Calculus

Instructions Please write your solutions on your own paper. Explain your reasoning in complete sentences to maximize credit.

1. Determine a unit vector that has the same direction as the vector $3 \vec{i}-4 \vec{j}$.

Solution. The required unit vector can be obtained by dividing the given vector by its length. The length equals $\sqrt{3^{2}+4^{2}}$, or 5 , so the unit vector is $\frac{3}{5} \vec{i}-\frac{4}{5} \vec{j}$.
2. Determine the vector projection of the vector $\langle 0,1\rangle$ onto the vector $\langle 2,3\rangle$.

Solution. The vector projection is equal to

$$
\left(\langle 0,1\rangle \cdot \frac{\langle 2,3\rangle}{|\langle 2,3\rangle|}\right) \frac{\langle 2,3\rangle}{|\langle 2,3\rangle|} \quad \text { or } \quad\left(\frac{\langle 0,1\rangle \cdot\langle 2,3\rangle}{|\langle 2,3\rangle|^{2}}\right)\langle 2,3\rangle .
$$

Since $\langle 0,1\rangle \cdot\langle 2,3\rangle=0 \times 2+1 \times 3=3$ and $|\langle 2,3\rangle|^{2}=2^{2}+3^{2}=13$, the vector projection is equal to $\frac{3}{13}\langle 2,3\rangle$, or $\left\langle\frac{6}{13}, \frac{9}{13}\right\rangle$.
3. Find either a vector equation or a parametric equation for the line that passes through the point with coordinates $(1,7)$ and is parallel to the vector $2 \vec{i}+6 \vec{j}$.

Solution. We can get a vector equation by writing a vector that goes from the origin $(0,0)$ to the given point and then adding a multiple of the given direction vector. Thus a vector expression for the line is $\langle 1,7\rangle+t\langle 2,6\rangle$, or $(1+2 t) \vec{i}+(7+6 t) \vec{j}$, where t takes on all real values. The corresponding Cartesian parametric equations are $x(t)=1+2 t$ and $y(t)=7+6 t$.
4. Sketch the graph of a function f having the following properties:
$\lim _{x \rightarrow-\infty} f(x)=2, \lim _{x \rightarrow \infty} f(x)=0, \lim _{x \rightarrow 0^{-}} f(x)=-\infty$, and $\lim _{x \rightarrow 0^{+}} f(x)=1$.
Solution. The given information indicates that the graph has a horizontal asymptote at height 2 when $x \rightarrow-\infty$ and a horizontal asymptote at height 0 as $x \rightarrow \infty$. Also, the graph has a vertical asymptote as x approaches 0 from the left-hand side, while the graph approaches height 1 as x approaches 0 from the right-hand side. The figure illustrates such a graph.

Although it was not required to give a formula for such a function, it is not hard to do so. The graph pictured above corresponds to the following function:

$$
f(x)= \begin{cases}2+\frac{1}{x}, & \text { if } x<0 \\ \frac{1}{x+1}, & \text { if } x \geq 0\end{cases}
$$

5. Given the information that $f(1)=2, f^{\prime}(1)=3, g(1)=4$, and $g^{\prime}(1)=5$, determine the value of the derivative $(f g)^{\prime}(1)$.

Solution. According to the product rule for derivatives, $(f g)^{\prime}(1)=$ $f(1) g^{\prime}(1)+f^{\prime}(1) g(1)=2 \times 5+3 \times 4=22$.
6. If a TI-89 calculator is tossed upward on the moon with an initial velocity of 10 meters per second, then its height in meters after t seconds is equal to $10 t-0.83 t^{2}$. Determine the velocity of the calculator after 1 second.

Solution. The derivative of the height is the velocity, which by the power rule for derivatives equals $10-1.66 t$. When $t=1$, the velocity equals $10-1.66$ or 8.34 meters per second (in the upward direction).
7. (a) State the precise definition of what $\lim _{x \rightarrow a} f(x)=L$ means (using ϵ and δ).

Calculus

(b) Use the precise definition of limit to prove that $\lim _{x \rightarrow 2} 5 x=10$.

Solution.

(a) The definition of limit says that to every positive number ϵ there corresponds a positive number δ such that $|f(x)-L|<\epsilon$ whenever $0<|x-a|<\delta$.
(b) In the specific case at hand, $a=2, f(x)=5 x$, and $L=10$. I claim that setting δ equal to $\epsilon / 5$ will satisfy the definition. Indeed, if $0<|x-2|<\epsilon / 5$, then $|5 x-10|=5|x-2|<5 \times \epsilon / 5=\epsilon$. Thus the definition is satisfied.
8. The function $2 / x$ is never equal to 0 (because a fraction can equal 0 only if the numerator equals 0). This function, however, takes the value -1 when $x=-2$ and the value +1 when $x=+2$. Since 0 is a value in between -1 and +1 , why doesn't this contradict the Intermediate Value Theorem?

Solution. The Intermediate Value Theorem does not apply to the indicated situation, because the function is not continuous on the interval where $-2 \leq x \leq 2$: namely, the function is not defined when $x=0$. Since the theorem is not applicable, there is no contradiction.
9. (a) Write the definition of the derivative $f^{\prime}(x)$ in terms of a limit.
(b) Use the limit definition of the derivative (not the power rule) to show that

$$
\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}} .
$$

Solution.

(a) The definition of the derivative says that

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Calculus

(b) Applying the definition of the derivative, we must compute

$$
\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}
$$

Multiply the numerator and the denominator both by the expression $\sqrt{x+h}+\sqrt{x}$ to get the equivalent limit

$$
\lim _{h \rightarrow 0} \frac{(x+h)-x}{h(\sqrt{x+h}+\sqrt{x})} \quad \text { or } \quad \lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}} .
$$

As long as $x>0$ (this assumption is implicit in the statement of the problem, since the formula does not make sense when $x \leq 0$), we can apply the limit laws (or the continuity of the expression with respect to h) to evaluate the final limit by simply setting h equal to 0 , yielding the desired result $\frac{1}{2 \sqrt{x}}$.

10. Optional problem for extra credit

Kim, Lee, and Datta are asked to determine the value of the limit

$$
\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{x^{2}+1}}
$$

Kim argues as follows: "If x has large magnitude, then $x^{2}+1$ is nearly equal to x^{2}, and $\sqrt{x^{2}}=x$, so the fraction is nearly equal to $2 x / x$, and the limit must be 2 ."

Lee argues as follows: "I remember the trick is to divide the numerator and the denominator both by the highest power of x, which is x^{2}; then we will have $2 x / x^{2}$ in the numerator, which has limit 0 , so the answer must be 0 ."

Datta argues as follows: "I tried evaluating the function on my calculator. When $x=-10$, I got a function value of -1.99007 ; when $x=-100$, I got $y=-1.9999$; and when $x=-1000$, I got $y=-2$. When I tried negative values of x of even larger magnitude, I kept getting $y=-2$. Therefore the limit must be -2 ."
Decide who (if anyone) is correct, and explain the shortcomings in the arguments proposed by these three students.

Solution. When x is negative, the fraction is negative (since the numerator is negative and the denominator is positive), so the limit as $x \rightarrow-\infty$ certainly cannot be positive! Therefore Kim is surely wrong. Kim's mistake is that $\sqrt{x^{2}}=|x|$, not x.
Lee is wrong too, because the term x^{2} is inside a square root, so the largest power of x is effectively x to the first power. A correct implementation of Lee's idea could go as follows:

$$
\frac{2 x}{\sqrt{x^{2}+1}}=\frac{2 x}{\sqrt{x^{2}} \sqrt{1+\frac{1}{x^{2}}}}=2 \cdot \frac{x}{|x|} \cdot\left(1+\frac{1}{x^{2}}\right)^{-1 / 2} .
$$

Now when $x<0$, the fraction $x /|x|=-1$. Moreover, when $x \rightarrow-\infty$, the term $\left(1+x^{-2}\right)^{-1 / 2} \rightarrow 1$. Hence the limit of the whole expression is equal to $2 \cdot(-1) \cdot 1$, or -2 .
Thus Datta is correct that the limit equals -2 . Although Datta's argument is a convincing numerical demonstration, it does not rise to the level of a proof.

