τ = (ab) be a transposition. Then

|ατ | =

{
|α|+ 1, if a, b are in the same cycle of α,
|α| − 1, if a, b are in different cycles of α.

Proof. The result follows from the observation that

(u(1) . . . u(i) . . . u(j) . . . u(k)) · (u(i)u(j)) =(u(1) . . . u(i− 1)u(i)u(j + 1) . . . u(k))

(u(i+ 1) . . . u(j − 1)u(j))

and

(u(1) . . . u(k))(v(1) . . . v(m))·(u(i)v(j)) = (u(1) . . . u(i)v(j+1) . . . v(m)v(1) . . . v(j)u(i+1) . . . u(k)).

Lemma 6.49. For α, β ∈ Sn, define

d(e, α) = min {k : α = τ1τ2 . . . τk for τi transpositions} ,

and
d(α, β) = d(e, α−1β).

a. d is a metric on Sn. (In fact, it is a distance in a certain Cayley graph of Sn.)

b.
d(e, α) = n− |α| .

c. |αβ| = |βα|.
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Proof. For part (a), d(α, α) = 0; since α−1ν = (α−1β)(β−1ν),

d(α, ν) = d(e, α−1ν) ≤ d(e, α−1β) + d(e, β−1ν) = d(α, β) + d(β, ν);

and
α−1β = τ1τ2 . . . τk ⇔ β−1α = τk . . . τ2τ1.

For part (b), note first that we may decompose a k-cycle

(u(1)u(2) . . . u(k)) = (u(1)u(2)) · (u(2)u(3)) · . . . · (u(k − 2)u(k − 1)) · (u(k − 1)u(k))

as a product of k − 1 transpositions. So

n− |α| =
∑

V a cycle in α

(#(V )− 1) ≥ d(e, α).

On the other hand, since |e| = n, by Lemma 6.48

|τ1 . . . τk| ≥ n− k,

and so |α| ≥ n− d(e, α). The result follows. Part (c) is equivalent to proving that in general, |α−1βα| =
|β|, which is true since conjugation preserves the cycle structure.

Now observe that the expression (6.3) is

2n+ 1−
∣∣βα−1

∣∣− |α| − ∣∣β−1γ
∣∣ = (n− |α|) + (n−

∣∣α−1β
∣∣) + (n−

∣∣β−1γ
∣∣)− (n− 1)

= d(e, α) + d(α, β) + d(β, γ)− d(e, γ).

Thus this expression is always non-negative. When is it zero?

Remark 6.50. Partitions are partially ordered by reverse refinement: if

π = {B1, . . . , Bk} , σ = {C1, . . . , Cr}

then
π ≤ σ ⇔ ∀i ∃j : Bi ⊂ Cj.

For example, if π = {(1, 3, 5)(2)(4, 6)} and σ = {(1, 3, 5)(2, 4, 6)}, then π ≤ σ. This partial order
restricts to NC(n).

Remark 6.51. We have a natural embedding

P : P(n) ↪→ Sn, π 7→ Pπ,

where a block of a partition is mapped to a cycle of a permutation, in increasing order.

Denote by SNC(n) the image of NC(n) in Sn under the embedding above.
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Theorem 6.52. (Biane 1997)

a. α ∈ SNC(n) if and only if
d(e, α) + d(α, γ) = n− 1 = d(e, γ),

that is, α lies on a geodesic from e to γ.

b. For α, β ∈ SNC(n), denote α ≤ β if

d(e, α) + d(α, β) + d(β, γ) = n− 1.

That is, α and β lie on the same geodesic from e to γ, with α closer to e. Then the map NC(n) →
SNC(n) is a lattice isomorphism.

Proof. Suppose
d(e, α) + d(α, γ) = d(e, α) + d(e, α−1γ) = n− 1,

so that
α = τ1τ2 . . . τk, α−1γ = τk+1 . . . τn−1.

Then γ = τ1τ2 . . . τn−1. Recall that e has n cycles, γ has 1 cycle, and each multiplication by τj changes
the number of cycles by 1. It follows that

|τ1 . . . τj| = n− j.

Therefore going from τ1 . . . τj to
τ1 . . . τj−1 = (τ1 . . . τj)τj,

τj cuts one cycle into two, which by the proof of Lemma 6.48 happens in a non-crossing way. The
converse is similar. For part (b), we note that α ≤ β if and only if we can write

α = τ1 . . . τj, β = τ1 . . . τj . . . τk, γ = τ1 . . . τj . . . τk . . . τn−1.

It follows that expression (6.3),

2n+ 1−
∣∣βα−1

∣∣− |α| − ∣∣β−1γ
∣∣ = d(e, α) + d(α, β) + d(β, γ)− d(e, γ),

is zero if and only if α = Pσ, β = Pπ, and σ ≤ π.

Remark 6.53. Under the identification NC(n) ↔ SNC(n), P−1
π γ corresponds to the Kreweras comple-

ment: K[π] ∈ NC(n) is the largest partition in NC({1̄, 2̄, . . . , n̄}) such that

π ∪K[π] ∈ NC({1, 1̄, 2, 2̄, . . . , n, n̄}).

For example,
K[{(1, 2, 5, 6), (3, 4), (7)}] = {(1), (2, 4), (3), (5), (6, 7)}

and

((1, 2, 5, 6)(3, 4)(7))−1(1, 2, 3, 4, 5, 6, 7) = (1, 6, 5, 2)(3, 4)(7)(1, 2, 3, 4, 5, 6, 7) = (1)(2, 4)(3)(5)(6, 7).
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So in equation (6.2) we get∑
σ,π∈NC(n)

σ≤π

µ(PπP
−1
σ ) (1 + o(1))ϕσ [f1(a), . . . , fn(a)]ϕK[π] [g1(b), . . . , gn(b)] .

Recall that ϕ[fj(a)] = ϕ[gj(b)] = 0. It remains to note that by the lemma below, each term in the
sum above involves a factor of either ϕ[fi(a)] or ϕ[gj(b)], and so equals zero. Asymptotic freeness of
UNANU

∗
N and BN follows.

Lemma 6.54. For σ ≤ π in NC(n), the partition σ ∪K[π] ∈ NC(2n) has at least one singleton block.

Proof. Since σ ≤ π, it suffices to show the result for π∪K[π]. Recall that since π is non-crossing, at least
one of its blocks is an interval. So if π has no singletons, then it has a block containing two neighboring
elements. But then K[π] contains a singleton (the one between these elements).

Theorem 6.55. Let XN be a (normalized) GUE matrix, and B(1)
N , . . . , B

(k)
N be non-random Hermitian

matrices with an asymptotic joint distribution. That is, there are self-adjoint elements b1, . . . , bk in some
ncps (A, ϕ) such that for all u,

1

N
Tr
[
B
u(1)
N . . . B

u(n)
N

]
→ ϕ

[
bu(1) . . . bu(n)

]
.

Then XN and the family
{
B

(1)
N , . . . , B

(k)
N

}
are asymptotically free.

Proof. Since odd moments of both GUE matrices and semicircular operators are zero, it suffices to con-
sider only even moments. Let D(j) = fj(B

(1), . . . , B(k)), j = 1, . . . , 2n, fj a polynomial. We compute

1

N
E ◦Tr

[
XD(1)XD(2) . . . XD(2n)

]
=
∑
i,u

E
[
Xi(1)u(1)Du(1)i(2)Xi(2)u(2)Du(2)i(3) . . . Xi(2n)u(2n)Du(2n)i(1)

]
.

From the Wick formula for complex Gaussians, the expression above equals∑
i,u

∑
π∈P2(2n)
iπ=u,uπ=i

1

Nn
D

(1)
u(1)i(2)D

(2)
u(2)i(3) . . . D

(2n)
u(2n)i(1)

=
∑

π∈P2(2n)

1

Nn+1

∑
u(j)

D
(1)
u(1)u(π(2))D

(2)
u(2)u(π(3)) . . . D

(2n)
u(2n)u(π(1))

=
∑

π∈P2(2n)

1

Nn+1

∑
u(j)

D
(1)
u(1)u(πγ(1))D

(πγ(1))
u(πγ(1))u(πγπγ(1))D

(πγ)2(1)

u((πγ)2(1))u((πγ)3(1)) . . .

=
∑

π∈P2(2n)

1

Nn+1
Trπγ

[
D(1), D(2), . . . , D(2n)

]
=

∑
π∈P2(2n)

1

Nn−|πγ|+1

1

N |πγ|
Trπγ

[
D(1), D(2), . . . , D(2n)

]
,
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where we identify π with Pπ. Noting that |π| = n,

n− |πγ|+ 1 = n+ (2n−
∣∣π−1γ

∣∣)− (2n− 1) = d(e, π) + d(π, γ)− d(e, γ).

Thus as before, the limit of the expression above is∑
π∈NC2(2n)

ϕK[π] [d1, d2, . . . , d2n] ,

where dj = fj(b1, . . . , bk). It remains to show that we obtain the same expression for the corresponding
moment of a standard semicircular element s free from {d1, . . . , d2n}. Indeed, using the fact that mixed
free cumulants are zero, and that the semicircular element has only non-zero free cumulants of order two,
which are equal to 1,

ϕ [sd1sd2 . . . sd2n] =
∑

π∈NC2({1,3,...,4n−1})

∑
σ∈NC({2,4,...,4n})
π∪σ∈NC(4n)

Rσ(d1, . . . , d2n)

=
∑

π∈NC2(2n)

∑
σ≤K[π]

Rσ(d1, . . . , d2n) =
∑

π∈NC2(2n)

ϕK[π] [d1, d2, . . . , d2n] ,

where in the last step we used the free moment-cumulant formula.
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Chapter 7

Band and block matrices and operator-valued
freeness.

Motivating question. In many applications one encounters random matrix ensembles which are not uni-
tarily invariant and whose entries are not independent or identically distributed. Two commonly occurring
generalizations of GOE/GUE matrices are the following.

A Gaussian band random matrix is an Hermitian N × N matrix X = 1√
N
Y , where the entries of Y are

jointly complex Gaussian with mean zero and covariance

E[YrpYqs] = δrsδpqσ(r/N, p/N).

Here σ(x, y) = σ(y, x) is a sufficiently nice function. The choice of σ(x, y) = 1|x−y|<δ leads to an actual
band matrix.

A Gaussian block random matrix is an Nd × Nd matrix X = 1√
N
Y considered as a d × d matrix of

N × N blocks, such that the blocks (Y (ij))di,j=1 have jointly complex Gaussian entries with mean zero,
(Y (ij))∗ = Y (ji), and covariance

E[Y (ij)
rp Y (kl)

qs ] = δrsδpqσ(i, j; k, l).

Note that for d = 1 we get a GOE matrix, while for σ(i, j; k, l) = δilδjkσ(i, j), we get a special band
matrix.

One can study asymptotic (joint) distributions of such matrices using operator-valued free probability.

7.1 Generalities

Definition 7.1. Let B be a C∗-algebra (see below for examples). A B-valued (non-commutative) proba-
bility space is a triple (A,Φ,B). Here A is a complex unital ∗-algebra containing B, and Φ : A → B is
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a conditional expectation: a C-linear B-bimodule map (Φ[b1ab2] = b1Φ[a]b2 for a ∈ A and b1, b2 ∈ B)
which is unital (Φ [1B] = 1B), self-adjoint (Φ[a∗] = ϕ[a]∗), and positive (Φ [a∗a] is a positive element in
B).

Note that if B = C, we obtain an ordinary ncps.

Example 7.2. In all cases below, the conditions on Φ are easy to verify (do so!).

a. Let B = Md(C), and let (A0, ϕ) be an ordinary ncps. Define A = Md(A0) and (Φ[a])ij = ϕ [aij].
We may also write A = Md(C)⊗A0 and Φ = I ⊗ ϕ.

b. In the preceding example, take (A0, ϕ) = (MN(L∞(Ω,Σ)), 1
N
E ◦Tr). Then we may identify A

with MNd(L
∞(Ω,Σ)). Here the map on MNd(C) corresponding to Id⊗Tr in its identification with

Md(C)⊗MN(C) is the partial trace.

c. Let B = DiagN(C), the diagonal N ×N matrices over C. Note that we may identity B simply with
CN . Let A = MN(C), and

Φ[a] = diag(a11, a22, . . . , aNN),

the diagonal matrix with the same diagonal as a. More generally, we may let A = MN(L∞(Ω,Σ)),
and Φ[a] = diag(E[a11],E[a22], . . . ,E[aNN ]), the expectation of the diagonal of a.

d. Let B be a C∗-algebra, and x a (self-adjoint) symbol. Let A = B〈x〉 be the algebra of non-
commutative polynomials,

B〈x〉 = C− Span (B,BxB,BxBxB, . . .) .

It has a natural involution (b0xb1x . . . xbn)∗ = b∗nx . . . b
∗
1xb
∗
0. A B-valued distribution is a B-valued

conditional expectation on B〈x〉. Multivariate versions B〈x1, . . . , xk〉 are defined similarly.

Definition 7.3. For a family a1, . . . , ak of self-adjoint elements in (A,Φ,B), their joint distribution is a
conditional expectation

µa1,...,ak : B〈x1, . . . , xk〉 → B

defined by
µa1,...,ak

[
b0xu(1)b1xu(2) . . . xu(n)bn

]
= Φ

[
b0au(1)b1au(2) . . . au(n)bn

]
.

Check that it is in fact a conditional expectation!

Definition 7.4. Star-subalgebras A1,A2, . . . ,Ak ⊃ B in a B-valued probability space (A,Φ,B) are B-
free if whenever Φ[a1] = Φ[a2] = . . . = Φ[an] = 0, ai ∈ Au(i), u(1) 6= u(2) 6= u(3) 6= . . . (neighbours
distinct), then also for any b0, b1, . . . , bn ∈ B,

Φ [b0a1b1a2 . . . bn−1anbn] = 0.

Elements a1, a2, . . . , ak are B-free if the star-subalgebras they generate are B-free. The terms “free with
amalgamation over B” and “ conditionally free over B” are also used.

86



One can again construct B-free copies of given nc random variables, using the reduced free product
amalgamated over B.

Definition 7.5. For a B-valued probability space (A,Φ,B), the n’th moment functional is the C-multi-
linear functional on A,

MΦ(b0a1b1, a2b2, . . . , an−1bn−1, anbn) = b0M
Φ(a1, b1a2, . . . , bn−2an−1, bn−1an)bn

= Φ[b0a1b1a2b2 . . . an−1bn−1anbn],

where ai ∈ A, bi ∈ B. Equivalently, MΦ is a linear functional on the bimodule amalgamated tensor
product BA⊗B A⊗B . . .⊗B AB.

Definition 7.6. Let π be a non-crossing partition of n. For a family of multi-linear functionals (Fi)
∞
i=1,

denote by Fπ the n-linear functional obtained by nesting the functionals (Fi)
∞
i=1 according to partition π.

For example, for the partition π = {(1, 2, 6), (3, 5), (4), (7), (8, 10), (9)},

Fπ(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) = F3(a1, a2F2(a3F1(a4), a5))F1(a7)F2(a8F1(a9), a10).

Definition 7.7. For a B-valued probability space (A,Φ,B), define the n’th free cumulant functional RΦ
n

implicitly by
MΦ

n (a1, a2, . . . , an) =
∑

π∈NC(n)

RΦ
π (a1, a2, . . . , an)

Note that like MΦ, it also have the property that

RΦ(b0a1b1, a2b2, . . . , an−1bn−1, anbn) = b0R
Φ(a1, b1a2, . . . , bn−2an−1, bn−1an)bn.

Example 7.8.
RΦ(b0a1b1) = b0Φ[a1]b1,

and so the mean RΦ[a1] is an element of B. On the other hand,

RΦ(b0a1b1, a2b2) = b0

(
Φ[a1b1a2]− Φ[a1]b1Φ[a2]

)
b2,

and so the variance should not be thought of as an element of B, but as a (completely) positive map

b 7→ RΦ(a1b, a2) = Φ[a1ba2]− Φ[a1]bΦ[a2].

Theorem 7.9. Star-subalgebras A1,A2, . . . ,Ak ⊃ B in a B-valued probability space (A,Φ,B) are B-
free if and only if their mixed B-valued free cumulants vanish:

RΦ[a1, a2, . . . , an] = 0

unless all ai belong to the same Aj .
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7.2 Operator-valued semicircular elements

Example 7.10. As noted above, the variance of an element is actually a completely positive map on B.
For any such map η : B → B, there is a B-valued distribution with B-valued free cumulants

R2[b] = η(b), Rn = 0 for n 6= 2.

It is natural to call this distribution the B-valued semicircular distribution with variance η. The low order
even moments of an η-semicircular element a are

Φ [ab1a] = η(b1),

Φ [ab1ab2ab3a] = η(b1)b2η(b3) + η(b1η(b2)b3),

Φ [ab1ab2ab3ab4ab5a] = η(b1)b2η(b3)b4η(b5) + η(b1η(b2)b3)b4η(b5) + η(b1)b2η(b3η(b4)b5)

+ η(b1η(b2)b3η(b4)b5) + η(b1η(b2η(b3)b4)b5).

Gaussian band and block matrices

Example 7.11. Band matrices fit in the setting of Example 7.2(c). For XN ∈ (MN(L∞(Ω,Σ)),Φ) and
B ∈ BN = DiagN(C) ' CN , the variance of XN is the map ηN : CN → CN given by

ηN(B) = Φ [XBX] =

(
N∑
j=1

E [XijBjXji]

)N

i=1

=

(
1

N

N∑
j=1

σ(i/N, j/N)Bj

)N

i=1

Thus ηN is implemented by the matrix ( 1
N
σ(i/N, j/N))Ni,j=1.

For later reference, we consider the following construction. Let B = L∞[0, 1). Embed BN in B by

iN : B 7→
N∑
i=1

Bi1[ i−1
N
, i
N

).

Also define the function on [0, 1)× [0, 1) by

σN =
N∑

i,j=1

σ(i/N, j/N)1[ i−1
N
, i
N

)×[ j−1
N
, j
N

)

and the map η̃N : B → B by

η̃N(f)(x) =

∫ 1

0

σN(x, y)f(y) dy.
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Clearly η̃N ◦ iN = iN ◦ ηN . Then for nice σ (for example, if its discontinuities belong to a finite set of
rectifiable curves), η̃N converges in L∞ to the map

η(f)(x) =

∫ 1

0

σ(x, y)f(y) dy,

the integral operator with kernel σ. Note that the standard state 1
N

Tr on BN considered as acting on
iN(BN) also converges, to the integration with respect to the Lebesgue measure.

For the case of genuine band matrix, σ(x, y) = 1|x−y|<δ, so that

η(f)(x) =

∫ min(x+δ,1)

max(0,x−δ)
f(y) dy.

Example 7.12. Block matrices fit in the setting of Example 7.2(b). By using Wigner’s theorem and
Exercise 6.38, the asymptotic distribution of such a normalized block matrix is the exact distribution of
the element S ∈ (Md(A), 1

d
ϕ ◦ Tr). Here Sii are semicircular, Sij are circular for i 6= j, S∗ij = Sji, and

the covariance between Sij and Skl is σ(i, j; k, l).

If σ(i, j; k, l) = δilδjk, by Exercise 6.39 the distribution of S is (scalar-valued) semicircular. We now
consider the case of general σ. The Md(C)-valued variance of S is the entry-wise application

ϕ [SBS] =

(
d∑

j,k=1

ϕ [SijBjkSkl]

)d

i,l=1

=

(
d∑

j,k=1

σ(i, j; k, l)Bjk

)d

i,l=1

.

Thus it can be identified with an d2 × d2 matrix with entries σ(i, j; k, l) acting on Md(C) ' Cd2 .

Theorem 7.13. In the setting of Example 7.11, the asymptotic BN -valued distribution of XN is the B =
L∞[0, 1)-valued semicircular distribution with covariance

η(f)(x) =

∫ 1

0

σ(x, y)f(y) dy.

In the setting of Example 7.12, the precise Md(C)-valued distribution of S (which is the asymptotic dis-
tribution of the corresponding block matrix) is semicircular with covariance

η(B) =

(
d∑

j,k=1

σ(i, j; k, l)Bjk

)d

i,l=1

.

Proof. We will discuss the setting of block matrices; the argument for band matrices is similar. Consider(
(I ⊗ ϕ)

[
SB(1)SB(2) . . . B(n−1)S

])
ab

=
d∑

u(0),u(1),...,u(n−1)=1
v(1),v(2),...,v(n−1),v(n)=1

δu(0)=aδv(n)=bϕ
[
Su(0),v(1)B

(1)
v(1),u(1)Su(1),v(2) . . . B

(n−1)
v(n−1),u(n−1)Su(n−1),v(n)

]
.
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Each moment in the sum can be decomposed as a sum over non-crossing pairings. Let π ∈ NC2(n) be
such a pairing. Note that if n is odd, all the terms are zero, so from now on we assume that n is even.
Since π is non-crossing, it contains an interval, that is, some i is paired off with i+ 1. Then the sum over
v(i) and u(i) involves only the terms

d∑
u(i),v(i)=1

ϕ
[
Su(i−1)v(i)B

(i)
v(i)u(i)Su(i)v(i+1)

]

=
d∑

u(i),v(i)=1

σ(u(i− 1), v(i);u(i), v(i+ 1))B
(i)
v(i)u(i) = η(B(i))u(i−1)v(i+1)

by definition of σ and η. Thus we may remove from π the block (i, i + 1) and obtain the corresponding
term in

d∑
u(0),u(1),...,û(i),...,u(n−1)=1

v(1),v(2),...,v̂(i),...,v(n−1),v(n)=1

δu(0)=aδv(n)=bϕ
[
Su(0),v(1)B

(1)
v(1),u(1)Su(1),v(2) . . .

Su(i−2),v(i−1)B
(i−1)
v(i−1),u(i−1)η(B

(i)
v(i),u(i))B

(i+1)
v(i+1)u(i+1)Su(i+1),v(i+2) . . . B

(n−1)
v(n−1),u(n−1)Su(n−1),v(n)

]
.

Removing intervals of π recursively, we arrive precisely at the expansion of the moments of η-semicircular
variable in terms of its free cumulants.

Operator-valued Cauchy transform

Lemma 7.14. Let B be a C∗-algebra. For b ∈ B, write

<b =
1

2
(b+ b∗), =b =

1

2i
(b− b∗),

which are both self-adjoint operators such that b = <b+ i=b. Define the upper half-plane of B

H+(B) = {b ∈ B | ∃ε > 0 s.t. =b− ε is a positive operator} .

Then every b ∈ H+(B) is invertible.

Proof. Since =b is self-adjoint and has spectrum in (ε,∞), to prove that b is invertible it suffices to prove
that (=b)−1/2(<b)(=b)−1/2 + i is invertible. Indeed, (=b)−1/2(<b)(=b)−1/2 is self-adjoint and so has real
spectrum, therefore the spectrum of the operator above is in R + i. So this operator is invertible.
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Definition 7.15. For a self-adjoint a ∈ (A,Φ,B), we define its B-valued Cauchy transform as a function
on H+(B)

Ga(b) = b−1 + b−1Φ[a]b−1 + b−1Φ
[
ab−1a

]
b−1 + . . . = b−1

(
∞∑
n=0

Φ
[
(ab−1)n

])
.

If A is a C∗-algebra (for example, A = MN(L∞(Ω,Σ))) a is self-adjoint, we may define instead

Ga(b) = Φ
[
(b− a)−1

]
.

If ‖a‖ < ‖b−1‖−1, the series converges and the two definitions coincide.

Remark 7.16. Note that Ga provides information only about the moments of a of the form Φ[aba . . . ba]
and not about more general moments Φ[ab1a . . . bn−1a], so Ga does not determine the B-valued distribu-
tion of a. To obtain all moments, one needs to consider a fully matricial version of Ga; such functions
have also been called non-commutative functions. This approach is an active area of research; we will not
pursue these ideas further.

Proposition 7.17. Suppose a ∈ (A,Φ,B) is an η-semicircular element. Then

Ga(b)
−1 + η(Ga(b)) = b.

Proof. We need to show that
b−1 + b−1η(Ga(b))Ga(b) = Ga(b).

Expanding both sides and replacing b−1 with b, we need to show that

b+ bη

(
b

(
∞∑
i=0

Φ
[
(ab)i

]))
b

(
∞∑
j=0

Φ
[
(ab)j

])
= b

(
∞∑
n=0

Φ [(ab)n]

)
.

Recalling that all the odd moments of a are zero, and cancelling b and the constant terms, this says

η

(
b

(
∞∑
i=0

Φ
[
(ab)2i

]))
b

(
∞∑
j=0

Φ
[
(ab)2j

])
=

(
∞∑
n=1

Φ
[
(ab)2n

])
.

Comparing coefficients, we need for every n ≥ 1

n−1∑
i=0

η
(
b
(
Φ
[
(ab)2i

]))
bΦ
[
(ab)2(n−i−1)

]
=
(
Φ
[
(ab)2n

])
.

This follows from expanding all moments as sums over non-crossing pairs of free cumulants, and letting
i+ 1 be the index of the element paired with 1 (compare with Exercise 6.24).
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Remark 7.18. Let (A, ϕ) be a ncps, and x ∈ A be self-adjoint. To compute the scalar-valued distribution
of x, it is enough to compute its scalar-valued Cauchy transform Gx. Now suppose that there is a C∗-
subalgebra B ⊂ A and a conditional expectation Φ : A → B which is ϕ-preserving: for any a ∈ A,
ϕ[Φ[a]] = ϕ[a]. Consider a as an element of the probability space (A,Φ,B), and denote ψ = ϕ|B, which
is a state on B (ignoring continuity issues). Then we may also define the B-valued Cauchy transform G̃x

of x. It may be easier to compute than Gx. For example, we may have x = a1 + a2, where a1 and a2

are not free with respect to ϕ, but are free with respect to Φ. Then we can still find the scalar-valued
distribution of x, by observing that Gx(z) = ψ

[
G̃x(z1B)

]
.

Example 7.19. Let XN be a Gaussian band matrix as in Example 7.11. Let AN be a diagonal N × N
matrix such that

N∑
i=1

(AN)ii1[ i−1
N
, i
N

) → f ∈ L∞[0, 1)

uniformly. What is the asymptotic empirical spectral distribution ofAN+XN? The following computation
is from (Shlyakhtenko 1996).

Let b ∈ B = L∞[0, 1). Then the B-valued Cauchy transform of asymptotic distribution of XN satisfies

1

G̃s(b)
+ η(G̃s(b)) = b,

that is

G̃s(b)(x) = (b(x)− η(G̃s(b))(x))−1 =

(
b(x)−

∫ 1

0

σ(x, y)G̃s(b)(y) dy

)−1

.

Moreover, AN and XN are asymptotically B-free (the proof is similar to those in the previous chapter).
So their asymptotic free cumulant generating function is f + η(b), that is

1

G̃a+s(b)
+ f + η(G̃a+s(b)) = b

and

G̃a+s(b)(x) = (b(x)− f(x)− η(G̃a+s(b))(x))−1 =

(
b(x)− f(x)−

∫ 1

0

σ(x, y)G̃a+s(b)(y) dy

)−1

.

Recall that ψ is the integration on [0, 1] with respect to the Lebesgue measure. Thus the Cauchy transform
of the asymptotic (scalar-valued) distribution of AN +XN is

Ga+s(z) =

∫ 1

0

G̃a+s(z1)(x) dx.

Denote a(x, z) = G̃a+s(z1)(x). Then

Ga+s(z) =

∫ 1

0

a(x, z) dx,
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where

a(x, z) =

(
z − f(x)−

∫ 1

0

σ(x, y)a(y, z) dy

)−1

.

To compute the operator-valued Cauchy transform Ga1+a2 of a sum of two operator-free random variables
more generally, we may use the operator-valued version of the subordination machinery. Denote

Fj(b) = Faj(b) =
(
Gaj(b)

)−1
, Hj(b) = Fj(b)− b.

Theorem 7.20. (Belinschi, Mai, Speicher 2017) Let a1, a2 be twoB-free self-adjoint elements in (A,Φ,B).
Then there exists a unique pair of Frechet analytic maps ω1, ω2 : H+(B) → H+(B) such that for
b ∈ H+(B),

=(ωj(b)) ≥ =(b),

F1(ω1(b)) + b = ω1(b) + ω2(b),

and
Ga1(ω1(b)) = Ga2(ω2(b)) = Ga1+a2(b).

Moreover, for a fixed b, ω1(b) is the unique fixed point of the map

fb : H+(B)→ H+(B), fb(c) = b+H2(b+H1(c)),

and is the limit of iterations limn→∞ f
◦n
b (c) for any initial c ∈ H+(B).

7.3 Linearization trick

This section will likely be omitted in the course.

The following is a somewhat unexpected application of matrix-valued free probability to a fundamental
problem in scalar-valued free probability. Let a1, a2 ∈ (A, ϕ) be free. We now know how to compute the
distribution of a1 + a2 (if they are self-adjoint), and one can similarly compute the distribution of a1a2 (if
they are unitary or positive). But what about other functions of a1, a2? For example, it was a significant
achievement of (Nica, Speicher 1998) to be able to compute the distribution of i(a1a2 − a2a1). The
machinery below can, in principle, be used to compute the distribution of any self-adjoint polynomial (or
even rational) function of a1, a2. Using asymptotic freeness, this result can then be used to approximate
the empirical spectral distribution of such a polynomial in random matrices. First we take a linear algebra
digression.

Remark 7.21. Let (A, ϕ) be an ncps, and M ∈ Md(A). Let U ∈ M1×(d−1)(A) be the first row of
M with the first entry removed, V ∈ M(d−1)×1(A) the first column with the first entry removed, and
Q ∈Md−1(A) be M with the first row and columns removed, so that

M =

(
M11 U
V Q

)
.
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Then assuming all the inverses in the expression below exist,(
(M−1)11

)−1
= M11 − UQ−1V.

This is a consequence of the general Schur complement formula, see Lemma 4.6 and the discussion fol-
lowing it for the scalar version. Now let a1, a2 ∈ (A, ϕ) be self-adjoint and p be a self-adjoint polynomial
in a1, a2. Suppose for some M as above, p(a1, a2) = M11 − UQ−1V . Then

Gp(a1,a2)(z) = ϕ
[
(z − p(a1, a2))−1

]
= ϕ

[
(z − (M11 − UQ−1V ))−1

]
= ϕ

[(((
z 0
0 0

)
−M

)−1
)

11

]

Now define B = Md(C), Φ = I⊗ϕ, so that we think of M as an element of (Md(A),Φ,B), and ψ a state
on B = Md(C) given by ψ[A] = A11. Then the last expression above is

ψ ◦ Φ

[((
z 0
0 0

)
−M

)−1
]

= ψ
[
G̃M(bz)

]
,

where bz ∈ Md(C) is the matrix with the (1, 1) entry z and zero elsewhere. Note that bz 6∈ H+(B), so to
be more precise, in what follows we should use bz(ε) = bz + iεI , and then let ε ↓ 0.

Thus to compute the scalar-valued Cauchy transform Gp(a1,a2)(z) it suffices to find the operator-valued
Cauchy transform G̃M(bz) for the appropriate M . The point is that M may be chosen so that G̃M can be
found using free convolution.

The following idea has been developed by a number of people, notably (Haagerup, Thorbjørnsen 2005,
Anderson 2013). Note that it has precursors as far back as (Higman 1940), and is still under development
(Pisier 2018).

Proposition 7.22. Let p ∈ C〈x1, . . . , xk〉. Then p has a linearization p̂ ∈Md(C〈x1, . . . , xk〉) = Md(C)⊗
C〈x1, . . . , xk〉 (for some d) such that

p̂ =

(
0 U
V Q

)
,

p = −UQ−1V,

and
p̂ = A0 + A1 ⊗ x1 + . . .+ Ak ⊗ xk,

where A0, . . . , Ak ∈Md(C). If p is a self-adjoint polynomial, p̂ may be chosen to be self-adjoint.

Therefore for {a1, . . . , ak} ∈ (A, ϕ),

Gp(a1,...,ak)(z) = lim
ε↓0

(
G̃p̂(a1,...,ak)(bz(ε))

)
11
.

In the case when a1, . . . , ak are free in (A, ϕ), the latter Md(C)-valued Cauchy transform may be com-
puted using Md(C)-valued free convolution and Md(C)-valued subordination functions.
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Exercise 7.23. The proof is outlined in Exercise 10.3.1 in (Mingo, Speicher 2017). Prove the following
properties.

Linearizations of monomials: xi has a linearization

p̂ =

(
0 xi
1 −1

)
,

while p = xi(1)xi(2) . . . xi(n) has a linearization

p̂ =


xi(1)

xi(2) −1

. .
.

. .
.

xi(n) −1

 .

Linearization of sums: if each pi has a linearization

p̂i =

(
0 Ui
Vi Qi

)
,

then p = p1 + . . .+ pk has a linearization

p̂ =


0 U1 . . . Uk
V1 Q1

...
. . .

Vk Qk

 .

Self-adjoint linearization: if p has a linearization

p̂ =

(
0 U
V Q

)
,

then p+ p∗ has a linearization  0 U V ∗

U∗ 0 Q∗

V Q 0

 .

Example 7.24. Consider a2
1a2 + a1a2 + a1a

2
2. The the summands have linearizations 0 0 a1

0 a1 −1
a2 −1 0

 ,

(
0 a1

a2 −1

)
,

 0 0 a1

0 a2 −1
a2 −1 0

 ,
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and the non-self-adjoint version of p̂ is

p̂(a1, a2) =


0 0 a1 a1 0 a1

0 a1 −1 0 0 0
a2 −1 0 0 0 0
a2 0 0 −1 0 0
0 0 0 0 a2 −1
a2 0 0 0 −1 0



=


0 0 0 0 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0

+


0 0 1 1 0 1
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 a1 +


0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0

 a2.
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Chapter 8

Spiked models, subordination, and
infinitesimal freeness.

Motivating question. Suppose BN is as in the beginning of Chapter 6, but AN is a diagonal matrix with
5 non-zero eigenvalues (independently of N ). Then clearly µ̂AN → δ0 and µ̂AN+BN → µ. Nevertheless,
it turns out that one may identify certain eigenvalues of AN +BN as coming from those of AN . They can
be studied using subordination functions and infinitesimal freeness.

Reference: (Shlyakhtenko 2015) and earlier work by Capitaine, Belinschi, Bercovici, Fevrier.

8.1 Random matrix results

The following type of results go back to (Baik, Ben Arous, Péché 2005). For a Hermitian matrix XN , we
denote its eigenvalues

λ1(XN) ≥ λ2(XN) ≥ . . . ≥ λN(XN).

Note that this notation is the opposite of the one used in the early chapters.

The following is a particular case of a theorem from (Péché 2006).

Theorem 8.1. Let XN be an N × N GUE matrix. Let θ be a fixed real number, and PN be a Hermitian
rank 1 matrix with non-zero eigenvalue θ. Let

X̃N = XN + PN .

Then we have the following dichotomy. If θ ≤ 1, then almost surely

λ1(X̃N)→ 2,

the supremum of the support of the standard semicircular distribution. If θ > 1, then almost surely

λ1(X̃N)→ θ +
1

θ
.
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A similar result holds for the smallest eigenvalue.

The following is a particular case of a theorem from (Benaych-Georges, Nadakuditi 2011).

Theorem 8.2. Let XN be an N ×N symmetric orthogonally invariant (or Hermitian unitarily invariant)
random matrix such that its empirical spectral distribution µ̂XN converges weakly almost surely to a
compactly supported measure µ. Let a = inf supp(µ) and b = sup supp(µ), and assume that the smallest
and largest eigenvalues of XN converge almost surely to a and b.

Let θ1 ≥ . . . ≥ θs > 0 > θs+1 ≥ . . . ≥ θr be fixed real numbers (independently of N ), and PN an N ×N
symmetric (or Hermitian) matrix of rank r with eigenvalues (θi)

r
i=1. Let

X̃N = XN + PN .

Then for all 1 ≤ i ≤ s, almost surely

λi(X̃N)→

{
F−1
µ (θi) if θi > Fµ(b+),

b otherwise.

A similar result holds for the smallest eigenvalues.

The following is a particular case of a theorem from (Belinschi, Bercovici, Capitaine, Février 2017).

Theorem 8.3. Let µ, ν be compactly supported probability measures on R, Θ = {θ1 ≥ θ2 ≥ . . . θp} fixed
numbers outside of the support of µ, and T = {τ1 ≥ τ2 ≥ . . . ≥ τq} fixed numbers outside of the support
of ν. Let AN , BN be deterministic Hermitian matrices such that µ̂AN → µ and µ̂BN → ν weakly. Assume
also that for each N ≥ p and θ ∈ {θ1, . . . , θp},

|{n : λn(AN) = θ}| = |{i : θi = θ}|

while the eigenvalues of AN not in this set converge uniformly to supp(µ):

lim
N→∞

max
λn(AN )6∈Θ

dist(λn(AN), supp(µ)) = 0.

Make the same assumption concerning BN , T , and ν. Finally, let UN be a CUE matrix, and denote

XN = AN + U∗NBNUN .

Let ω1, ω2 be the subordination functions for µ, ν, µ� ν, K = supp(µ� ν),

K ′ = K ∪ ω−1
1 (Θ) ∪ ω−1

2 (T ),

and K ′ε its ε-neighborhood. Then for any given ε > 0, almost surely for large N , all the eigenvalues of
XN lie in K ′ε. Moreover, let ρ ∈ K ′ \K, and choose ε > 0 so that (ρ− 2ε, ρ+ 2ε)∩K ′ = {ρ}. Then the
number of eigenvalues of XN in (ρ− ε, ρ+ ε) equals

|{i : ω1(ρ) = θi}|+ |{j : ω2(ρ) = τj}| .
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These theorems can be proved using Stieltjes transform methods related to those in Chapter 4. We take
a different route, which will lead to weaker but equally interesting conclusions. First however we will
follow (Benaych-Georges, Nadakuditi 2011) and give an outline of a proof for the following version of
the result.

Proposition 8.4. LetXN be anN×N Hermitian unitarily invariant random matrix such that its empirical
spectral distribution µ̂XN converges weakly almost surely to a compactly supported measure µ. Let a =
inf supp(µ) and b = sup supp(µ), and assume that the smallest and largest eigenvalues of XN converge
almost surely to a and b.

Let θ be a fixed real number, and PN an N ×N Hermitian rank 1 matrix with non-zero eigenvalue θ.Let

X̃N = XN + PN .

Then almost surely,

λ1(X̃N)→

{
F−1
µ (θ) if θ > Fµ(b+),

b otherwise.

Outline of proof. Instead of assuming unitary invariance ofXN , we may assume instead thatXN is a non-
random diagonal matrix with eigenvalues {λi}Ni=1 but PN = U∗NQNUN , where (QN)ij = δi=1δj=1θ and
UN is CUE. It is easy to see that equivalently, PN = θuNu

∗
N , where uN is a vector uniformly distributed

on the sphere in CN .

The eigenvalues of XN + PN are solutions of the equation

det(zI − (XN + PN)) = 0.

Since
det(zI − (XN + PN)) = det(zI −XN) det(I − (zI −XN)−1PN),

It follows that z is an eigenvalue ofXN +PN and not an eigenvalue ofXN if and only if 1 is an eigenvalue
of (zI − XN)−1PN . Now (zI − XN)−1PN = (zI − XN)−1θuNu

∗
N has rank 1. So its only non-zero

eigenvalue equals its trace

Tr
[
(zI −XN)−1θuNu

∗
N

]
= θ

N∑
i=1

(uN)i(z − λi)−1ūi = θ

N∑
i=1

|(uN)i|2

z − λi
= θGµN (z),

where

µN =
N∑
i=1

|(uN)i|2 δλi

(compare with Exercise 5.16 and the remark following it). Thus z outside of the spectrum of XN is an
eigenvalue of XN + PN if and only if

N∑
i=1

|(uN)i|2

z − λi
= GµN (z) =

1

θ
.
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Next we compare µN with

µ̂XN =
1

N

N∑
i=1

δλi .

It is clear from symmetry that E
[
|(uN)i|2

]
= 1

N
. By using appropriate concentration of measure results

(compare with Chapter 3), it follows that for large N , (morally) |(uN)|2 ≈ 1
N

and µN ≈ µ̂XN ≈ µ, and
(precisely) Gµn ≈ Gµ̂XN

≈ Gµ. Thus the outlier eigenvalue of XN + PN , if any, is an approximate
solution, if any, of the equation Gµ(z) = 1

θ
, or equivalently of Fµ(z) = θ. The dichotomy in the statement

of the proposition is explained by the following lemma.

Lemma 8.5. Let µ be a compactly supported probability measure on R and a = inf supp(µ), b =
sup supp(µ). Then Fµ is analytic on R \ [a, b], and

Fµ(a−) = lim
z↑a

Fµ(z) ≤ 0 and Fµ(b+) = lim
z↓b

Fµ(z) ≥ 0

are well defined. Moreover, Fµ is an increasing homeomorphism from (−∞, a) onto (−∞, Fµ(a−)) and
from (b,+∞) onto (Fµ(b+),+∞).

Proof. It suffices to prove the corresponding statements for Gµ(z) =
∫
R

1
z−u dµ(u). The analyticity of Gµ

on the complement of supp(µ) is clear. Gµ(x) < 0 for x < a and Gµ(x) > 0 for x > b, so Fµ(x) is
defined on these intervals. For x ∈ R \ supp(µ),

G′µ(x) = −
∫
R

1

(x− u)2
dµ(u) ≤ 0,

so Gµ decreases on each interval in R \ supp(µ). It follows that Fµ increases on each such interval.
Therefore the limits defining Fµ(a−) and Fµ(b+) exist.

8.2 Free convolution computations

Exercise 8.6. Show that if At(z) = A(z) + tÃ(z) + o(t), then its inverse with respect to composition is

A−1
t (w) = A−1(w)− tÃ(A−1(w))(A−1)′(w) + o(t).

Feel free to make the question more precise.

Proposition 8.7. Let {µt, νt}t∈[0,ε] be probability measures such that

µt = µ+ tµ̃+ o(t), νt = ν + tν̃ + o(t).

Here µ, ν are probability measures, and µ̃, ν̃ are signed measures of total weight 0. Let ω1, ω2 be the
subordination functions for µ, ν, µ� ν. Then

Gµt�νt = Gµ�ν + t[(Gµ̃ ◦ ω1) · ω′1 + (Gν̃ ◦ ω2) · ω′2] + o(t).

Note that the second term is, in general, not a Cauchy transform of a signed measure, but only of a
distribution.
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Proof. We compute

1

w
+Rµt(w) =

1

w
+Rµ(w)− tGµ̃(G−1

µ (w))(G−1
µ )′(w) + o(t)

and the same for νt. Adding the expressions, we get

1

w
+Rµt�νt(w) =

1

w
+Rµ�ν − t[Gµ̃(G−1

µ (w))(G−1
µ )′(w) +Gν̃(G

−1
ν (w))(G−1

ν )′(w)] + o(t).

Inverting, we get

Gµt�νt = Gµ�ν + t[Gµ̃ ◦G−1
µ · (G−1

µ )′ +Gν̃ ◦G−1
ν · (G−1

ν )′] ◦Gµ�ν ·G′µ�ν + o(t)

= Gµ�ν + t[(Gµ̃ ◦ ω1) · ω′1 + (Gν̃ ◦ ω2) · ω′2] + o(t)

Lemma 8.8. The size of the atom of a measure ρ at x is

ρ({x}) = lim
y↓0

iyGρ(x+ iy).

Proof. Clearly if suffices to consider the atom at x = 0. Also, since

lim
y↓0

iyGαρ+βδ0(iy) = α lim
y↓0

iyGρ(iy) + lim
y↓0

iyβ
1

(0 + iy)− 0
= α lim

y↓0
iyGρ(iy) + β,

if suffices to consider the case when ρ({0}) = 0. In this case,

lim
y↓0

iyGρ(iy) = lim
y↓0

∫
R

iy

iy − u
dρ(u).

As y ↓ 0, iy
iy−u → 0 for ρ-almost every u (since ρ has no atom at 0). Also,

∣∣∣ iy
iy−u

∣∣∣ ≤ 1. So by the dominated
convergence theorem, the limit above is zero.

Corollary 8.9. If µ̃ (resp., ν̃) has an atom at ω1(a) (resp., ω2(a)) of size α then µt � νt has an atom at a
of size

(µ� ν)({a}) + tα + o(t).

Proof. We compute

lim
y↓0

iyGµ̃(ω1(a+ iy))ω′1(a+ iy) = lim
y↓0

iyGµ̃(ω1(a) + iyω′1(a)))ω′1(a+ iy) = lim
y↓0

iyGµ̃(ω1(a) + iy).

Now apply the preceding lemma.
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Example 8.10. In the preceding proposition, let µt = µ and νt = δ0 + tν̃. Then

Gµt�νt = Gµ + t(Gν̃ ◦ Fµ) · F ′µ + o(t).

Next, suppose that α0 =
∑n

j=1 αj and

ν̃ =
n∑
j=1

αjδθj − α0δ0

is a purely atomic measure. Then

(Gν̃ ◦ Fµ) · F ′µ =
n∑
j=1

αj
F ′µ(z)

Fµ(z)− θj
− α0

F ′µ(z)

Fµ(z)
.

The atoms of this measure are located at the points λ` satisfying Fµ(λ`) = θ` (note that the solution need
not be unique), with the weight α`.

If the support of µ
supp(µ) = [a, b]

is connected, then the image of Fµ is (−∞, Fµ(a−)) ∪ (Fµ(b+),∞). If θ` lies in this set, it has a unique
pre-image; if it lies in (Fµ(a−), Fµ(b+)), it has no pre-image.

Finally, restricting to the case µ = σ, the semicircular distribution, and ν̃ = δθ − δ0, we get the atoms at

λ` = θ` +
1

θ`

for θ` in the complement of (−1, 1).

8.3 Infinitesimal freeness

It thus appears that random matrices in the theorems at the beginning of the chapter are “asymptotically
free up to order o( 1

N
)”. The following definition formalizes this notion.

Definition 8.11. An infinitesimal non-commutative probability space is a triple (A, ϕ, ϕ′), where A is a
∗-algebra, ϕ is a linear functional such that ϕ[1] = 1 (and, perhaps, a state), and ϕ′ is a linear functional
such that ϕ′[1] = 0.

Subalgebras A1,A2, . . . ,Ak are infinitesimally free in (A, ϕ, ϕ′) if for any ai ∈ Au(i), u(1) 6= u(2),
u(2) 6= u(3), . . . such that ϕ[a1] = . . . = ϕ[an] = 0, we have

ϕ [a1 . . . an] = 0

(thus they are free in (A, ϕ)) and

ϕ′(a1 . . . an) =
n∑
j=1

ϕ [a1 . . . aj−1ϕ
′[aj]aj+1 . . . an] . (8.1)
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Remark 8.12. Let t ≥ 0 and on (A, ϕ, ϕ′), define ϕt = ϕ+ tϕ′. Then

ϕt

[
n∏
i=1

(ai − ϕt[ai])

]
= (ϕ+ tϕ′)

[
n∏
i=1

(ai − ϕ[ai]− tϕ′[ai])

]

= ϕ

[
n∏
i=1

(ai − ϕ[ai])

]

+ t

(
ϕ′

[
n∏
i=1

(ai − ϕ[ai])

]
−

n∑
j=1

ϕ

[∏
i<j

(ai − ϕ[ai])ϕ
′[aj]

∏
i>j

(ai − ϕ[ai])

])
+ o(t).

Using the observation that ϕ′[ϕ[a]] = 0, this equals

ϕ

[
n∏
i=1

(ai − ϕ[ai])

]
+t

(
ϕ′

[
n∏
i=1

(ai − ϕ[ai])

]
−

n∑
j=1

ϕ

[∏
i<j

(ai − ϕ[ai])ϕ
′[aj − ϕ[aj]]

∏
i>j

(ai − ϕ[ai])

])
+o(t).

Thus A1,A2, . . . ,Ak are infinitesimally free if and only if they are free in (A, ϕt) up to o(t).

Lemma 8.13. Let (A, ϕ, ϕ′) be an infinitesimal ncps such that both ϕ and ϕ′ are tracial. Let E ⊂ A be a
non-unital subalgebra such that ϕ|E = 0. Then a subalgebra B ⊂ A and E are infinitesimally free if and
only if for any Ej ∈ E , and any Qj ∈ B such that ϕ[Qj] = 0, we have

ϕ [E1Q1 . . . EnQn] = 0

and
ϕ′ [E1Q1 . . . EnQn] = 0.

Proof. Since both infinitesimal freeness and these conditions determine all the joint moments, it suffices
to prove one direction. So assume infinitesimal freeness. The first condition in the lemma follows directly
from the definition of freeness with respect to ϕ. For the second, from the definition of infinitesimal
freeness we will have two types of terms. For the first one,

ϕ [E1Q1 . . . Ekϕ
′[Qk]Ek+1 . . . EnQn] = ϕ′[Qk]ϕ [E1Q1 . . . (EkEk+1) . . . EnQn] = 0

by freeness for n ≥ 2. For the second one,

ϕ [E1Q1 . . . Qk−1ϕ
′[Ek]Qk . . . EnQn] = ϕ′[Ek]ϕ

[
E1Q1 . . .

(
Qk−1Qk − ϕ [Qk−1Qk]

)
. . . EnQn

]
+ ϕ′[Ek]ϕ [Qk−1Qk]ϕ [E1Q1 . . . (Ek−1Ek+1) . . . EnQn] = 0

by freeness for n ≥ 3. The particular cases for n ≤ 3 are easy to verify.

Shlyakhtenko proved asymptotic infinitesimal freeness in the following setting. Note that it only covers
the (Benaych-Georges, Nadakuditi) theorem, while the computation above suggests it holds also in the
(Belinschi, Bercovici, Capitaine, Février) setting. Note also that our setup and proofs are a little different.
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Theorem 8.14. Let XN be a random N × N matrix, either normalized GUE or a unitarily invariant
matrix XN = UNANU

∗
N with µ̂AN → µa. Fix N0, and denote E = MN0(C), considered as a subalgebra

of any MN(C) for N ≥ N0. DenoteA = E〈x〉 a formal algebra generated by E and a self-adjoint symbol
x. On A, define

ϕ [P (x)] = lim
N→∞

1

N
Tr [P (XN)]

and
ϕ′ [P (x)] = lim

N→∞

(
Tr [P (XN)]−Nϕ [P (x)]

)
,

so that
1

N
Tr [P (XN)] = ϕ [P (x)] +

1

N
ϕ′ [P (x)] + o(

1

N
).

Then both limits exist, and in (A, ϕ, ϕ′), x and E are infinitesimally free.

Proof. Note that if they are well-defined, ϕ, ϕ′ are tracial, andϕ|E = 0. To conclude infinitesimal freeness,
it remains to verify the two identities from the lemma.

First consider the case XN = UNANU
∗
N . Denote A(j) = fj(AN), so that fj(XN) = UNA

(j)U∗N , and
E(j) ∈ E . Then

E ◦Tr
[
f1(XN)E(1)f2(XN)E(2) . . . fn(XN)E(n)

]
= E ◦Tr

[
UA(1)U∗E(1)UA(2)U∗E(2) . . . UA(n)U∗E(n)

]
=
∑

α,β∈Sn

WgNn (βα−1) Trα
[
A(1), . . . , A(n)

]
Trβ−1γ

[
E(1), . . . , E(n)

]
=
∑

α,β∈Sn

µ(βα−1)
1

N2n−|βα−1|−|α|−|β−1γ| (1 + o(1))ϕα [f1(a), . . . , fn(a)](
1

N |β−1γ| Trβ−1γ

[
E(1), . . . , E(n)

])
=
∑

α,β∈Sn

µ(βα−1)
N

Nd(e,α)+d(α,β)+d(β,γ)−d(e,γ)
(1 + o(1))ϕα [f1(a), . . . , fn(a)](

1

N |β−1γ| Trβ−1γ

[
E(1), . . . , E(n)

])
.

The only terms with non-zero limit correspond to α = Pσ, β = Pπ, σ ≤ π, and
∣∣PK[π]

∣∣ = |β−1γ| = 1.
Thus K[π] = {(12 . . . n)} and π = σ = {(1), (2), . . . , (n)}, so that the limit is

n∏
i=1

ϕ [fi(a)] Tr
[
E(1) . . . E(n)

]
Thus ϕ on such monomials is always zero, and ϕ′ is zero provided some ϕ[fi(a)] = 0.
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Now we consider the case when XN is GUE. We will first prove that for fj as above,

E ◦Tr
[
f1(XN)E(1)f2(XN)E(2) . . . fn(XN)E(n)

]
→

n∏
i=1

ϕ [fi(s)] Tr
[
E(1) . . . E(n)

]
,

where s is standard semicircular. It suffices to prove the result for fj(x) = xp(j). It then suffices to
consider the following monomial, where Ẽ(i) ∈ E for i ∈ S = {p(1), p(1) + p(2), . . . ,

∑n
i=1 p(i) = 2k},

and Ẽ(i) = IN otherwise:

E ◦Tr
[
XẼ(1)XẼ(2) . . . XẼ(2k)

]
=

∑
π∈P2(2k)

N

Nd(e,π)+d(π,γ)−d(e,γ)

1

N |πγ|
Trπγ

[
Ẽ(1), Ẽ(2), . . . , Ẽ(2k)

]
,

Again the only asymptotically non-zero terms arise from non-crossing pairings, so we may replace the
expression above by ∑

π∈NC2(2k)

N

N |K[π]| TrK[π]

[
Ẽ(1), Ẽ(2), . . . , Ẽ(2k)

]
.

If a block of K[π] contains an element of S, the corresponding trace contains an element of E , and does
not grow with N ; if it is contained in Sc, the corresponding trace is the trace of IN , and equals to N . So
the power of 1

N
in the expression above is |{V ∈ K[π] : V ∩ S 6= ∅}| − 1. Thus the only asymptotically

non-zero terms correspond to π ∈ NC2(2n) such that S is a subset of a single block ofK[π]. Equivalently,

π ≤ {(1, . . . , p(1)), (p(1) + 1, . . . , p(1) + p(2)), . . . , }

We conclude that

E ◦Tr
[
Xp(1)E(1)Xp(2)E(2) . . . Xp(n)E(n)

]
→

∑
π∈NC2(2k)

π≤{(1,...,p(1)),(p(1)+1,...,p(1)+p(2)),...,}

Tr
[
E(1) . . . E(n)

]

=
k∏
i=1

cp(i)/2 Tr
[
E(1) . . . E(n)

]
=

n∏
i=1

ϕ
[
sp(i)

]
Tr
[
E(1) . . . E(n)

]
,

where s is standard semicircular. The rest of the argument is as before.

Remark 8.15. Let AN , BN be N ×N (non-random) Hermitian matrices such that AN and BN converge
in infinitesimal distribution as N →∞. That is, for some a, b ∈ (A, ϕ, ϕ′),

1

N
Tr[AkN ]→ ϕ[ak],

1

N
Tr[Bk

N ]→ ϕ[bk]

and
Tr[AkN ]−Nϕ[ak]→ ϕ′[ak], Tr[Bk

N ]−Nϕ[bk]→ ϕ′[bk].

Let UN be an N × N CUE (Haar unitary) matrix. We know that UNANU∗N and BN are asymptotically
free. Are they asymptotically infinitesimally free, that is, do their joint moments converge to those of a, b
above which are infinitesimally free?
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As before, choose (polynomial) functions fj, gj with ϕ[fj(a)] = ϕ[gj(b)] = 0, and denote A(i) = fi(AN),
B(i) = gi(BN). Then

1

N
E ◦Tr [f1(UNANU

∗
N)g1(BN) . . . gn−1(BN)fn(UNANU

∗
N)gn(Bn)]

=
1

N
E ◦Tr

[
UA(1)U∗B(1)UA(2)U∗B(2) . . . UA(n)U∗B(n)

]
=

1

N

∑
α,β∈Sn

WgNn (βα−1) Trα
[
A(1), . . . , A(n)

]
Trβ−1γ

[
B(1), . . . , B(n)

]
=
∑

α,β∈Sn

µ(βα−1)
1

Nd(e,α)+d(α,β)+d(β,γ)−d(e,γ)

(
1 + o(

1

N
)

)
(

1

N |α|
Trα

[
A(1), . . . , A(n)

])( 1

N |β−1γ| Trβ−1γ

[
B(1), . . . , B(n)

])
=
∑

α,β∈Sn

µ(βα−1)
1

Nd(e,α)+d(α,β)+d(β,γ)−d(e,γ)

(
1 + o(

1

N
)

)
∏

V ∈cyc(α)

(
ϕ[fi(a) : i ∈ V ] +

1

N
ϕ′[fi(a) : i ∈ V ]

) ∏
U∈cyc(β−1γ)

(
ϕ[gj(b) : j ∈ U ] +

1

N
ϕ′[gj(b) : j ∈ U ]

)
.

It is easy to see from the Cut-and-Join Lemma that if d(e, α) + d(α, β) + d(β, γ)− d(e, γ) > 0 then it is
at least 2. So the expression above is∑
σ,π∈NC(n)

σ≤π

µ(PπP
−1
σ )

∏
V ∈σ

ϕ[fi(a) : i ∈ V ]
∏

U∈K[π]

ϕ[gj(b) : j ∈ U ]

+
1

N

∑
σ,π∈NC(n)

σ≤π

µ(PπP
−1
σ )

∑
Ṽ ∈σ

ϕ′[fi(a) : i ∈ Ṽ ]
∏
V ∈σ
V 6=Ṽ

ϕ[fi(a) : i ∈ V ]
∏

U∈K[π]

ϕ[gj(b) : j ∈ U ]

+
1

N

∑
σ,π∈NC(n)

σ≤π

µ(PπP
−1
σ )

∏
V ∈σ

ϕ[fi(a) : i ∈ V ]
∑

Ũ∈K[π]

ϕ′[fi(a) : i ∈ Ũ ]
∏

U∈K[π]

U 6=Ũ

ϕ[gj(b) : j ∈ U ] + o(
1

N
).

Since σ ∪ K[π] has at least one singleton block, we know that the first term is zero. But in fact this
partition has at least two singleton blocks. So the second term is zero as well. It follows that

ϕ′[f1(a)g1(b) . . . fn(a)gn(b)] = 0,

which should be compared with the value of the corresponding right-hand side of (8.1). See (Curran,
Speicher 2011) and (Collins, Hasebe, Sakuma 2015) for related results.
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