Calculus

Instructions Please write your solutions on your own paper. Explain your reasoning in complete sentences to maximize credit.

1. Suppose f is a function such that $f(0)=1$ and $f^{\prime}(0)=3$. Let g be the composite function such that $g(x)=f(\sin x)$. Determine the value of the derivative $g^{\prime}(0)$.

Solution. By the chain rule, $g^{\prime}(x)=f^{\prime}(\sin x) \cos x$. Therefore $g^{\prime}(0)=$ $f^{\prime}(\sin 0) \cos 0=f^{\prime}(0)=3$.
2. Suppose f is a function such that $f(2)=4$ and $f^{\prime}(2)=7$. Let g be the composite function such that $g(x)=e^{f(2 x)}$. Determine the value of the derivative $g^{\prime}(1)$.

Solution. By the chain rule, $g^{\prime}(x)=e^{f(2 x)} f^{\prime}(2 x) \times 2$. Therefore $g^{\prime}(1)=$ $2 e^{f(2)} f^{\prime}(2)=14 e^{4}$ (which is approximately equal to 764.37).
3. Suppose f and g are inverse functions [recall this means that $f(g(x))=$ x and $g(f(x))=x]$, and suppose $f(1)=2, f^{\prime}(1)=3, f(2)=5$, and $f^{\prime}(2)=7$. Determine the value of the derivative $g^{\prime}(2)$.

Solution. According to the rule for the derivative of an inverse function, $g^{\prime}(2)=1 / f^{\prime}(1)=1 / 3$.

You could also work out the answer from the chain rule, starting from $g(f(x))=x$. Differentiating gives $g^{\prime}(f(x)) f^{\prime}(x)=1$, so $g^{\prime}(f(1)) f^{\prime}(1)=$ 1 , or $g^{\prime}(2)=1 / f^{\prime}(1)=1 / 3$.
4. According to the TI-89 calculator, the functions $\ln (x)$ and $\ln (171 x)$ have the same derivative: namely, $1 / x$. Does it make sense that the graphs of these two different functions have the same slope? Explain.

Solution. One of the basic properties of logarithms tells us that $\ln (171 x)=\ln (171)+\ln (x)$. Thus the graph of $\ln (171 x)$ is the same as the graph of $\ln (x)$ except translated upward by the fixed amount $\ln (171)$. Translating the tangent lines upward does not change their slope. To put it another way, the two functions have the same derivative because they differ by a constant (and the derivative of a constant function is 0).

Calculus

5. Suppose $f(2)=3$ and $f^{\prime}(2)=5$. Let g be the function such that $g(x)=x^{f(x)}$. Use logarithmic differentiation to determine the value of the derivative $g^{\prime}(2)$.

Solution. Since $\ln g(x)=f(x) \ln x$, differentiating (using the chain rule on the left-hand side and the product rule on the right-hand side) shows that $g^{\prime}(x) / g(x)=f^{\prime}(x) \ln x+f(x) / x$. Consequently, $g^{\prime}(2) / g(2)=$ $f^{\prime}(2) \ln 2+f(2) / 2$, or $g^{\prime}(2)=2^{3}(5 \ln 2+3 / 2)=40 \ln 2+12($ which is approximately equal to 39.7).
6. Show that the curves $y=x^{3}$ and $x^{2}+3 y^{2}=1$ intersect orthogonally.

Solution. For the first curve, the slope is $y^{\prime}=3 x^{2}=3 y / x$. For the second curve, implicit differentiation shows that $2 x+6 y y^{\prime}=0$, or $y^{\prime}=-x /(3 y)$. The product of the two slopes is equal to -1 , which means that the curves intersect at right angles.
It is not necessary to know the intersection points, which are approximately $\pm(0.7325,0.393)$.
7. Two students leave Milner Hall at the same time, walking in perpendicular directions. One student walks northeast along Ross Street at a speed of 3 feet per second, and the other student walks northwest along Asbury Street at a speed of 4 feet per second. At what rate is the distance between the students increasing 10 seconds after they start walking?

Solution. Let $x(t)$ denote the distance that the first student has walked by time t, let $y(t)$ denote the distance that the second student has walked by time t, and let $D(t)$ denote the distance between the students at time t. We are given that $d x / d t=3$ and $d y / d t=4$, and we are supposed to determine $d D / d t$ when $t=10$. The relation between the variables is $D^{2}=x^{2}+y^{2}$ (by the Pythagorean law for right triangles).

Differentiating shows that $2 D(d D / d t)=2 x(d x / d t)+2 y(d y / d t)$, or $d D / d t=(3 x+4 y) / D$. Now $x=3 t$ and $y=4 t$, so $D=5 t$. Therefore $d D / d t=(9 t+16 t) /(5 t)=5$, so the rate of change of the distance D with respect to time is 5 feet per second. This rate is independent of t, so we do not need to use the information that $t=10$.

Calculus

8. Consider the curve given in parametric form by $x(t)=t^{3}$ and $y(t)=$ $\sin (t)$, where t runs over the real numbers. Do these parametric equations determine y as a one-to-one function of x ? Explain why or why not.

Solution. The parametric equations determine y as a function of x, but it is not a one-to-one function. For example, if $t=0$ then $x=0$ and $y=0$, while if $t=\pi$ then $x=\pi^{3}$ and $y=0$. Since the same value of y corresponds to two values of x, the function is not one-to-one.
9. If you invest $\$ 1,000$ at 5% interest compounded continuously, then the amount $A(t)$ in your account after t years is $A(t)=1,000 e^{t / 20}$. How many years does it take to double your money?

Solution. We need to solve the equation $2,000=1,000 e^{t / 20}$ for t. Dividing by 1,000 shows that $2=e^{t / 20}$, so $\ln 2=t / 20$, or $t=20 \ln 2$ (which is approximately 13.86 years).

10. Optional problem for extra credit

Jackie finds an approximate value for $\sqrt[3]{1001}$ (the cube root of 1001) by using the linear approximation for the function $\sqrt[3]{x}$ with the base point $a=1000$. Jamie finds an approximate value for $\sqrt[3]{1001}$ by doing one iteration of Newton's method applied to the function $x^{3}-1001$ with starting point $x_{0}=10$. Whose approximation to $\sqrt[3]{1001}$ is more accurate?

Solution. Jackie's calculation, using $f(x)=\sqrt[3]{x}$ and $f^{\prime}(x)=1 /\left(3 x^{2 / 3}\right)$ and the linear approximation formula $f(x) \approx f(a)+f^{\prime}(a)(x-a)$, is

$$
\sqrt[3]{1001} \approx \sqrt[3]{1000}+\frac{1}{3(1000)^{2 / 3}}(1001-1000)=10+\frac{1}{300}
$$

Jamie's calculation, using $f(x)=x^{3}-1001$ and $f^{\prime}(x)=3 x^{2}$ and Newton's formula $x_{1}=x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)$, is

$$
x_{1}=10-\frac{1000-1001}{3\left(10^{2}\right)}=10+\frac{1}{300} .
$$

The two approximations are equal. (The equality is no coincidence, for both methods use a tangent line approximation: one for a function and one for the inverse function.)

