Calculus

Instructions Please write your solutions on your own paper. Explain your reasoning in complete sentences to maximize credit.

1. Determine a unit vector that has the same direction as the vector $3 \vec{i}-4 \vec{j}$.
2. Determine the vector projection of the vector $\langle 0,1\rangle$ onto the vector $\langle 2,3\rangle$.
3. Find either a vector equation or a parametric equation for the line that passes through the point with coordinates $(1,7)$ and is parallel to the vector $2 \vec{i}+6 \vec{j}$.
4. Sketch the graph of a function f having the following properties:

$$
\lim _{x \rightarrow-\infty} f(x)=2, \lim _{x \rightarrow \infty} f(x)=0, \lim _{x \rightarrow 0^{-}} f(x)=-\infty, \text { and } \lim _{x \rightarrow 0^{+}} f(x)=1
$$

5. Given the information that $f(1)=2, f^{\prime}(1)=3, g(1)=4$, and $g^{\prime}(1)=5$, determine the value of the derivative $(f g)^{\prime}(1)$.
6. If a TI-89 calculator is tossed upward on the moon with an initial velocity of 10 meters per second, then its height in meters after t seconds is equal to $10 t-0.83 t^{2}$. Determine the velocity of the calculator after 1 second.
7. (a) State the precise definition of what $\lim _{x \rightarrow a} f(x)=L$ means (using ϵ and δ).
(b) Use the precise definition of limit to prove that $\lim _{x \rightarrow 2} 5 x=10$.
8. The function $2 / x$ is never equal to 0 (because a fraction can equal 0 only if the numerator equals 0). This function, however, takes the value -1 when $x=-2$ and the value +1 when $x=+2$. Since 0 is a value in between -1 and +1 , why doesn't this contradict the Intermediate Value Theorem?
9. (a) Write the definition of the derivative $f^{\prime}(x)$ in terms of a limit.
(b) Use the limit definition of the derivative (not the power rule) to show that

$$
\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}} .
$$

10. Optional problem for extra credit

Kim, Lee, and Datta are asked to determine the value of the limit

$$
\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{x^{2}+1}}
$$

Kim argues as follows: "If x has large magnitude, then $x^{2}+1$ is nearly equal to x^{2}, and $\sqrt{x^{2}}=x$, so the fraction is nearly equal to $2 x / x$, and the limit must be 2 ."

Lee argues as follows: "I remember the trick is to divide the numerator and the denominator both by the highest power of x, which is x^{2}; then we will have $2 x / x^{2}$ in the numerator, which has limit 0 , so the answer must be 0 ."
Datta argues as follows: "I tried evaluating the function on my calculator. When $x=-10$, I got a function value of -1.99007 ; when $x=-100$, I got $y=-1.9999$; and when $x=-1000$, I got $y=-2$. When I tried negative values of x of even larger magnitude, I kept getting $y=-2$. Therefore the limit must be -2 ."
Decide who (if anyone) is correct, and explain the shortcomings in the arguments proposed by these three students.

