Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

1. Suppose $f(x)=\frac{\cos x}{2+\sin x}$. Find the absolute maximum value of this function for x in the closed interval $[0,2 \pi]$.
[This is exercise 50 on page 313 of the textbook.]
2. The graph below shows the derivative $f^{\prime}(x)$ on the open interval $(0,6)$. Determine the values of x for which the graph of the original function $f(x)$ [not shown] has (a) local minima and (b) inflection points.

Quiz 10
 Calculus

Fall 2007
3. Suppose f is a function that has derivatives of all orders. If $f(0)=0$ and $f^{\prime}(0)=2$, compute the limit $\lim _{x \rightarrow 0} \frac{f(x) \sin (3 x)}{1-e^{x^{2}}}$.
4. Sketch the graph of a function f that satisfies all of the following conditions.

- Conditions on the function: $f(-1)=4$ and $f(1)=0$.
- Conditions on the derivative: $f^{\prime}(-1)=0$ and $f^{\prime}(1)$ does not exist.
- Additional conditions on the derivative: $f^{\prime}(x)<0$ if $|x|<1$ and $f^{\prime}(x)>0$ if $|x|>1$.
- Condition on the second derivative: $f^{\prime \prime}(x)<0$ if $x \neq 1$.
[This is exercise 16 on page 306 of the textbook.]

