Math 152 (honors sections)

Harold P. Boas
boas@tamu.edu

Reminder

Second examination is Wednesday, November 3.
The exam covers through section 10.4.
An old exam is posted at http://www.math.tamu.edu/~boas/courses/ 152-2002c/exam2.pdf

Convergence tests so far

- If $a_{n} \nrightarrow 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
- A geometric series with \mid ratio $\mid<1$ converges.
- Integral test for positive decreasing functions: the improper integral $\int_{1}^{\infty} f(x) d x$ and the corresponding series $\sum_{n=1}^{\infty} f(n)$ either both converge or both diverge.
- Inequality comparison test for positive terms: if $0<a_{n}<b_{n}$ (at least for n large) and if $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges too.
- Limit comparison test for positive terms: if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists (finite limit), and if $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges too.

Root test (not in book)

Example: $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$ converges
This is not a geometric series, and it is bigger than the convergent geometric series $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$, so the comparison test does not seem to help.
Since $\frac{n}{2^{n}}=\left(\frac{n^{1 / n}}{2}\right)^{n}$, and since $\lim _{n \rightarrow \infty} n^{1 / n}=1$, we have $\frac{n}{2^{n}}<\left(\frac{1.1}{2}\right)^{n}$ when n is large, so we can use the comparison test after all: compare to the convergent geometric series $\sum_{n=1}^{\infty}\left(\frac{1.1}{2}\right)^{n}$.

Root test and ratio test

Root test: If $0<a_{n}$, and if $\lim _{n \rightarrow \infty} a_{n}^{1 / n}<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges. Moreover, if $\lim _{n \rightarrow \infty} a_{n}^{1 / n}>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges (because then $a_{n} \nrightarrow 0$). If $\lim _{n \rightarrow \infty} a_{n}^{1 / n}=1$, the test gives no information.

Ratio test: Exactly the same as the root test, except look at $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ instead of $\lim _{n \rightarrow \infty} a_{n}^{1 / n}$. Example: $\sum_{n=1}^{\infty} \frac{3^{n}(n!)^{2}}{(2 n)!}$.
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{3^{n+1}(n+1)!(n+1)!}{(2 n+2)!} / \frac{3^{n}(n!)(n!)}{(2 n)!}=\lim _{n \rightarrow \infty} \frac{3(n+1)^{2}}{(2 n+2)(2 n+1)}=\frac{3}{4}<1$, so the original series converges.

Series with some negative terms

Negative terms can only help with convergence:
if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then so does $\sum_{n=1}^{\infty} a_{n}$.
An absolutely convergent series converges.
Example: $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ converges because $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
The two series sum to different values, however: $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=\frac{-\pi^{2}}{12}$, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
Example: $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (harmonic series),
yet $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges (in fact to the value $\ln \left(\frac{1}{2}\right)$).

Alternating series test

If $a_{n} \downarrow 0$, then $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.
Error estimate: When the alternating series test applies, the sum of the series is trapped between any two consecutive partial sums.

Example: $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}=-1+\frac{1}{2^{4}}-\frac{1}{3^{4}}+\frac{1}{4^{4}}-\frac{1}{5^{4}}+\cdots$

$$
\begin{gathered}
-1+\frac{1}{2^{4}}-\frac{1}{3^{4}}+\frac{1}{4^{4}}-\frac{1}{5^{4}}<\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}<-1+\frac{1}{2^{4}}-\frac{1}{3^{4}}+\frac{1}{4^{4}} \\
-0.94754<\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}<-0.9459
\end{gathered}
$$

Exact value: $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}=\frac{-7 \pi^{4}}{720} \approx-0.947033$.

Homework

- Read section 10.4, pages 605-610.
- Do the Suggested Homework problems for section 10.4.

Monday we will review for the exam and look at an old exam.

