Math 152 (honors sections)

Harold P. Boas boas@tamu.edu

Reminder

Second examination is Wednesday, November 3.

The exam covers through section 10.4.

An old exam is posted at http://www.math.tamu.edu/~boas/courses/ 152-2002c/exam2.pdf

Math 152

October 29, 2004 — slide #2

Convergence tests so far
If a_n ≠ 0, then ∑_{n=1}[∞] a_n diverges.
A geometric series with |ratio| < 1 converges.
Integral test for positive decreasing functions: the improper integral ∫₁[∞] f(x) dx and the corresponding series ∑_{n=1}[∞] f(n) either both converge or both diverge.
Inequality comparison test for positive terms: if 0 < a_n < b_n (at least for n large) and if ∑_{n=1}[∞] b_n converges, then ∑_{n=1}[∞] a_n converges too.
Limit comparison test for positive terms: if lim a_{n→∞} a_n/b_n exists (finite limit), and if ∑_{n=1}[∞] b_n converges, then ∑_{n=1}[∞] a_n converges too.

Root test (not in book)

Example:
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
 converges

This is not a geometric series, and it is *bigger* than the convergent geometric series $\sum_{n=1}^{\infty} \frac{1}{2^n}$, so the comparison test does not seem to help.

Since $\frac{n}{2^n} = \left(\frac{n^{1/n}}{2}\right)^n$, and since $\lim_{n \to \infty} n^{1/n} = 1$, we have $\frac{n}{2^n} < \left(\frac{1.1}{2}\right)^n$ when *n* is large, so we can use the comparison test after all: compare to the convergent geometric series $\sum_{n=1}^{\infty} \left(\frac{1.1}{2}\right)^n$.

Math 152

October 29, 2004 — slide #4

Root test and ratio test Root test and ratio test Root test: If $0 < a_n$, and if $\lim_{n \to \infty} a_n^{1/n} < 1$, then $\sum_{n=1}^{\infty} a_n$ converges. Moreover, if $\lim_{n \to \infty} a_n^{1/n} > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges (because then $a_n \neq 0$). If $\lim_{n \to \infty} a_n^{1/n} = 1$, the test gives no information. **Ratio test:** Exactly the same as the root test, except look at $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ instead of $\lim_{n \to \infty} a_n^{1/n}$. **Example:** $\sum_{n=1}^{\infty} \frac{3^n (n!)^2}{(2n)!}$. $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{n+1} (n+1)! (n+1)!}{(2n+2)!} / \frac{3^n (n!) (n!)}{(2n)!} = \lim_{n \to \infty} \frac{3(n+1)^2}{(2n+2)(2n+1)} = \frac{3}{4} < 1$, so the original series converges.

Math 152

October 29, 2004 — slide #5

Series with some negative terms

Negative terms can only help with convergence: if $\sum_{n=1}^{\infty} |a_n|$ converges, then so does $\sum_{n=1}^{\infty} a_n$. An absolutely convergent series converges. **Example:** $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges because $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges. The two series sum to different values, however: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = \frac{-\pi^2}{12}$, and $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. **Example:** $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (harmonic series), yet $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges (in fact to the value $\ln(\frac{1}{2})$). Math 152 October 29, 2004 — slide #6

Alternating series test

If $a_n \downarrow 0$, then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.

Error estimate: When the alternating series test applies, the sum of the series is trapped between any two consecutive partial sums.

Example:
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4} = -1 + \frac{1}{2^4} - \frac{1}{3^4} + \frac{1}{4^4} - \frac{1}{5^4} + \cdots$$
$$-1 + \frac{1}{2^4} - \frac{1}{3^4} + \frac{1}{4^4} - \frac{1}{5^4} < \sum_{n=1}^{\infty} \frac{(-1)^n}{n^4} < -1 + \frac{1}{2^4} - \frac{1}{3^4} + \frac{1}{4^4}$$
$$-0.94754 < \sum_{n=1}^{\infty} \frac{(-1)^n}{n^4} < -0.9459$$
Exact value:
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4} = \frac{-7\pi^4}{720} \approx -0.947033.$$

Math 152

October 29, 2004 — slide #7

Homework

- Read section 10.4, pages 605–610.
- Do the Suggested Homework problems for section 10.4.

Monday we will review for the exam and look at an old exam.

Math 152

October 29, 2004 — slide #8