Calculus

Instructions Please write your solutions on your own paper. Explain your reasoning in complete sentences to maximize credit.

1. Suppose f is a function such that $f(0)=1$ and $f^{\prime}(0)=3$. Let g be the composite function such that $g(x)=f(\sin x)$. Determine the value of the derivative $g^{\prime}(0)$.
2. Suppose f is a function such that $f(2)=4$ and $f^{\prime}(2)=7$. Let g be the composite function such that $g(x)=e^{f(2 x)}$. Determine the value of the derivative $g^{\prime}(1)$.
3. Suppose f and g are inverse functions [recall this means that $f(g(x))=$ x and $g(f(x))=x]$, and suppose $f(1)=2, f^{\prime}(1)=3, f(2)=5$, and $f^{\prime}(2)=7$. Determine the value of the derivative $g^{\prime}(2)$.
4. According to the TI-89 calculator, the functions $\ln (x)$ and $\ln (171 x)$ have the same derivative: namely, $1 / x$. Does it make sense that the graphs of these two different functions have the same slope? Explain.
5. Suppose $f(2)=3$ and $f^{\prime}(2)=5$. Let g be the function such that $g(x)=x^{f(x)}$. Use logarithmic differentiation to determine the value of the derivative $g^{\prime}(2)$.
6. Show that the curves $y=x^{3}$ and $x^{2}+3 y^{2}=1$ intersect orthogonally.
7. Two students leave Milner Hall at the same time, walking in perpendicular directions. One student walks northeast along Ross Street at a speed of 3 feet per second, and the other student walks northwest along Asbury Street at a speed of 4 feet per second. At what rate is the distance between the students increasing 10 seconds after they start walking?
8. Consider the curve given in parametric form by $x(t)=t^{3}$ and $y(t)=$ $\sin (t)$, where t runs over the real numbers. Do these parametric equations determine y as a one-to-one function of x ? Explain why or why not.
9. If you invest $\$ 1,000$ at 5% interest compounded continuously, then the amount $A(t)$ in your account after t years is $A(t)=1,000 e^{t / 20}$. How many years does it take to double your money?

Calculus

10. Optional problem for extra credit

Jackie finds an approximate value for $\sqrt[3]{1001}$ (the cube root of 1001) by using the linear approximation for the function $\sqrt[3]{x}$ with the base point $a=1000$. Jamie finds an approximate value for $\sqrt[3]{1001}$ by doing one iteration of Newton's method applied to the function $x^{3}-1001$ with starting point $x_{0}=10$. Whose approximation to $\sqrt[3]{1001}$ is more accurate?

